
RC24029 (W0608-058) August 16, 2006
Computer Science

IBM Research Report

CPU Load Shedding for Binary Stream Joins

Bugra Gedik*, Kun-Lung Wu, Philip S. Yu, Ling Liu*
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

*Georgia Institute of Technology

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 2

Abstract

We present an adaptive load shedding approach for windowed stream joins. In contrast to the

conventional approach of dropping tuples from the input streams, we explore the concept of selective

processing for load shedding. We allow stream tuples to be stored in the windows and shed excessive

CPU load by performing the join operations, not on the entire set of tuples within the windows, but

on a dynamically changing subset of tuples that are learned to be highly beneficial. We support such

dynamic selective processing through three forms of runtime adaptations: adaptation to input stream

rates, adaptation to time correlation between the streams and adaptation to join directions. Our load

shedding approach enables us to integrate utility-based load shedding with time correlation-based

load shedding. Indexes are used to further speed up the execution of stream joins. Experiments are

conducted to evaluate our adaptive load shedding in terms of output rate and utility. The results show

that our selective processing approach to load shedding is very effective and significantly outperforms

the approach that drops tuples from the input streams.

I. INTRODUCTION

With the ever increasing rate of digital information available from on-line sources and net-

worked sensing devices [1], the management of bursty and unpredictable data streams has become

a challenging problem. It requires solutions that will enable applications to effectively access

and extract information from such data streams. A promising solution for this problem is to use

declarative query processing engines specialized for handling data streams, such as data stream

management systems (DSMS), exemplified by Aurora [2], STREAM [3], and TelegraphCQ [4].

Joins are key operations in any type of query processing engine and are becoming more

important with the increasing need for fusing data from various types of sensors available, such

as environmental, traffic, and network sensors. Here, we list some real-life applications of stream

joins. We will return to these examples when we discuss assumptions about the characteristics

of the joined streams.

– Finding similar news items from two different sources: Assuming that news items from CNN

and Reuters are represented by weighted keywords (join attribute) in their respective streams,

we can perform a windowed inner product join to find similar news items.

– Finding correlation between phone calls and stock trading: Assuming that phone call streams

are represented as {. . . , (Pa, Pb, t1), . . .} where (Pa, Pb, t1) means Pa calls Pb at time t1, and

stock trading streams are represented as {. . . , (Pb, Sx, t2), . . .} where (Pb, Sx, t2) means Pb trades

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 3

Sx at time t2; we can perform a windowed equi-join on person to find hints, such as: Pa hints

Sx to Pb in the phone call.

– Finding correlated attacks from two different streams: Assuming that alerts from two different

sources are represented by tuples in the form of (source, target, {attack descriptors}, time)

in their respective streams, where {attack descriptors} is a set-based attribute that includes

keywords describing the attack, we can perform a windowed overlap join on attack descriptors

to find correlated attacks from different sources.

Recently, performing joins on unbounded data streams has been actively studied [5], [6], [7].

This is mainly due to the fact that traditional join algorithms need to perform a scan on one of

the inputs to produce all the result tuples that match with a given tuple from the other input.

However, data streams are unbounded. Producing a complete answer for a stream join requires

unbounded memory and processing resources. To address this problem, several approaches have

been proposed.

One natural way of handling joins on infinite streams is to use sliding windows. In a windowed

stream join, a tuple from one stream is joined with only the tuples currently available in the

window of another stream. A sliding window can be defined as a time-based or count-based

(tuple-based) window. An example of a time-based window is “last 10 seconds’ tuples” and an

example of a count-based window is “last 100 tuples.” Windows can be either user defined, in

which case we have fixed windows, or system-defined and thus flexible, in which case the system

uses the available memory to maximize the output size of the join. Another way of handling the

problem of blocking joins is to use punctuated streams [8], in which punctuations that give hints

about the rest of the stream are used to prevent blocking. The two-way stream joins with user

defined time-based windows constitute one of the most common join types in the data stream

management research to date [9], [5], [6].

In order to keep up with the incoming rates of streams, CPU load shedding is usually needed in

stream processing systems. Several factors may contribute to the demand for CPU load shedding,

including (a) bursty and unpredictable rates of the incoming streams; (b) large window sizes;

and (c) costly join conditions. Data streams can be unpredictable in nature [10] and incoming

stream rates tend to soar during peak times. A high stream rate requires more resources for

performing a windowed join, due to both increased number of tuples received per unit time

and the increased number of tuples within a fixed-sized time window. Similarly, large window

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 4

sizes imply that more tuples are needed for processing a windowed join. Costly join conditions

typically require more CPU time.

In this paper, we present an adaptive CPU load shedding approach for windowed stream joins,

aiming at maximizing both the output rate and the output utility of stream joins. The proposed

approach is applicable to all kinds of join conditions, ranging from simple conditions such as

equi-joins defined over single-valued attributes (e.g., the phone calls and stock trading scenario)

to complex conditions such as those defined over set-valued attributes (e.g., the correlated attacks

scenario) or weighted set-valued attributes (e.g., the similar news items scenario).

Summary of Contributions

Our adaptive load shedding approach has several unique characteristics.

First, instead of dropping tuples from the input streams as proposed in many existing ap-

proaches, our adaptive load shedding framework follows a selective processing methodology by

keeping tuples within the windows, but processing them against a subset of the tuples in the

opposite window.

Second, our approach achieves effective load shedding by properly adapting join operations to

three dynamic stream properties: (i) incoming stream rates, (ii) time correlation between streams

and (iii) join directions. The amount of selective processing is adjusted according to the incoming

stream rates. Prioritized segments of the windows are used to adapt join operations to the time-

based correlation between the input streams. Partial symmetric joins are dynamically employed

to take advantage of the most beneficial join direction learned from the streams.

Third, but not the least, our selective processing approach enables a coherent integration of

the three adaptations with the utility-based load shedding. Maximizing the utility of the output

tuples produced is especially important when certain tuples are more valuable than others.

We employ indexes to speed up the selective processing of joins. Experiments were conducted

to evaluate the effectiveness of our adaptive load shedding approach. Our experimental results

show that the three adaptations can effectively shed the load in the presence of any of the

following; bursty and unpredictable rates of the incoming streams, large window sizes, or costly

join conditions.

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 5

II. RELATED WORK

Based on the metric being optimized, related work on load shedding in windowed stream

joins can be divided into two categories.

The work in the first category aims at maximizing the utility of the output produced. Different

tuples may have different importance values based on the application. For instance, in the news

join example, certain type of news, e.g., security news, may be of higher value, and similarly in

the stock trading example, phone calls from insiders may be of higher interest when compared

to calls from regulars. In this case, an output from the join operator that contains highly-valued

tuples is more preferable to a higher rate output generated from lesser-valued tuples. The work

presented in [11] uses user-specified utility specifications to drop tuples from the input streams

with low utility values. We refer to this type of load shedding as utility based load shedding,

also referred to as semantic load shedding in the literature.

The work in the second category aims at maximizing the number of output tuples pro-

duced [12], [6], [13]. This can be achieved through rate reduction on the source streams, i.e.,

dropping tuples from the input streams, as suggested in [14], [6]. The work presented in [6]

investigates algorithms for evaluating moving window joins over pairs of unbounded streams.

Although the main focus of [6] is not on load shedding, scenarios where system resources are

insufficient to keep up with the input streams are also considered.

There are several other works related to load shedding in DSMSs in general, including

memory allocation among query operators [15] or inter-operator queues [16], load shedding

for aggregation queries [17], and overload-sensitive management of archived streams [18].

In summary, most of the existing techniques used for shedding load are tuple dropping for

CPU-limited scenarios and memory allocation among windows for memory-limited scenarios.

However, dropping tuples from the input streams without paying attention to the selectivity of

such tuples may result in a suboptimal solution. Based on this observation, heuristics that take

into account selectivity of the tuples are proposed in [12].

A different approach, called age-based load shedding, is proposed recently in [13] for per-

forming memory-limited stream joins. This work is based on the observation that there exists

a time-based correlation between the streams. Concretely, the probability of having a match

between a tuple just received from one stream and a tuple residing in the window of the opposite

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 6

stream, may change based on the difference between the timestamps of the tuples (assuming

timestamps are assigned based on the arrival times of the tuples at the query engine). Under this

observation, memory is conserved by keeping a tuple in the window since its reception until the

average rate of output tuples generated using this tuple reaches its maximum value. For instance,

in Figure 1 case I, the tuples can be kept in the window until they reach the vertical line marked.

This effectively cuts down the memory needed to store the tuples within the window and yet

produces an output close to the actual output without window reduction.

