
RC24033 (W0608-072) August 23, 2006
Computer Science

IBM Research Report

Before-Commit Client State Management Services
for AJAX Applications

Paul Castro, Frederique Giraud, Ravi Konuru, John Ponzo, Jerome White*
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

*Currently at California Institute of Technology, Pasadena, CA

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Abstract—Heavily script-based browser applications change

the manner in which users interact with web browsers. Instead of
downloading a succession of HTML pages, users download a
single application and use that application for a long period of
time. The application is not a set of HTML pages, but rather a
single page that can possible modify its own presentation based on
data exchanged with a server. In such an environment, it is
necessary to provide some means for the client to manage its own
state. We describe the initial results of our work in providing
client-side state management services for these script-based
applications. We focus on browser-based services that can help
the user before any data is committed on the server. Our services
include state checkpointing, property binding, operation logging,
operational replay, ATOM/RSS data updates, and application-
controlled persistence.

Index Terms—Web Applications, Scripting, Programming
Environments, Data Handling, Data Management

I. INTRODUCTION

HE term AJAX (Asynchronous Javascript and XML)
appeared in 2005 [12], and succinctly describes a

collection of existing technologies like Javascript [11] and
XMLHttpRequest [28] that have matured and are transforming
the role of the browser from a passive view renderer to a more
active participant in web applications. In a traditional web
application, the browser displays the user interface and mainly
passes user input to a back-end server that is executing the
core application logic. This insures that web applications can
run on base configurations of most browsers but can result in
an inferior user experience when compared to an average
desktop application. The problem arises because 1) base
configurations of browsers do not have access to a rich set of
user interface elements and 2) the browser is locked to
application code and state residing on a remote server. Most
user input causes a mandatory page load, making the
application feel less responsive and more disruptive for the
user.

Original manuscript received June 22, 2006.
P.C. Author is at IBM Research (email: castrop@us.ibm.com)
F.G. Author is at IBM Research (email: giraud@us.ibm.com)
R.K. Author is at IBM Research (email: rkonuru@us.ibm.com)
J.P. Author is at IBM Research (email: jponzo@us.ibm.com)
J.W. Author completed work while visiting IBM Research. Author is

currently at the Computer Science Department, California Institute of
Technology, Pasadena, CA (e-mail: jerome@cs.caltech.edu).

AJAX applications leverage the browsers’ ability to execute
Javascript and communicate with the server using
asynchronous messaging. Application code and application
state can be moved from the server to the browser, resulting in
applications that have richer interfaces and improved
responsiveness. More importantly, from the perspective of this
paper, the browser has much more autonomy to manage
application state separate from the server-side components.
For example, browser-based office applications may only
require a server to store data documents. The browser handles
all other document management operations. Highly interactive
web applications such as Google Maps [13] and Writely [26]
are representative of AJAX applications.

Because of the large improvement in user experience, it is
likely that AJAX applications will be an important, if not
dominant, type of web application in the future. This has
implications in browser design, application programming
models, and performance enhancing strategies for the web
infrastructure.

In this paper we focus on the increased autonomy an
application has to manage its own state locally. We are
particularly interested in applications that may operate in a
browser for extended periods of time with only periodic
communications to the server. We refer to the glide time of an
AJAX application, which is the length of time the browser can
operate on application state autonomously before it contacts
the server to commit data changes or receive updates. We are
interested in browser-based data-centric services that can 1)
help the application with client-side state management during
glide time and 2) assist the application with reconciling
application state with the server when the glide time has
ended.

Data persistence and synchronization issues arise in many
contexts, such as distributed file systems [16], P2P data
dissemination [23], and mobile computing [4]. In this paper,
we focus on the limitations of current browsers and propose
enhanced browser capabilities to better support the new usage
models enabled by AJAX design patterns. Our client-side
approach is only a starting point for investigating this rich and
complex research area in the context of AJAX applications.

We look at several browser-related issues:

• Persistence abstractions and mechanisms? Client-
side state is read-write application data. This
application state may be a replica of data retrieved

Before-Commit Client State Management
Services for AJAX Applications

Paul Castro, Frederique Giraud, Ravi Konuru, John Ponzo, Jerome White

T

from the server, or may be generated locally. Some
applications may not need to preserve this state
beyond the current application session while others
may require some type of persistence between
application sessions and/or browser sessions.
Persistence is a thorny issue as base browser
configurations often limit access to the local file
system for obvious security reasons.