0 w0

pd
f

0 w0

pd
f

case I case II
time in window time in window

tuple drop time tuple drop time

Fig. 1. Examples of match probability density functions

Obviously, knowing the distribution of the in-

coming streams has its peak at the beginning of

the window, the age-based window reduction can

be effective for shedding memory load. A natural

question to ask is: “Can the age-based window

reduction approach of [13] be used to shed CPU

load?” This is a valid question, because reducing

the window size also decreases the number of com-

parisons that have to be made in order to evaluate

the join. However, as illustrated in Figure 1 case

II, this technique cannot directly extend to the CPU-limited case where the memory is not the

constraint. When the distribution does not have its peak close to the beginning of the window, the

window reduction approach has to keep tuples until they are close to the end of the window. As

a result, tuples that are close to the beginning of the window and thus are not contributing much

to the output will be processed until the peak is reached close to the end of the window. This

observation points out two important facts. First, time-based correlation between the windowed

streams can play an important role in load shedding. Second, the window reduction technique

that is effective for utilizing time-based correlation to shed memory load is not suitable for CPU

load shedding, especially when the distribution of the streams is unknown or unpredictable.

With the above analysis in mind, we propose an adaptive load shedding approach that is capable

of performing selective processing of tuples in the stream windows by dynamic adaptation to

input stream rates, time-based correlations between the streams, and profitability of different join

directions. To the best of our knowledge, our load shedding approach is the first one that can

handle arbitrary time correlations and at the same time support maximization of output utility.

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 7

Finally, it is worth mentioning that our windowed stream join operator semantics follow the

input-triggered approach, in which the output of the join is a time ordered series of tuples,

where an output tuple is generated whenever an incoming tuple matches with an existing tuple

in the join windows. The same approach is used in most of the related work described in this

section [5], [6], [7], [12], [13]. A different semantics for the windowed stream joins, one based

on the negative tuples approach, is used in the Nile stream engine [19]. In Nile, at any time the

answer of the join is taken as the answer of the snapshot join whose inputs are the tuples in

the current window for each input stream. This is more similar to the problem of incremental

materialized view maintenance. The extension of our selective processing approach to negative

tuples is an interesting research direction. However, it is beyond the scope of this paper.

III. OVERVIEW

Unlike the conventional load shedding approach of dropping tuples from the input streams,

our adaptive load shedding encourages stream tuples to be kept in the windows. It sheds the CPU

load by performing the stream joins on a dynamically changing subset of tuples that are learned

to be highly beneficial, instead of on the entire set of tuples stored within the windows. This

allows us to exploit the characteristics of stream applications that exhibit time-based correlation

between the streams. Concretely, we assume that there exists a non-flat distribution of probability

of match between a newly-received tuple and the other tuples in the opposite window, depending

on the difference between the timestamps of the tuples.

There are several reasons behind this assumption. First, variable delays can exist between the

streams as a result of differences between the communication overhead of receiving tuples from

different sources [20]. Second and more importantly, there may exist variable delays between

related events from different sources. For instance, in the news join example, different news

agencies are expected to have different reaction times due to differences in their news collection

and publishing processes. In the stock trading example, there will be a time delay between the

phone call containing the hint and the action of buying the hinted stock. In the correlated attacks

example, different parts of the network may have been attacked at different times. Note that, the

effects of time correlation on the data stream joins are to some extent analogous to the effects

of the time of data creation in data warehouses, which are exploited by join algorithms such as

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 8

Diag-Join [21]. 1

It is important to note that we do not assume pre-knowledge of the probability match distri-

butions corresponding to the time correlations. Instead, they are learned by our join algorithms.

However, we do assume that these distributions are usually not uniform and thus can be exploited

to maximize the output rate of the join.

Although our load shedding is based on the assumption that the memory resource is sufficient,

we want to point out two important observations. First, with increasing input stream rates and

larger stream window sizes, it is quite common that CPU becomes limited before memory

does. Second, even under limited memory, our adaptive load shedding approach can be used to

effectively shed the excessive CPU load after window reduction is performed for handling the

memory constraints.

A. Technical Highlights

Our load shedding approach is best understood through its two core mechanisms, each an-

swering a fundamental question on adaptive load shedding without tuple dropping.

The first is called partial processing and it answers the question of “how much we can process”

given a window of stream tuples. The factors to be considered in answering this question include

the performance of the stream join operation under current system load and the current incoming

stream rates. In particular, partial processing dynamically adjusts the amount of load shedding

to be performed through rate adaptation.

The second is called selective processing and it answers the question of “what should we

process” given the constraint on the amount of processing, defined at the partial processing

phase. The factors that influence the answer to this question include the characteristics of stream

window segments, the profitability of join directions, and the utility of different stream tuples.

Selective processing extends partial processing to intelligently select the tuples to be used during

join processing under heavy system load, with the goal of maximizing the output rate or the

output utility of the stream join.

1Diag-Join is a join algorithm designed for efficiently executing equi-joins over 1:N relationships in data warehouses, which

exploits the clusters formed within the base relations due to the time of data creation effects. These clusters are formed by tuples

with temporarily close append times sharing the same value as their foreign key.

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 9

Notation Meaning Notation Meaning

t tuple pi,j probability of match for Bi,j

T (t) timestamp of the tuple t
oi,j

expected output from comparing

Si input stream i a tuple t with a tuple in Bi,j

Wi window over Si
sj

i

k, where oi,k is the jth item

wi window size of Wi in seconds in the sorted list {oi,l|l ∈ [1..ni]}
λi rate of Si in tuples per second

ui,z

expected utility from comparing

Bi,j basic window j in Wi a tuple t of type z with a tuple in Wi

b basic window size in seconds Z tuple type domain

ni number of basic windows in Wi Z(t) type of a tuple

V(z) utility of a tuple of type z r fraction parameter

ωi,z frequency of a tuple of type z in Si δr fraction boost factor

Tr rate adaptation period ri fraction parameter for Wi

Tc time correlation adaptation period ri,z fraction parameter for Wi for a tuple of type z

fi(.) match probability density function for Wi γ sampling probability

TABLE I

NOTATIONS USED THROUGHOUT THE PAPER

Before describing the details of partial processing and selective processing, we first briefly

review the basic concepts involved in processing windowed stream joins, and establish the

notations that will be used throughout the paper.

B. Basic Concepts and Notations

A two-way windowed stream join operation takes two input streams denoted as S1 and S2,

performs the stream join and generates the output. For notational convenience, we denote the

opposite stream of stream i (i = 1, 2) as stream i. The sliding window defined over stream Si

is denoted as Wi, and has size wi in terms of seconds. We denote a tuple as t and its arrival

timestamp as T (t). Other notations will be introduced in the rest of the paper as needed. Table I

summarizes the notations used throughout the paper.

A windowed stream join is performed by fetching tuples from the input streams and processing

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 10

S2 S1

output

t3

t1

t4

t2

t5

S2 S1

t3

t4

t5

t2 t1

expired

t2 t5

t2 t3

t1t4

W1 W2 W1 W2
se

ar
ch

 fo
r m

at
ch

s

search
 fo

r m
atch

s

in
se

rt

in
sert

t1 from S2 matches
with t4 in W1

t2 from S1 matches
with t3 and t5 in W2

...

...

...

...
...
...
...
...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
...

...

...

...

...

...

...

...

... : tuple not shown

Fig. 2. Stream Join Example

JOIN PROCESSING()
for i = 1 to 2

if no tuple in Si

continue
t← fetch tuple from Si

Insert t in front of Wi

repeat
to ← last tuple in Wi

if T − T (to) > wi

Remove to from Wi

until T − T (to) ≤ wi

foreach ta ∈Wi

Evaluate join condition on t, ta

Fig. 3. Join Processing

them against tuples in the opposite window. Figure 2 illustrates the process of windowed stream

joins. For a newly fetched tuple t from stream Si, the join is performed in the following steps.

First, tuple t is inserted into the beginning of window Wi. Second, tuples at the end of window

Wi are checked in order and removed if they have expired. A tuple to expires from window

Wi iff T − T (to) > wi, where T represents the current time. The expiration check stops when

an unexpired tuple is encountered. The tuples in window Wi are sorted in the order of their

arrival timestamps by default and the window is managed as a doubly linked list for efficiently

performing insertion and expiration operations. In the third and last step, tuple t is processed

against tuples in the window Wi, and matching tuples are generated as output.

Figure 3 summarizes the join processing steps. Although not depicted in the pseudo-code, in

practice buffers can be placed in the inputs of the join operator, which is common practice in

DSMS query networks and also useful for masking small scale rate bursts in stand-alone joins.