• Data replica divergence and synchronization?
AJAX applications enable more complex user
interactions to happen completely on the browser.
Clients may operate more autonomously with
increased periods of time between server requests.
During these times, application state may change
significantly from the last time the client and the
server interacted. This is a critical issue if the client
has replicated application state locally and needs to
reconcile this state with the server.

• Browser abstractions for the programmer and
user? Browser abstractions focus on navigating a
passive set of web pages retrieved from different
servers. UI components such as copy/paste
features, and the back and forward button have
little meaning to an AJAX application. Client-side
state is typically hidden from the user and surfaced
only through the application view. As the
application modifies its state, are there useful
abstractions for how an application might copy and
paste application state to different applications? Or
how an application might enable undo/redo
functions?

 In this paper, we present an initial design and prototype
implementation of Ripple-X. Ripple-X provides a set of
components in the form of Javascript libraries and browser
extensions that provide client-side state management services.
Our current focus is on services that are useful to the client
before it needs to commit application state to a server though
some of our components, like the Ripple-X connectivity
manager, do utilize server-side resources. Our intention is to
eventually expand our design such that our services can be
useful across a spectrum of application requirements.

The remainder of this paper is as follows. In Section II, we
provide an overview of the issues for client-side state
management and how our services address these issues using
the Model-View-Controller architecture. In Section III, we
describe our approach in the context of an “investment club”
AJAX application. Section IV provides details about the
Ripple-X libraries. In Section V we discuss some of the
outstanding issues. Section VI and VII contain related work
and conclusions, respectively.

II. SEPARATION OF APPLICATION FROM DATA IN AJAX

APPLICATIONS

In this section, we provide an overview of our basic

approach based on separating data from presentation
components in AJAX applications.

A. Browser Document Object Mode

Major browsers such as Internet Explorer and Mozilla
Firefox provide a Document Object Model (DOM) [8]
interface to the currently rendered web page. The DOM is a
container for all page objects such as presentation elements
and script. The structure of the DOM freely mixes data and the
presentation elements that use them. For example, a text field
element contains a “value” attribute which should be displayed
in the text field.

In a traditional web application, the server side naturally
maintains a separation between application and data.
Application code usually exists in some type of application
framework separate from data, which is normally managed by
transactional components like databases or content
management systems.

AJAX applications move some of the management
responsibility for data to the client. Current browser
abstractions provide little or no facility to manage this state
without custom Javascript code. What was naturally separated
on the server-side becomes intertwined as a single web page
on the client-side. The browser DOM must function as a
“catch-all” container for application script, presentation
elements, and non-visual application data. Fundamentally, the
AJAX application force fits its requirements as an application
model onto a document model that is not optimized for it. For
example, since it is optimized for visual elements, the browser
DOM is not an efficient storage mechanism for non-visual
data. Base DOM elements contain a slew style attributes that
are only useful for presentation elements, increasing the
footprint unnecessarily when storing non-visual data. An
AJAX application may benefit from not instantiating certain
application data as DOM elements at all. Current browser
implementations generally do not allow this.

In Ripple-X, we propose separating application state from
the traditional browser DOM. Our proposal is described in the
next section.

B. Model View Controller for Browsers

The Model-View-Controller (MVC) design pattern
separates an application into model, view, and controller
components as a means to build maintainable and robust code
[2][3][21]. In MVC, the model can be thought of as
application data, the view is the user interface for interacting
with the model, and the controller processes user events from
the view to update both the model and view as needed. This
pattern is often implicitly followed by traditional web
applications with the client embodying the view of an
application and the server implementing both the model and
controller. [6]

In an AJAX application, the MVC pattern does not separate
so cleanly between client and server. Portions of the model
and controller will reside on the client to increase application
responsiveness (with the additional benefit of potentially

reduced server load).
Browsers currently do not have the right programming

abstractions to support the MVC approach. In Ripple-X, we
extend the browser to support model abstractions. We provide
an overview of our approach in the next section.

C. View Page and Data Page

Figure 1 shows how Ripple-X structures an AJAX
application. Instead of a single document, we separate the
AJAX application into a view page and a data page. The view
page contains the browser DOM and represents all the
presentation elements and scripting code. The data page is a
container for one or more data DOMs that represent non-visual
client-side state in XML form. For example, a data DOM
could represent the values from a form, or a list of customers
that will be displayed as a select list in the user interface. As
shown in the figure, data DOMs are bound to the presentation
element via a binding mechanism. This binding is active and
when the underlying data DOM changes, the presentation
elements bound to it receive an event so they can update
themselves.