To handle joins defined on set or weighted set valued attributes, the following additional details

are attached to the processing steps, assuming a tuple is a set of items (possibly with assigned

weights). First, the items in tuple t are sorted as it is fetched from Si. The tuples in Wi are

expected to be sorted, since they have gone through the same step when they were fetched from

Si. Then, for each tuple ta in Wi, t and ta are compared by performing a simple merge of their

sorted items. Equality, subset, superset, overlap and inner product joins all can be processed in

a similar manner. For indexed joins, an inverted index is used to efficiently perform the join

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 11

without going through all the tuples in Wi. We discuss the details of indexed join in Section IV-B.

IV. PARTIAL PROCESSING - HOW MUCH CAN WE PROCESS?

The first step in our approach to shedding CPU load without dropping tuples is to determine

how much we can process given the windows of stream tuples that participate in the join. We

call this step the partial processing based load shedding. For instance, consider a scenario in

which the limitation in processing power requires dropping half of the tuples, i.e. decreasing the

input rate of the streams by half. A partial processing approach is to allow every tuple to enter

into the windows, but to decrease the cost of join processing by comparing a newly-fetched

tuple with only a fraction of the window defined on the opposite stream.

Partial processing, by itself, does not significantly increase the number of output tuples

produced by the join operator, when compared to tuple dropping or window reduction approaches.

However, as we will describe later in the paper, it forms a basis to perform selective processing,

which exploits the time-based correlation between the streams, and makes it possible to accom-

modate utility-based load shedding, in order to maximize the output rate or the utility of the

output tuples produced.

Two important factors are considered in determining the amount of partial processing: (1)

the current incoming stream rates, and (2) the performance of the stream join operation under

current system load. Partial processing employs rate adaptation to adjust the amount of processing

performed dynamically. The performance of the stream join under the current system load is

a critical factor and it is influenced by the concrete join algorithm and optimizations used for

performing join operations.

In the rest of this section, we first describe rate adaptation, then discuss the details of utilizing

indexes for efficient join processing. Finally we describe how to employ rate adaptation in

conjunction with indexed join processing.

A. Rate Adaptation

The partial processing-based load shedding is performed by adapting to the rates of the input

streams. This is done by observing the tuple consumption rate of the join operation and comparing

it to the input rates of the streams to determine the fraction of the windows to be processed. This

adaptation is performed periodically, at every Tr seconds. Tr is called the adaptation period. We

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 12

Algorithm 1: Rate Adaptation
RATEADAPT()
(1) Initially: r ← 1
(2) every Tr seconds
(3) α1 ← # of tuples fetched from S1 since last rate adaptation step
(4) α2 ← # of tuples fetched from S2 since last rate adaptation step
(5) λ1 ← average rate of S1 since last rate adaptation step
(6) λ2 ← average rate of S2 since last rate adaptation step
(7) β ← (α1 + α2)/ ((λ1 + λ2) ∗ Tr)
(8) if β < 1 then r ← β ∗ r
(9) else r ← min(1, δr ∗ r)

denote the fraction parameter as r, which defines the fraction of the windows to be processed.

In other words, the setting of r answers the question of how much load we should shed.

Algorithm 1 gives a sketch of the rate adaptation process. Initially, the fraction parameter r is

set to 1. Every Tr seconds, the average rates of the input streams S1 and S2 are determined as λ1

and λ2. Similarly, the number of tuples fetched from streams S1 and S2 since the last adaptation

step are determined as α1 and α2. Tuples from the input streams may not be fetched at the rate

they arrive due to an inappropriate initial value of the parameter r or due to a change in the

stream rates since the last adaptation step. As a result, β = α1+α2

(λ1+λ2)∗Tr
determines the percentage

of the input tuples fetched by the join algorithm. Based on the value of β, the fraction parameter

r is readjusted at the end of each adaptation step. If β is smaller than 1, r is multiplied by β,

with the assumption that comparing a tuple with the other tuples in the opposite window has the

dominating cost in join processing. Otherwise, the join is able to process all the incoming tuples

with the current value of r. In this case, the r value is set to min(1, δr ∗ r), where δr is called

the fraction boost factor. This is aimed at increasing the fraction of the windows processed,

optimistically assuming that additional processing power is available. If not, the parameter r

will be decreased during the next adaptation step. Higher values of the fraction boost factor

result in being more aggressive at increasing the parameter r.

The adaptation period Tr should be small enough to adapt to the bursty nature of the streams,

but large enough not to cause overhead and undermine the join processing. Based on Nyquist’s

theorem and control theory, the adaptation period can be taken as half the period of the most

frequent rate bursts in the streams. However, if this value increases the percentage of CPU time

spent for performing the adaptation step beyond a small threshold ε (≤ 0.1%), then Tr should

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 13

be set to its lower bound. This lower bound is the smallest value which results in spending ε

percentage of the CPU time for adaptation.

B. Indexed Join and Partial Processing

Stream indexing [22], [23] can be used to cope up with the high processing cost of the join

operation, reducing the amount of load shedding performed. However, there are two important

points to be resolved before indexing can be employed together with partial processing and

thus with other algorithms we introduce in the following sections. The first issue is that, in a

streaming scenario the index has to be maintained dynamically (through insertions and removals)

as the tuples enter and leave the window. This means that the assumption made in Section IV-A

about finding matching tuples within a window (index search cost) being the dominant cost in

the join processing, no longer holds. Second, the index does not naturally allow processing only

a certain portion of the window. We resolve these issues in the context of inverted indexes,

that are predominantly used for joins based on set or weighted set-valued attributes. The same

ideas apply to hash-indexes used for equi-joins on single-valued attributes. Our inverted-index

implementation reduces to a hash-index in the presence of single-valued attributes. Here, we

first give a brief overview of inverted indexes and then describe the modifications required to

use them in conjunction with our load shedding algorithms.

1) Inverted Indexes: An inverted index consists of a collection of sorted identifier lists. In

order to insert a set into the index, for each item in the set, the unique identifier of the set is

inserted into the identifier list associated with that particular item. Similar to insertion, removal

of a set from the index requires finding the identifier lists associated with the items in the set.

The removal is performed by removing the identifier of the set from these identifier lists. In

our context, the inverted index is maintained as an in-memory data structure. The collection of

identifier lists are managed in a hashtable. The hashtable is used to efficiently find the identifier

list associated with an item. The identifier lists are internally organized as sorted (based on

unique set identifiers) balanced binary trees to facilitate both fast insertion and removal. The set

identifiers are in fact pointers to the tuples they represent.

Query processing on an inverted index follows a multi-way merging process, which is usually

accelerated through the use of a heap. Same type of processing is used for all different types of

queries we have mentioned so far. Specifically, given a query set, the identifier lists corresponding

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 14

to items in the query set are retrieved using the hashtable. These sorted identifier lists are then

merged. This is done by inserting the frontiers of the lists into a min heap and iteratively removing

the topmost set identifier from the heap and replacing it with the next set identifier (new frontier)

in its list. During this process, the identifier of an indexed set, sharing k items with the query

set, will be picked from the heap k consecutive times, making it possible to process relatively

complex overlap and inner product2 queries efficiently [24].

2) Time Ordered Identifier Lists: Although the usage of inverted indexes speeds up the

processing of joins based on set-valued attributes, it also introduces significant insertion and

deletion costs. This problem can be alleviated by exploiting the timestamps of the tuples that

are being indexed and the fact that these tuples are received in timestamp order from the input

streams. In particular, instead of maintaining identifier lists as balanced trees sorted on identifiers,

we can maintain them as linked lists sorted on timestamps of the tuples (sets). This does not

affect the merging phase of the indexed search, since a timestamp uniquely identifies a tuple

in a stream unless different tuples with equal timestamps are allowed. In order to handle the

latter, the identifier lists can be sorted based on (timestamp, identifier) pairs. This requires very

small reordering, as the event of receiving different tuples with equal timestamps is expected

to happen very infrequently, if it happens at all. Figure 4 provides an illustration of timestamp

ordered identifier lists in inverted indexes.

α,

β,

.

.

. tuple to be added ti = (T(ti), {α,β}), T(ti) > T(tj)

insert to front
[T(ti), id(ti)]

expiration

existing tuple tj = (T(tj), {α,β,γ})

[T(tj), id(tj)]

[T(tj), id(tj)]. . .

. . .

sorted based on [timestamp, id] pairs

insert to front
[T(ti), id(ti)]

. . .

. . .ha
sh

 ta
bl

e
on

 it
em

s

expiration

Fig. 4. Illustration of an inverted index that

uses (timestamp, identifier) pairs for sorting

the identifier lists, which improves tuple in-

sertion and expiration performance, without

negatively effecting the search performance,

since tuples with equal timestamps are rare.

Using timestamp ordered identifier lists has the following three advantages:

1. It allows inserting a set identifier into an identifier list in constant time, as opposed to

logarithmic time with identifier sorted lists.

2For weighted sets, the weights should also be stored within the identifier lists, in order to answer inner product queries.

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 15

2. It facilitates piggybacking of removal operations on insertion and search operations, by

checking for expired tuples at the end of identifier lists at insertion and search time. Thus,

the removal operation is performed in amortized constant time as opposed to logarithmic

time with identifier sorted lists.

3. Timestamp sorted identifier lists make it possible to end the merging process, used for

search operations, at a specified time within the window, thus enabling time based partial

processing.

V. SELECTIVE PROCESSING - WHAT SHOULD WE PROCESS?

Selective processing extends partial processing to intelligently select the tuples to be used

during join processing under heavy system load. Given the constraint on the amount of processing

defined at the partial processing phase, the selective processing aims at maximizing the output

rate or the output utility of the stream joins. Three important factors are used to determine what

we should select for join processing: (1) the characteristics of stream window segments, (2) the

profitability of join directions, and (3) the utility of different stream tuples. We first describe

time correlation adaptation and join direction adaptation, which form the core of our selective

processing approach. Then we discuss utility-based load shedding. The main ideas behind time

correlation adaptation and join direction adaptation are to prioritize segments (basic windows) of

the windows in order to process parts that will yield higher output (time correlation adaptation)

and to start load shedding from one of the windows if one direction of the join is producing

more output than the other (join direction adaptation).

A. Time Correlation Adaptation

For the purpose of time correlation adaptation, we divide the windows of the join into basic

windows. Concretely, window Wi is divided into ni basic windows of size b seconds each, where

ni = 1 + �wi/b�. Bi,j denotes the jth basic window in Wi, j ∈ [1..ni]. Tuples do not move

from one basic window to another. As a result, tuples leave the join operator one basic window

at a time and the basic windows slide discretely b seconds at a time. The newly fetched tuples

are inserted into the first basic window. When the first basic window is full, meaning that the

newly fetched tuple has a timestamp that is at least b seconds larger than the oldest tuple in

the first basic window, the last basic window is emptied and all the basic windows are shifted,

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 16

Algorithm 2: Time Correlation Adaptation
TIMECORRELATIONADAPT()
(1) every Tc seconds
(2) for i = 1 to 2
(3) sort in desc. order {ôi,j |j ∈ [1..ni]} into array O
(4) for j = 1 to ni

(5) oi,j ← ôi,j/(γ ∗ r ∗ b ∗ λ2 ∗ λ1 ∗ Tc)
(6) sj

i ← k, where O[j] = ôi,k

(7) for j = 1 to ni

(8) ôi,j ← 0

last basic window becoming the first. The newly fetched tuples can now flow into the new first

basic window, which is empty. The basic windows are managed in a circular buffer, so that the

shift of windows is a constant time operation. The basic windows themselves can be organized

as either linked lists (if no indexing is used) or as inverted/hashed indexes (if indexing is used).

Time correlation adaptation is periodically performed at every Tc seconds. Tc is called the

time correlation adaptation period. During the time between two consecutive adaptation steps,

the join operation performs two types of processing. For a newly fetched tuple, it either performs

selective processing or full processing. Selective processing is carried out by looking for matches

with tuples in high priority basic windows of the opposite window, where the number of basic

windows used depends on the amount of load shedding to be performed. Full processing is done

by comparing the newly fetched tuple against all the tuples from the opposite window. The aim

of full processing is to collect statistics about the usefulness of the basic windows for the join

operation. This can not be done with selective processing, since it introduces bias as it processes

only certain segments of the join windows and can not capture changing time correlations.

The details of the adaptation step and full processing are given in Algorithm 2 and in lines

1-5 of Algorithm 3. Full processing is only done for a sampled subset of the stream, based

on a parameter called sampling probability, denoted as γ. A newly fetched tuple goes through

selective processing with probability 1 − r ∗ γ. In other words, it goes through full processing

with probability r ∗ γ. The fraction parameter r is used to scale the sampling probability, so

that the full processing does not consume all processing resources when the load on the system

is high. The goal of full processing is to calculate for each basic window Bi,j , the expected

number of output tuples produced from comparing a newly fetched tuple t with a tuple in Bi,j ,

denoted as oi,j . These values are used later during the adaptation step to prioritize windows. In

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 17

Algorithm 3: Tuple Processing and Time Correlation
PROCESSTUPLE()
(1) when processing tuple t against window Wi

(2) if rand < r ∗ γ
(3) process t against all tuples in Bi,j ,∀j ∈ [1..ni]
(4) foreach match in Bi,j ,∀j ∈ [1..ni]
(5) ôi,j ← ôi,j + 1
(6) else
(7) a← r ∗ |Wi|
(8) for j = 1 to ni

(9) a← a− |Bi,sj
i
|

(10) if a > 0
(11) process t against all tuples in Bi,sj

i

(12) else
(13) re ← 1 + a/|Bi,sj

i
|

(14) process t against re fraction of tuples in Bi,sj
i

(15) break

particular, oi,j values are used to calculate sj
i values. Here, si

j is the index of the basic window

which has the jth highest o value among the basic windows within Wi. Concretely:

sj
i = k, where oi,k is the jth item in the sorted (desc.) list {oi,l|l ∈ [1..ni]}

This means that Bi,s1
i

is the highest priority basic window in Wi, Bi,s2
i

is the next, and so on.

Lines 7-14 in Algorithm 3 give a sketch of selective processing. During selective processing,

sj
i values are used to guide the load shedding. Concretely, in order to process a newly fetched

tuple t against window Wi, first the number of tuples from window Wi, that are going to be

considered for processing, is determined by calculating r ∗ |Wi|, where |Wi| denotes the number

of tuples in the window. The fraction parameter r is determined by rate adaptation as described

in Section IV-A. Then, tuple t is processed against basic windows, starting from the highest

priority one, i.e. Bi,s1
i
, going in decreasing order of priority. A basic window Bi,sj

i
is searched

for matches completely, if adding |Bi,sj
i
| number of tuples to the number of tuples used so far

from window Wi to process tuple t does not exceeds r ∗ |Wi|. Otherwise an appropriate fraction

of the basic window is used and the processing is completed for tuple t.

1) Impact of Basic Window Size: The setting of basic window size parameter b involves

trade-offs. Smaller values are better to capture the peak of the match probability distribution,

while they also introduce overhead in processing. For instance, recalling Section IV-B.1, in an

indexed join operation, the identifier lists have to be looked up for each basic window. Although

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 18

the lists themselves are shorter and the total merging cost does not increase with smaller basic

windows, the cost of looking up the identifier lists from the hashtables increases with increasing

number of basic windows, ni.

Here we analyze how well the match probability distribution, which is dependent on the time

correlation between the streams, is utilized for a given value of the basic window size parameter

b, under a given load condition. We use r′ to denote the fraction of tuples in join windows that

can be used for processing. Thus, r′ is used to model the current load of the system. We assume

that r′ can go over 1, in which case processing resources are abundant.

We use fi(.) to denote the match probability distribution function for window Wi, where∫ TΔ2

TΔ1
fi(y)dy gives the probability that a newly fetched tuple will match with a tuple t in Wi that

has a timestamp T (t) ∈ [T−TΔ1 , T−TΔ2]. Note that, due to discrete movement of basic windows,

a basic window covers a time varying area under the match probability distribution function.

This area, denoted as pi,j for basic window Bi,j , can be calculated by observing that the basic

window Bi,j covers the area over the interval [max(0, x∗b+(j−2)∗b), min(wi, x∗b+(j−1)∗b)]
on the time axis ([0, wi]), when only x ∈ [0, 1] fraction of the first basic window is full. Then,

we have:

pi,j =

∫ 1

x=0

∫ min(wi,x∗b+(j−1)∗b)

t=max(0,x∗b+(j−2)∗b)
fi(y) dy dx

For the following discussion, we overload the notation sj
i , such that sj

i = k, where pi,k is the

jth item in the sorted list {pi,l|l ∈ [1..ni]}. The number of basic windows whose tuples are all

considered for processing is denoted as ce. The fraction of tuples in the last basic window used,

that are considered for processing, is denoted as cp. cp is zero if the last used basic window is

completely processed. We have:

ce = min(ni, 	r′ ∗ wi/b
)

cp =

⎧⎪⎨
⎪⎩

r′∗wi−ce∗b
b

ce < ni

0 otherwise

Then the area under fi that represents the portion of window Wi processed, denoted as pu,

can be calculated as:

pu ≈ cp ∗ psce+1
i

+
ce∑

j=1

pi,sj
i

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 19

Let us define g(fi, a) as the maximum area under the function fi with a total extent of a on

the time axis. Then we can calculate the optimality of pu, denoted as φ, as follows:

φ =
pu

g(fi, wi ∗min(1, r′))

When φ = 1, the join processing is optimal with respect to output rate (ignoring the overhead

of small basic windows). Otherwise, the expected output rate is φ times the optimal value, under

current load conditions (r′) and basic window size setting (b). Figure 5 plots φ (on z-axis) as a

function of b/wi (on x-axis) and r′ (on y-axis) for two different match probability distributions,

the bottom one being more skewed. We make the following three observations from the figure:

• Decreasing availability of computational resources negatively influences the optimality of

the join for a fixed basic window size.