This separation has several advantages to the program
designer and user: First, it provides cleaner abstractions for
both the developer and user for client-state in an AJAX
application. Client-state is simply the collection of data DOMs
that are associated with the view page. This state is
independent of the current view page and is portable to
different AJAX applications, requiring only a definition of the
bindings as shown in Figure 1.

Secondly, it allows for optimized management of data
separately from application. AJAX applications that deal with
large data sets in either XML or JSON format benefit from
optimized data representations on the browser side. The
browser DOM is not optimized as a container for non-visual
data. For example, there is no support for compact data

representations or stream-based (lazy) loading of data from the
server. In our abstraction, the data page can implement
browser-based data services such as efficient storage, retrieval,
and synchronization with backend servers. These services
would be available to any AJAX application loaded into the
browser. This design is well aligned with the roadmap for
future browsers which will include unified storage
management for browser data (bookmarks, cache, cookies),
e.g. through a small footprint relational database [25].

In our abstraction, an AJAX application has access to a
single datapage. Datadoms stored in that datapage are only
accessible to that application. Thus, the browser manages a
datapage for each application it downloads

An AJAX application implies a data-centric approach to
interacting with the server. Since the browser generates its
presentation locally, communication with the server is mainly
for propagating changes of the local application state back to
the server. The server can commit this state to a transactional
component or even propagate this state to other clients, e.g.
through ATOM and RSS syndicated news feeds.

Figure 2 - iClub application with Ripple-X datapage and
datadom elements

Figure 1 - Separation of AJAX application into view and data pages

D. Before-Commit Data Services

AJAX applications can act more like desktop applications
that engage the user for longer periods of time. In this mode,
applications may still be server-managed but contact the server
less frequently. Earlier, we referred to the glide time of an
AJAX application as the period of time the application can
reasonably run without contacting the server. Clearly, this is an
application-specific measure; glide-time can be quite lengthy,
such as for browser-based office applications, or quite short,
such as browser based instant messaging applications.

We use the term glide time to refer to the time period during
application runtime where there is a current gap in browser
support for managing application state; we hope to provide
browser-based data-centric services that can fill this gap. The
goal of these services is to ease the programmer’s burden in
managing its own client state, and to help prepare the
application for when it needs to contact the server to reconcile
its application state.

We have identified the following services in our initial
development of Ripple-X, which we believe provide value to
typical AJAX applications We will describe these in more
detail in Section III and IV.

• Checkpointing
• Operator Logging
• Feed-based updates
• Connectivity Masking

It should be noted that these four services can have value

even in the case where the browser frequently contacts the
server.

III. THE ANATOMY OF A RIPPLE-X AJAX APPLICATION

In this section we provide an overview of an AJAX
application implemented using Ripple-X. We use the example
of a prototype investment application that helps investors
manage a shared portfolio. Our current prototype is a testbed
for the Ripple-X data services and not a fully usable
application.

A. iClub Shared Portfolio Manager

The iClub Portfolio Manager allows users to collaborate on
a shared investment portfolio. Users can submit information
about their investment styles through a profile page, as well as
make proposals to buy and sell equities to the rest of the
members in their club. In an actual application, users would
vote on each proposed action and any proposal that receives a
majority positive vote will be processed. For simplicity, the
current iClub prototype assumes that all proposals have
received a majority vote and commits the proposed changes to
the server without reconciling conflicts.

Figure 2 shows the HTML markup of the portfolio page
where users can view the current portfolio and make buy and
sell proposals. In the figure, the HTML markup includes a new
element with the name datapage. The datapage wraps a
declaration for an element called datadom that references an
external file. The content of the external file is an XML

document that represents the state of the portfolio at the time
the browser accesses the application from the server

In the iClub application, the browser downloads a replica of
the portfolio data from the server and primarily modifies that
copy. Other browsers may also access the iClub application
and receive their own copy of the portfolio instance. As clients
make modifications to the portfolio, the browser updates the
local copy of the portfolio. The browser propagates these
changes back to the server dependent on whether the
application is in online or offline mode.

Figure 3 is a screenshot that shows the view of the portfolio
as seen by one client. The buttons highlighted in the figure use
the Ripple-X services as applied to managing the portfolio
state:

Figure 3 - iClub Portfolio Screen with Data Services

Figure 4 - Profile page with automatic versioning of
application state

• Create multiple tagged portfolio proposals: the
user can modify the currently displayed portfolio
and then save it for later retrieval. The user can
create an arbitrary number of versions of its local
copy of the portfolio.