• The increasing skewness in the match probability distribution decreases the optimality of

the join for a fixed basic window size.

• Smaller basic windows sizes provide better join optimality, when the available computational

resources are low or the match probability distribution is skewed.

The intuition behind these observations is as follows. When only a small fraction of the join

windows can be processed, we have to pick a small number of basic windows that are around

the peak of the match probability distribution. When the granularity of the basic windows is not

sufficiently fine grained, the limited resources are spent processing less beneficial segments that

appear within the basic windows. This effect is more pronounced when the match probability

distribution is more skewed. As a result, small basic window sizes are favorable for skewed

probability match distributions and heavy load conditions. We report our experimental study on

the effect of overhead, stemming from managing large number of basic windows, on the output

rate of the join in Section VI.

B. Join Direction Adaptation

Due to time-based correlation between the streams, a newly fetched tuple from stream S1 may

match with a tuple from stream S2 that has already made its way into the middle portions of

window W2. This means that, most of the time, a newly fetched tuple from stream S2 has to

stay within the window W2 for some time, before it can be matched with a tuple from stream

S1. This implies that, one direction of the join processing may be of lesser value, in terms of

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 20

the number of output tuples produced, than the other direction. For instance, processing a newly

fetched tuple t from stream S2 against window W1 will produce smaller number of output tuples

when compared to the other way around, as the tuples to match t has not yet arrived at window

W1. In this case, symmetry of the join operation can be broken during load shedding, in order to

achieve a higher output rate. This can be achieved by decreasing the fraction of tuples processed

from window W2 first, and from W1 later (if needed). We call this join direction adaptation.

Join direction adaptation is performed immediately after rate adaptation. Specifically, two

different fraction parameters are defined, denoted as ri for window Wi, i ∈ {1, 2}. During join

processing, ri fraction of the tuples in window Wi are considered, making it possible to adjust

join direction by changing r1 and r2. This requires replacing r with ri in line 7 of Algorithm 3

and line 5 of Algorithm 2.

The constraint in setting of ri values is that the number of tuple comparisons performed per

0.1
0.2

0.3
0.4

0.5 0
0.5

1
1.5

0

0.2

0.4

0.6

0.8

1

b/w

φ

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(T−T(t)) / w

de
ns

ity
 o

f m
at

ch
 p

ro
ba

bi
lit

y

 r‘

0.1
0.2

0.3
0.4 0.5

1
1.50

0.5

1

 r‘b/w

φ

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

0.5 0
(T−T(t)) / w

de
ns

ity
 o

f m
at

ch
 p

ro
ba

bi
lit

y

Fig. 5. Optimality of the join for different loads and basic window sizes under two different match probability distributions

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 21

Algorithm 4: Join Direction Adaptation
JOINDIRECTIONADAPT()
(1) Initially: r1 ← 1, r2 ← 1
(2) upon completion of RATEADAPT() call
(3) o1 ← 1

n1
∗∑n1

j=1 o1,j

(4) o2 ← 1
n2
∗∑n2

j=1 o2,j

(5) if o1 ≥ o2 then r1 ← min(1, r ∗ w1+w2
w1

)
(6) else r1 ← max(0, r ∗ w1+w2

w1
− w2

w1
)

(7) r2 ← r ∗ w1+w2
w1

− r1 ∗ w1
w2

time unit should stay the same when compared to the case where there is a single r value as

computed by Algorithm 1. The number of tuple comparisons performed per time unit is given

by
∑2

i=1 (ri ∗ λi ∗ (λi ∗ wi)), since the number of tuples in window Wi is λi ∗ wi. Thus, we

should have
∑2

i=1 (r ∗ λi ∗ (λi ∗ wi)) =
∑2

i=1 (ri ∗ λi ∗ (λi ∗ wi)), i.e.:

r ∗ (w1 + w2) = r1 ∗ w1 + r2 ∗ w2

The valuable direction of the join can be determined by comparing the expected number of

output tuples produced from comparing a newly fetched tuple with a tuple in Wi, denoted as

oi, for i = 1 and 2. This can be computed as oi = 1
ni
∗∑ni

j=1 oi,j . Assuming o1 > o2, without

loss of generality, we can set r1 = min(1, r ∗ w1+w2

w1
). This maximizes r1, while respecting the

above constraint. The generic procedure to set r1 and r2 is given in Algorithm 4.

Join direction adaptation, as it is described in this section, assumes that any portion of one

of the windows is more valuable than all portions of the other window. This may not be the

case for applications where both match probability distribution functions, f1(t) and f2(t), are

non-flat. For instance, in a traffic application scenario, a two way traffic flow between two points

implies both directions of the join are valuable. We introduce a more advanced join direction

adaptation algorithm, that can handle such cases, in the next subsection as part of utility-based

load shedding.

C. Utility-based Load Shedding

So far, we have targeted our load shedding algorithms toward maximizing the number of tuples

produced by the join operation, a commonly used metric in the literature [12], [13]. Utility-based

load shedding, also called semantic load shedding [11], is another metric employed for guiding

load shedding. It has the benefit of being able to distinguish high utility output from output

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 22

containing large number of tuples. In the context of join operations, utility-based load shedding

promotes output that results from matching tuples of higher importance/utility. In this section,

we describe how utility-based load shedding is integrated into the mechanism described so far.

We assume that each tuple has an associated importance level, defined by the type of the tuple,

and specified by the utility value attached to that type. This type and utility value assignment is

application specific and is external to our join algorithm. For instance, in the news join example,

certain type of news, e.g., security news, may be of higher value, and similarly in the stock

trading example, phone calls from insiders may be of higher interest when compared to calls

from regulars. It is the responsibility of the domain expert to specify what types of tuples are

considered important. In some cases, data mining operators can also be used to mark tuples with

their importance types. As long as each tuple has an assigned utility value, our utility-based

load shedding algorithm can maximize output utility while working in tandem with the selective

processing based load shedding algorithm that has rate, time correlation, and join direction

adaptation.

We denote the tuple type domain as Z , type of a tuple t as Z(t), and utility of a tuple t,

where Z(t) = z ∈ Z , as V(z). Type domains and their associated utility values can be set based

on application needs. In the rest of the paper, the utility value of an output tuple of the the join

operation that is obtained by matching tuples ta and tb, is assumed to contribute a utility value of

max (V(Z(ta)),V(Z(tb))) to the output. Our approach can also accommodate other functions,

like average (0.5 ∗ (V(Z(ta)) + V(Z(tb)))). We denote the frequency of appearance of a tuple

of type z in stream Si as ωi,z, where
∑

z∈Z ωi,z = 1.

The main idea behind utility-based load shedding is to use a different fraction parameter for

each different type of tuple fetched from a different stream, denoted as ri,z, where z ∈ Z and

i ∈ {1, 2}. The motivation behind this is to do less load shedding for tuples that provide higher

output utility. The extra work done for such tuples is compensated by doing more load shedding

for tuples that provide lower output utility. The expected output utility obtained from comparing

a tuple t of type z with a tuple in window Wi is denoted as ui,z, and is used to determine ri,z’s.

In order to formalize this problem, we extend some of the notation from Section V-A.1. The

number of basic windows from Wi whose tuples are all considered for processing against a tuple

of type z, is denoted as ce(i, z). The fraction of tuples in the last basic window used from Wi,

that are considered for processing, is denoted as cp(i, z). cp(i, z) is zero if the last used basic

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 23

window is completely processed. Thus, we have:

ce(i, z) = 	ni ∗ ri,z

cp(i, z) = ni ∗ ri,z − ce(i, z)

Then, the area under fi that represents the portion of window Wi processed for a tuple of type

z, denoted as pu(i, z), can be calculated as follows:

pu(i, z) ≈ cp(i, z) ∗ p
i,s

ce(i,z)+1
i

+

ce(i,z)∑
j=1

pi,sj
i

With these definitions, the maximization of the output utility can be defined formally as

max

2∑
i=1

(
λi ∗ (λi ∗ wi) ∗

∑
z∈Z

(
ωi,z ∗ ui,z ∗ pu(i, z)

))

subject to the processing constraint:

r ∗ (w2 + w1) =
2∑

i=1

(
wi ∗

∑
z∈Z

(
ωi,z ∗ ri,z

))

The r value used here is computed by Algorithm 1, as part of rate adaptation. Although the

formulation is complex, this is indeed a fractional knapsack problem and has a greedy optimal

solution. This problem can be reformulated3 as follows: Consider Ii,j,z as an item that represents

processing of a tuple of type z against basic window Bi,j . Item Ii,j,z has a volume of λ1∗λ2∗ωi,z∗b
units (which is the number of comparisons made per time unit to process incoming tuples of

type z against tuples in Bi,j) and a value of λ1 ∗ λ2 ∗ ωi,z ∗ b ∗ ui,z ∗ pi,sj
i
∗ ni units (which is the

utility gained per time unit, from comparing incoming tuples of type z with tuples in Bi,j). The

aim is to pick maximum number of items, where fractional items are acceptable, so that the total

value is maximized and the total volume of the picked items is at most λ1 ∗ λ2 ∗ r ∗ (w2 + w1).

ri,j,z ∈ [0, 1] is used to denote how much of item Ii,j,z is picked. Note that the number of

unknown variables here (ri,j,z’s) is (n1 + n2) ∗ |Z|, and the solution of the original problem can

be calculated from these variables as, ri,z =
∑ni

j=1 ri,j,z.

The values of the fraction variables are determined during join direction adaptation. A simple

way to do this, is to sort the items based on their value over volume ratios, vi,j,z = ui,z ∗pi,sj
i
∗ni

(note that oi,j/
∑ni

k=1 oi,k can be used as an estimate of pi,sj
i
), and to pick as much as possible

3assuming that some buffering is performed outside the join

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 24

Algorithm 5: Join Direction Adapt, Utility-based Shedding
VJOINDIRECTIONADAPT()
(1) upon completion of RATEADAPT() call
(2) heap: H
(3) for i = 1 to 2
(4) foreach z ∈ Z
(5) ri,z ← 0
(6) vi,s1

i ,z ← ui,z ∗ ni ∗ oi,s1
i
/
∑ni

k=1 oi,k

(7) Initialize H with {vi,s1
i ,z|i ∈ [1..2], z ∈ Z}

(8) a← λ1 ∗ λ2 ∗ r ∗ (w1 + w2)
(9) while H is not empty
(10) use i, j, z s.t. vi,j,z = topmost item in H
(11) pop the first item from H
(12) a← a− ωi,z ∗ λ1 ∗ λ2 ∗ b
(13) if a > 0
(14) ri,z ← ri,z + 1

ni

(15) else
(16) re ← 1 + a/(λ1 ∗ λ2 ∗ ωi,z ∗ b)
(17) ri,z ← ri,z + re/ni

(18) return
(19) if j < ni

(20) vi,sj+1
i ,z ← ui,z ∗ ni ∗ oi,sj+1

i
/
∑ni

k=1 oi,k

(21) insert vi,sj+1
i ,z into H

of the item that is most valuable per unit volume. However, since the number of items is large,

the sort step is costly, especially for large number of basic windows and large sized domains. A

more efficient solution, with worst case complexity O(|Z|+ (n1 +n2) ∗ log |Z|), is described in

Algorithm 5, which replaces Algorithm 4. Algorithm 5 makes use of the sj
i values that define

an order between value over volume ratios of items for a fixed type z and window Wi. The

algorithm keeps the items representing different streams and types with the highest value over

volume ratios (2∗ |Z| of them), in a heap. It iteratively picks an item from the heap and replaces

it with the item having the next highest value over volume ratio with the same stream and

type subscript index. This process continues until the capacity constraint is reached. During this

process ri,z values are calculated progressively. If the item picked represents window Wi and

type z, then ri,z is incremented by 1/ni unless the item is picked fractionally, in which case the

increment on ri,z is adjusted accordingly.

VI. EXPERIMENTS

The adaptive load shedding algorithms presented in this paper have been implemented and

successfully demonstrated as part of a large-scale stream processing prototype at IBM Watson

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 25

Research. We report four sets of experimental results to demonstrate effectiveness of the algo-

rithms introduced in this paper. The first set of experiments illustrates the need for shedding

CPU load for both indexed (using inverted indexes) and non-indexed joins. The second set

demonstrates the performance of the partial processing-based load shedding step − keeping

tuples within windows and shedding excessive load by partially processing the join through

rate adaptation. The third set shows the performance gain in terms of output rate for selective

processing, which incorporates time correlation adaptation and join direction adaptation. The

effect of basic window size on the performance is also investigated experimentally. The final set

of experiments presents results on the utility-based load shedding mechanisms introduced and

their ability to maximize the output utility under different workloads. Note that the overhead

cost associated with dynamic adaptation has been fully taken into account and it manifests itself

in the output rate of the join operations. Hence, we do not separately show the overhead cost.

A. Experimental Setup

The join operation is implemented as a Java package, named ssjoin.*, and is customizable

with respect to supported features, such as rate adaptation, time correlation adaptation, join

direction adaptation, and utility-based load shedding, as well as various parameters associated

with these features. Streams used in the experiments reported in this section are timestamp

ordered tuples, where each tuple includes a single attribute, that can either be a set, weighted

set, or a single value. The sets are composed of variable number of items, where each item is an

integer in the range [1..L]. L is taken as 100 in the experiments. Number of items contained in

sets follow a normal distribution with mean μ and standard deviation σ. In the experiments, μ

is taken as 5 and σ is taken as 1. The popularity of items in terms of how frequently they occur

in a set, follows a Zipf distribution with parameter κ. For equi-joins on single-valued attributes,

L is taken as 5000 with μ = 1 and σ = 0.

The time-based correlation between streams is modeled using two parameters, time shift

parameter denoted as τ and cycle period parameter denoted as ς . Cycle period is used to change

the popularity ranks of items as a function of time. Initially at time 0, the most popular item

is 1, the next 2, and so on. Later at time T , the most popular item is a = 1 + 	L ∗ T mod ς
ς

,

the next a + 1, and so on. Time shift is used to introduce a delay between matching items from

different streams. Applying a time shift of τ to one of the streams means that the most popular

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 26

item is a = 1 + 	L ∗ (T−τ) mod ς
ς

 at time T , for that stream.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8 9 10

Fig. 6. Probability match distribu-

tions, κ = 0.6 and κ = 0.8

Figure 6 shows the resulting probability of match distribution

f1, when a time delay of τ = 5
8
∗ ς is applied to stream S2 and

ς = 2 ∗w, where w1 = w2 = w. The two histograms represent two

different scenarios, in which κ is taken as 0.6 and 0.8, respectively.

These settings for τ and ς parameters are also used in the rest

of the experiments, unless otherwise stated. We change the value

of parameter κ to model varying amounts of skewness in match

probability distributions. Experiments are performed using time

varying stream rates and various window sizes.

The default settings of some of the system parameters are as

follows: Tr = 5 seconds, Tc = 5 seconds, δr = 1.2, γ = 0.1.

We place input buffers of size 1 seconds in front of the inputs

of the join operation. We report results from overlap and equality

joins. Other types of joins show similar results. The experiments are

performed on an IBM PC with 512MB main memory and 2.4Ghz

Intel Pentium4 processor, using Sun JDK 1.4.2.

For comparisons, we also implemented a random drop scheme. It performs load shedding by

randomly dropping tuples from the input buffers and performing the join fully with the available

tuples in the join windows. It is implemented separately from our selective join framework and

does not include any overhead due to adaptations.

B. Processing Power Limitation

We first validate that the processing power happens to be the limiting resource, for both

indexed and non-indexed join operations. Graphs in Figure 7 plot input tuple drop rates (sum of

the drop rates of the two streams) for non-indexed (left) and indexed joins (right), as a function

of window size for different stream rates. The join operation performed is an overlap join with

threshold value of 3. It is observed from the figure that, for a non-indexed join, even a low

stream rate of 50 tuples per second results in dropping approximately half of the tuples, when

the window size is set to 125 seconds. This corresponds to a rather small window size of around

150 KBytes, when compared to the total memory available. Although indexed join improves

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 27

0

100

200

300

400

500

600

700

800

900

5sec 25sec 2min 5sec 10min 25sec
window size

in
pu

t d
ro

p
ra

te
 (p

er
 s

ec
on

d)
rate = 50 (per sec)
rate = 100 (per sec)
rate = 200 (per sec)
rate = 400 (per sec)

non-indexed join

0

100

200

300

400

500

600

700

800

900

5sec 25sec 2min 5sec 10min 25sec
window size

in
pu

t d
ro

p
ra

te
 (p

er
 s

ec
on

d) rate = 50 (per sec)
rate = 100 (per sec)
rate = 200 (per sec)
rate = 400 (per sec)

indexed join

Fig. 7. Tuple drop rates for non-indexed and indexed join operations, as a function of window size, with varying stream rates

performance by decreasing tuple drop rates, it is only effective for moderate window sizes and

low stream rates. A stream rate of 100 tuples per second results in dropping approximately one

quarter of the tuples for a 625 seconds window (approx. 10 minutes). This corresponds to a

window size of around 1.5 MBytes. As a result, CPU load shedding is a must for costly stream

joins, even when indexes are employed.