• Log all updates and cache locally: the user can
elect to keep track of all updates made to the local
portfolio using an available logger. The logger will
keep track of a sequence of high-level user
operations (like “buy 100 shares of IBM”) or just
low level DOM update calls (e.g.
setNodeValue and setAttribute
methods) depending on the application
configuration

• Work in offline mode: the user can elect not to send
any updates the server but still update the local
copy of the portfolio. When the user goes online
again, the portfolio changes are sent to the server
as either a log of changes or the entire local
portfolio state.

• Subscribe to update feed from server: the user can
elect to receive the latest updates about the
portfolio from the server, even if the user is idle.
The iClub application will read an RSS or ATOM
feed that contains portfolio updates from other
clients and update the page as new data arrives

Ripple-X provides a library of client-side state management

services that the iClub application uses to implement the above
features. These services are generally useful to other
applications as well. For example, Figure 4 is a screenshot of
another part of the iClub application that allows the user to fill
out an investment profile. Similar to the portfolio page, the
profile page contains datapage and datadom elements that
represent the profile data being rendered by the profile page.
The user can edit the current profile as in any standard form,

which updates the local copy of the profile. In this scenario
however, as the user makes changes to the local profile copy,
the application automatically makes a version history. The
select list widget at the top of the page lists all the versions of
the profile and allows the user to go back and forth between
older and newer versions. When the user selects a version from
the select list, the profile page automatically reverts to
displaying that version of the profile.
Both pages are just manifestations of the Ripple-X data

services and highlight how an application might use them in
practice. In the next section, we provide details of these
services.

IV. RIPPLE-X PACKAGES

In this section, we describe packaging of the Ripple-X
libraries and the features of each library.

Figure 5 shows the abstractions as implemented in Ripple-
X. The left side of the figure illustrates the Ripple-X libraries
that run on the browser. Ripple-X is completely written in
Javascript and requires no extensions to the browser. The one
exception is if the application requires support for persistence
(see Section IV-I).

 Figure 5 lists 5 core components that build on each other to
provide enhanced client-side state management services. These
services provided by these components are: 1) an operator
framework, 2) property bindings between data and
presentation elements, 3) change logging and checkpointing,
4) processing of server initiated updates, and 5) management
for intermittent connectivity. We describe each of these in this
section.

A. Packaging

Standard access to the different Ripple-X components is
through Javascript libraries. In the current implementation, the
components are organized into different libraries though some
components depend on others being present (e.g. the logger

Figure 5 - Ripple-X implementation on browser

looks for the operator framework). The basic libraries are:

• ripplex-core.js – contains definitions for the
datapage and data doms

• ripplex-logger.js – contains the logger
• ripplex-rssupdate.js – contains the RSS/ATOM

updater
• ripplex-connection.js – contains the connection

manager
• rippex-propertybinder.js – contains the code for

binding a model to presentation elements.

The operator framework is included as a set of templates
that the application programmer can use to define basic
operations in Javascript. The operator templates follow
traditional operator models by allowing pre- and post-
conditions to be checked. We describe the operator framework
in Section IV-E.

We use standard Javascript techniques to provide
“namespacing” for each of the Ripple-X libraries. Ripple-X
“objects” are prefaced using “ripplex.” This mimics Java style
namespacing of packages.

Ripple-X uses the Dojo Javascript libraries, which can be
downloaded freely [9].

B. Core Ripple-X Libraries: ripplex-core.js

The core Ripple-X library implements the view and data
abstractions described previously. We preserve access to the
view DOM using the standard Javascript document element.
In addition to the document element, there is now a
datapage element, which is the container for 0 or more data
items in the form of datadom elements. Applications access
the datadoms through the datapage using basic get and put
semantics.

For example, the Javascript for accessing the shared
portfolio in the iClub application would be:

var datapage = ripplex.getDataPage();
var portfolio = datapage.get(“portfolio1”);

where “portfolio1” is a unique identifier for the portfolio

datadom. In Ripple-X, each datadom contains a unique (in the
context of the datapage) identifier. In the code above, the
variable “portfolio" is a datadom, which provides access to the
checkpointing and property binding services.