C. Rate Adaptation

We study the impact of rate adaptation on output rate of the join operation. For the purpose

of the experiments in this subsection, time shift parameter is set to zero, i.e. τ = 0, so that

there is no time shift between the streams and the match probability decreases going from the

beginning of the windows to the end. A non-indexed overlap join, with threshold value of 3 and

20 seconds window on one of the streams, is used.

Figure 8 shows the stream rates used (on the left y-axis) as a function of time. The rate of

the streams stay at 100 tuples per second for around 60 seconds, then jump to 500 tuples per

seconds for around 15 seconds and drop to 300 tuples per second for around 30 seconds before

going back to its initial value. Figure 8 also shows (on the right y-axis) how fraction parameter

r adapts to the changing stream rates.

The graphs in Figure 9 show the resulting stream output rates as a function of time with and

without rate adaptation, respectively. No rate adaptation case represents random tuple dropping.

It is observed that rate adaptation improves output rate when the stream rates increase. That is

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 28

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140 160
time (seconds)

in
pu

t r
at

e
(p

er
 s

ec
on

d)

0

0.2

0.4

0.6

0.8

1

1.2

fr
ac

tio
n

rate
fraction

Fig. 8. Stream rates and fraction parameter r

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140
time (seconds)

o
ut

p
ut

 r
at

e
(tu

pl
es

 p
er

 s
ec

on
d) rate adaptive

random drop

Fig. 9. Improvement in output rate with rate adaptation

0

5

10

15

20

25

30

35

0.3 0.4 0.5 0.6 0.7 0.8 0.9
κ (s ke w in match pdf)

o
ut

p
ut

 r
at

e
(tu

pl
es

 p
er

 s
ec

on
d) random drop, w (0,10)

random drop, w (10,10)
rate adaptive, w (0,10)
rate adaptive, w (10,10)

Fig. 10. Improvement in average output rate with rate

adaptation

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140 160
time (se conds)

in
pu

t r
at

e
(p

er
 s

ec
on

ds
)

0

0.2

0.4

0.6

0.8

1

1.2

fr
ac

ti
on

rate
fraction1
fraction2

Fig. 11. Stream rates and fraction parameters r1 and r2

the time when tuple dropping starts for the non-adaptive case. The improvement is around 100%

when stream rates are 500 tuples per second and around 50% when 300 tuples per second. The

ability of rate adaptation to keep output rate high is mainly due to the time aligned nature of

the streams. In this scenario, only the tuples that are closer to the beginning of the window are

useful for generating matches and the partial processing uses the beginning part of the window,

as dictated by the fraction parameter r.

The graphs in Figure 10 plot the average output rates of the join over the period shown

in Figure 9 as a function of skewness parameter κ, for different window sizes. It shows that

the improvement in output rate, provided by rate adaptation, increases not only with increasing

skewness of the match probability distribution, but also with increasing window sizes. This is

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 29

because larger windows imply that more load shedding has to be performed.

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140
time (seconds)

ou
tp

ut
 r

at
e

(t
up

le
s

pe
r

se
co

nd
)

rate adaptive
rate and time correlation adaptive
rate, time correlation, and join direction adaptive

Fig. 12. Improvement in output rate with time

correlation and join direction adaptation

0

2

4

6

8

10

12

0.3 0.4 0.5 0.6 0.7 0.8 0.9
κ (skew in match pdf)

ou
tp

ut
 r

at
e

(tu
pl

es
 p

er
 s

ec
on

ds
) rate adaptive

rate and time correlation adaptive
rate, time correlation, and join direction adaptive

Fig. 13. Improvement in average output rate with time

correlation and join direction adaptation

1 2 3 4 5 6 7 8 9 10 no
ne

basic window size (seconds)

ou
tp

ut
 ra

te
 (t

up
le

s
pe

r s
ec

on
d) κ=0.6

κ=0.8
non-indexed join

0

50

100

150

200

250

300

1 10 20 30 40 50 60 70 80 90 10
0
no

ne

basic window size (secs)

ou
tp

ut
 ra

te
 (t

up
le

s
pe

r s
ec

on
d) κ=0.6,id

κ=0.8,id
κ=0.6,time
κ=0.8,time

indexed join

Fig. 14. Impact of basic window size for indexed and non-indexed join, for various basic window sizes

D. Selective Processing

Here, we study the impact of time correlation adaptation and join direction adaptation on

output rate of the join operation. For the purpose of the experiments in this subsection, time

shift parameter is taken as τ = 5
8
∗ ς . A non-indexed overlap join, with threshold value of 3 and

20 seconds windows on both of the streams, is used. Basic window sizes on both windows are

set to 1 second for time correlation adaptation.

Figure 11 shows the stream rates used (on the left y-axis) as a function of time. Figure 11 also

shows (on the right y-axis) how fraction parameters r1 and r2 adapt to the changing stream rates

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 30

with join direction adaptation. Note that the reduction in fraction parameter values start with

the one (r2 in this case) corresponding to the window that is less useful in terms of generating

output tuples when processed against a newly fetched tuple from the other stream.

The graphs in Figure 12 show the resulting stream output rates as a function of time with three

different join settings. It is observed that, when the stream rates increase, the time correlation

adaptation combined with rate adaptation provides improvement on output rate (around 50%),

when compared to rate adaptation only case. Moreover, applying join direction adaptation on

top of time correlation adaptation provides additional improvement in output rate (around 40%).

The graphs in Figure 13 plot the average output rates of the join as a function of skewness

parameter κ, for different join settings. This time, the overlap threshold is set to 4, which

results in lower number of matching tuples. It is observed that the improvement in output rates,

provided by time correlation and join direction adaptation, increase with increasing skewness in

match probability distribution. The increasing skewness does not improve the performance of

rate adaptive-only case, due to its lack of time correlation adaptation which in turn makes it

unable to locate the productive portion of the window for processing, especially when the time

lag τ is large and the fraction parameter r is small.

1) Indexed Joins: The idea of selective processing applies equally well to indexed joins, as it

applies to non-index joins, as long as the cost of processing a tuple against the window defined

on the opposite stream monotonically increases with the increasing fraction of the window

processed. This assumption is valid for most type of joins, such as the inverted-index supported

set joins discussed before. One exception to this is the hash-table supported equi-joins, since

probing the opposite window takes constant time for equi-joins with hash tables. As a result, no

gain is to be expected from using selective processing for equi-joins.

The graphs in Figure 15 plot the improvement provided by selective processing, with all

adaptations applied, over random dropping in terms of the output rate of the join as a function

of stream rates, for equi-joins and overlap joins with and without indexing support. For the non-

indexed scenarios windows of size 20 seconds are used, whereas for indexed scenarios windows

of size 200 seconds are used to increase the cost of the join to necessitate load shedding (recall

Figure 7).

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 31

-100

0

100

200

300

400

500

600

0 100 200 300 400 500

input rate (tuples per second)

im
pr

ov
rm

en
t i

n
ou

tp
ut

 ra
te

 (%
)

equi-join, indexed, w (200,200)
equi-join, NLJ, w (20,20)
overlap-join, NLJ, w (20,20)
overlap-join, indexed, w (200,200)-2

0
2
4

0 200 400 600

Fig. 15. Improvement in output rate compared to random

dropping, for indexed and non-indexed joins, for overlap

and equality join conditions

We make three observations from Figure 15.

First, for non-indexed joins (equi-join or overlap

join), selective processing provides up to 500%

higher output rate, the improvement being higher

for overlap joins, as they are more costlier to

evaluate. Second, for overlap joins with inverted

indexes the improvement provided by selective

processing is not observed until the stream rates get

high enough, 300 tuples/sec in this example. This

is intuitive, since with indexes the join is evaluated

much faster and as a result the load shedding starts

when the stream rates are high enough to saturate

the processing resources. From the figure, we observe up to around 100% improvement over

random dropping for the case of indexed overlap join. The relative improvement in output rate

is likely to increase for rates higher than 500 tuples/sec, as the trend of the line for indexed

overlap join suggests in Figure 15. Third, we see no improvement in output rate when indexed

equi-join is used. As the zoomed-in portion of the figure shows, there is no deterioration in the

output rate either. As a result, selective sampling is performance-wise indifferent in the case of

equi-joins, compared to random dropping.