To create a datadom, an application can call:

var datadom =
 datapage.createDataDOM(uuid,xml);
datapage.put(uuid,datadom);

where “uuid” is the unique identifier for the datadom, and

“xml” is a string containing an XML version of the datadom
being created (as seen in Figure 1, the external file reference to
a datadom). If no string is specified, the datapage creates a
datadom with no instance data. The application can later
assign instance data to the datadom using the setRoot()

method call. The final line in the code adds the datadom to the
datapage.

Datadoms represent model instances as XML documents
that applications can access using standard XML APIs. The
current implementation of Ripple-X supports the standard
DOM API for navigating and manipulating the underlying
XML document though we are investigating the use of XPath
or XQuery processors for future work.

The datadom is a meta-structure that wraps XML instance
data. To access the actual portfolio data in the iClub
application, the code must access the instance of the portfolio.
It has the option of accessing the datadom-level tag or the
content-level tag for the instance data. For example, in the two
calls:

var datadomTag = portfolio.getRoot();
var contentTag = portfolilo.getContent();

the first call returns the root of a DOM pointing to the

“datadom” element in the instance data. Applications use this
mode to retrieve metadata about the datadom, such as its
UUID, and service-level attributes. The second call returns
the root of a DOM pointing to the “portfolio” tag in the
instance data. This gives the most direct access to the portfolio
data for display. Applications may update the portfolio by
retrieving the instance data from the getContent call
directly, but the preferred method for performing updates is
through the operator framework (see Section IV-E).

Checkpointing allows applications to maintain a tagged
version of the datadom. Ripple-X provides a base level means
to tag and checkpoint the current state by calling a
checkpoint(tagname, mode) method on the datadom.
There are three modes for checkpointing:

1. In-Memory mode – In this mode, the datadom

creates the checkpoint and stores it in-memory.
This checkpoint exists for only the current
application session.

2. Persistent mode – in this mode, the datadom
creates a checkpoint and serializes it into a UTF-16
formatted string. The application can store this
string in an appropriate persistence mechanism. In
the current implementation, we have implemented
a small browser extension for Mozilla Firefox that
uses an XPCOM interface for writing the
checkpoint to the local file system. In the future,
applications should be able to select the local
persistence service, e.g. through the Dojo toolkit
storage interface currently under development [20]

3. Remote mode – this mode is similar to the
persistent mode, except the serialized version of
the datadom is sent to a storage service located on
the network. For security reasons, this service must
originate from the same domain as the AJAX
application. Using the remote mode, users
download their checkpoints to any web browser on

any client; also, users can share checkpoints with
each other via the server. In the current
implementation, users specify the URI of the
persistence service as an attribute of the datadom.
In the current implementation we have a prototype
server that uses basic get and put calls for storing
checkpoints. Future implementations will need a
way to ensure that the client can conform to the
persistence service interface, e.g. using a Service
Oriented Architecture (SOA) approach.

In all modes, the Ripple-X package keeps the checkpoint as

a serialized version of the datadom. This serialized version is
the same as the contents of the external file in Figure 1.

The datadom can easily restore a checkpoint by calling the
restoreCheckpoint(tag,mode)) method on the
datadom. The mode is an optional parameter in this call – the
default behavior is to assume a tag is unique across
checkpointing modes and if the caller does not specify the
mode, it will check in-memory, persistent, and remote
checkpoints in order to find the tag. It will return the first
checkpoint it finds with a matching name, otherwise the call
will have no effect on the current datadom.

For example, to checkpoint the current state of the datadom,
the application calls:

portfolio.checkpoint(“MyCheckpoint”,ripplex.

MEMORY_MODE)

which will store the checkpoint using the in-memory mode.

Restoring the checkpoint requires the call:

portfolio.restoreCheckpoint(“MyCheckpoint”)

In persistent and remote mode, applications can use

checkpointing to restore a datadom to a previous state across
page reloads and browser sessions. The current
implementation allows the application to declare an “initialize”
checkpoint. If such a checkpoint exists, then the datadom will
set its instance data to that checkpoint every time the
application loads. For example,

portfolio.setInitialize(true,

“MyCheckpoint”, mode);

The datadom will store the checkpoint “MyCheckpoint” using
the mode specified by the “mode” parameter. Clearly, this
mode should either be persistent or remote. The next time the
application loads, the datadom representing the portfolio will
search for its starting state as the checkpoint named
“MyCheckpoint”. If “MyCheckpoint” cannot be found, the
datadom will set its state to the value defined by the server, if
any.