2) Basic Window Size: We study the impact of basic window size on output rate of the join

operation. The graphs in Figure 14 plot average join output rate as a function of basic window

size, for different κ values. The graphs on the left represents a non-indexed overlap join, with

threshold value of 3 and 20 seconds windows, respectively, on both of the streams. The graphs

on the right represents an indexed overlap join, with threshold value of 3 and 200 seconds

windows, respectively, on both of the streams. For the indexed case, both identifier sorted and

time sorted inverted indexes are used. The “none” value on the x-axis of the graphs represent

the case where basic windows are not used (note that this is not same as using a basic window

equal in size to join window). For both experiments, a stream rate of 500 tuples/sec is used.

As expected, small basic windows provide higher join output rates. However, there are two

interesting observations for the indexed join case. First, for very small basic window sizes, we

observe a drop in the output rate. This is due to the overhead of processing large number of

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 32

basic windows with indexed join. In particular, the cost of looking up identifier lists for each

basic window that is used for join processing, creates an overhead. Further decreasing basic

window size does not help in better capturing the peak of the match probability distribution.

Second, identifier sorted inverted indexes show significantly lower output rate, especially when

the basic window sizes are large. This is because identifier sorted inverted indexes do not allow

partial processing based on time.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 5
skew in utility values

x
im

pr
ov

em
en

t i
n

ou
tp

ut
 u

til
ity

f requency: uniform
f requency: inverse
f requency: direct

Fig. 16. Improvement in output utility for different type

frequency models

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3

0 20 40 60 80 100
number of types

x
im

pr
ov

em
en

t i
n

 o
ut

pu
t u

til
ity

value difference factor = 10
value difference factor = 50
value difference factor = 250

Fig. 17. Improvement in output utility for different type

domain sizes

E. Utility-based Load Shedding

We study the effectiveness of utility-based load shedding in improving the output utility of

the join operation. We consider three different scenarios in terms of setting type frequencies;

(i) uniform, (ii) inversely proportional to utility values, and (iii) directly proportional to utility

values. For the experiments in this subsection, we use a non-indexed overlap join, with threshold

value of 3 and 20 seconds windows on both of the streams. 500 tuples per second is used as

the stream rate. The graphs in Figure 16 plot the improvements in the output utility of the join,

compared to the case where no utility-based load shedding is used, as a function of skewness in

utility values. Both joins are rate, time correlation, and join direction adaptive. In this experiment,

there are three different tuple types, i.e. |Z| = 3 . For a skewness value of k, the utility values

of the types are {1, 1/2k, 1/3k}. It is observed from the figure that, the improvement in the

output utility increases with increasing skewness for uniform and inversely proportional type

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 33

frequencies, where it stays almost stable for directly proportional type frequencies. Moreover,

the best improvement is provided when item frequencies are inversely proportional to utility

values. Note that this is the most natural case, as in most applications, rare items are of higher

interest.

The graph in Figure 17 studies the effect of domain size on the improvement in the output

utility. It plots the improvement in the output utility as a function of type domain size, for different

value difference factors. A value difference factor of x means the highest utility value is x times

the lowest utility value and the utility values follow a Zipf distribution (with parameter log|Z| x).

The type frequencies are selected as inversely proportional to utility values. It is observed from

the figure that, there is an initial decrease in the output utility improvement with increasing type

domain size. But the improvement values stabilize quickly as the type domain size gets larger.

Same observation holds for different amounts of skewness in utility values.

VII. CONCLUSION

We have presented an adaptive CPU load shedding approach for stream join operations. In

particular, we showed how rate adaptation, combined with time-based correlation adaptation

and join direction adaptation, can increase the number of output tuples produced by a join

operation. Our load shedding algorithms employed a selective processing approach, as opposed

to commonly used tuple dropping. This enabled our algorithms to nicely integrate utility-based

load shedding with time correlation-based load shedding in order to improve output utility of

the join for the applications where some tuples are evidently more valued than others. Our

experimental results showed that (a) our adaptive load shedding algorithms are very effective

under varying input stream rates, varying CPU load conditions, and varying time correlations

between the streams; and (b) our approach significantly outperforms the approach that randomly

drops tuples from the input streams.

REFERENCES

[1] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a Tiny AGgregation service for ad-hoc sensor

networks,” in Proceedings of the Symposium on Operating Systems Design and Implementation, 2002.

[2] H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, E. Galvez, J. Salz, M. Stonebraker,

N. Tatbul, R. Tibbetts, and S. Zdonik, “Retrospective on Aurora,” VLDB Journal Special Issue on Data Stream Processing,

2004.

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 34

[3] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and

J. Widom, “STREAM: The stanford stream data manager,” IEEE Data Engineering Bulletin, vol. 26, March 2003.

[4] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden,

V. Raman, F. Reiss, and M. A. Shah, “TelegraphCQ: Continuous dataflow processing for an uncertain world,” in Proceedings

of the Conference on Innovative Database Research, 2003.

[5] L. Golab and M. T. Ozsu, “Processing sliding window multi-joins in continuous queries over data streams,” in Proceedings

of the International Conference on Very Large Data Bases, 2003.

[6] J. Kang, J. Naughton, and S. Viglas, “Evaluating window joins over unbounded streams,” in Proceedings of the IEEE

International Conference on Data Engineering, 2003.

[7] M. A. Hammad and W. G. Aref, “Stream window join: Tracking moving objects in sensor-network databases,” in

Proceedings of the International Conference on Scientific and Statistical Database Management, 2003.

[8] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras, “Exploiting punctuation semantics in continuous data streams,” IEEE

Transactions on Knowledge and Data Engineering, vol. 15, 2003.

[9] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in data stream systems,” in Proceedings

of the ACM Symposium on Principles of Database Systems, 2002.

[10] J. Kleinberg, “Bursty and hierarchical structure in streams,” in Proceedings of the ACM International Conference on

Knowledge Discovery and Data Mining, 2002.

[11] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker, “Load shedding in a data stream manager,” in

Proceedings of the International Conference on Very Large Data Bases, 2003.

[12] A. Das, J. Gehrke, and M. Riedewald, “Approximate join processing over data streams,” in Proceedings of the ACM

International Conference on Management of Data, 2003.

[13] U. Srivastava and J. Widom, “Memory-limited execution of windowed stream joins,” in Proceedings of the International

Conference on Very Large Databases, 2004.

[14] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik,

“Monitoring streams: A new class of data management applications,” in Proceedings of the International Conference on

Very Large Data Bases, 2002.

[15] B. Babcock, S. Babu, R. Motwani, and M. Datar, “Chain: operator scheduling for memory minimization in data stream

systems,” in Proceedings of the ACM International Conference on Management of Data, 2003.

[16] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma,

“Query processing, resource management, and approximation in a data stream management system,” in Proceedings of the

Conference on Innovative Database Research, 2003.

[17] B. Babcock, M. Datar, and R. Motwani, “Load shedding for aggregation queries over data streams,” in Proceedings of the

IEEE International Conference on Data Engineering, 2004.

[18] S. Chandrasekaran and M. J. Franklin, “Remembrance of streams past: Overload-sensitive management of archived streams,”

in Proceedings of the International Conference on Very Large Databases, 2004.

[19] T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and A. K. Elmagarmid, “Query processing using negative

tuples in stream query engines,” Purdue University, Tech. Rep. CSD TR# 04-040, 2005.

[20] U. Srivastava and J. Widom, “Flexible time management in data stream systems,” in Proceedings of the ACM Symposium

on Principles of Database Systems, 2004.

March 10, 2006 DRAFT

SUBMITTED TO SPRINGER KNOWLEDGE AND INFORMATION SYSTEMS 35

[21] S. Helmer, T. Westmann, and G. Moerkotte, “Diag-Join: An opportunistic join algorithm for 1:N relationships,” in

Proceedings of the International Conference on Very Large Data Bases, 1998.

[22] L. Golab, S. Garg, and M. T. Ozsu, “On indexing sliding windows over online data streams,” in Proceedings of the

International Conference on Extending Database Technology, 2004.

[23] K.-L. Wu, S.-K. Chen, and P. S. Yu, “Interval query indexing for efficient stream processing,” in Proceedings of the ACM

International Conference on Information and Knowledge Management, 2004.

[24] N. Mamoulis, “Efficient processing of joins on set-valued attributes,” in Proceedings of the ACM International Conference

on Management of Data, 2003.

March 10, 2006 DRAFT