C. Property Binding: ripplex.propertybinding.js

The MVC approach requires the programmer to specify the
linkage between model components and the view. If done

manually, this process can be fairly tedious and error prone. In
our current implementation we have adopted a function-based
approach to specify model and view bindings. In contrast,
XForms provides a starting point for how one might take a
declarative approach to specifying property bindings. A
declarative approach has advantages over a function-based
approach in some cases (see Section IV-H) and we are
currently moving our implementation to a more fine-grained
property binding approach using a declarative API.

In the current implementation, presentation elements bind
themselves to datadoms using a simple subscription API. The
API is:

datadom.subscribe (subid, object, method
name1, method name2);

datadom.unsubscribe (subid, object, method
name1, method name2);

Where:
- subid is a unique identifier for the subscription.
- Object is the object instance name that contains

method name1.
- method name1 is the method name to invoke to

update the model.
- method name2 is the method name to invoke to

update the presentation.
For example, if we want to trigger an update to the

presentation when the user creates a buy proposal, the code
would look like:

portfolio.subscribe(
“MyTrigger”,
buyOperator,
“execute”,
“updatePortfolioView”).

where “buyOperator” is an operator object bound to the

portfolio and “updatePortfolioView” is a function call that will
trigger an update of the portfolio view.

The current API provides a simple mechanism that relies on
presentation elements subscribing to presentation events when
the content of the datadom changes. A finer-grained approach
may be more advantageous and as future work we are looking
at different binding mechanisms where presentation elements
bind themselves to elements of the instance data in the
datadom. The binding uses XPath to express what elements the
presentation element is bound to. For a property binding
mechanism, only a subset of XPath is likely needed and one
interesting problem is to find what subset of XPath is “safe” to
use in the binding context.

Once the presentation binds to the datadom, updates to the
datadom trigger updates to the presentation. In the iClub
portfolio page from Figure 1, the presentation of the portfolio
reflects the state of the portfolio datadom at all times.
However, since the local copy of the portfolio is not
committed to the server, iClub modifies the presentation
depending on the change propagation mode of the application.

In iClub, the application can be either on-line or off-line.
When working off-line the local model is updated
optimistically according to the operation at hand. The
presentation is refreshed, but with a visual clue that this update
is proposed but not committed to the server. When working
on-line, the client sends updates to the server immediately in
the form of a serialized operator.

To summarize, the portfolio datadom can change in several
ways:

1- An application defined operator is invoked, usually
by pressing a button in the view. As mentioned
above, when such operator is invoked, the
presentation is updated along with the datadom, but
the operation is not committed.

2- A server-initiated update using the RSS/ATOM feed
information (see Section IV-G)

3- Restoring a previous checkpoint of the application
state. This off-line operation restores a previous
state of the data model and related pending
operations.

D. Connection Management: ripplex-connection.js.

Ripple-X supports intermittent connectivity to the server by
providing a connectivity manager. AJAX applications break
the traditional request response model between browser and
server by relying on asynchronous communications enabled by
the XMLHttpRequest. The Ripple-X connectivity manager
assumes that this connection is intermittent and relies on a
store and forward mechanism for server communication. The
connectivity manager provides three queues for organizing
outgoing state change requests to the server. As the client and
server exchange information about application state, the
connectivity manager helps the client keep track of what data
change operations are currently in process between the client
and server

The connection manager is automatically invoked when the
application updates a datadom through the operator

framework. When the application executes an operator, the
connection manager runs a queuing protocol. It attempts to
send messages to the URL specified by the datadom’s “src-uri”
attribute. If no “src-uri” attribute is specified, then it attempts
to contact the originating URL of the AJAX application.

Update messages are in the form of serialized versions of
operators in the Ripple-X operator framework. For example, if
a client executes a buy operator, this is transformed into a
change string, which serializes the details of the buy. An
application forwards this change string to the connectivity
manager. By default, the connectivity manager places the
change string in a store & forward queue. When a string is the
store & forward queue, the connectivity manager creates an
update message and sends it to the server. Then the
connectivity manager moves the operator call into a pending
queue of sent messages that are awaiting a server response.
When the client receives a response, the connectivity manager
moves the change string from the pending queue into the
committed operations queue, which represents the committed
changes to the server.

Applications use the queue organization to provide the user
with visual cues as to the state of their data modifications. For
example, if the application wants to modify a shared portfolio
by selling 100 shared of IBM stock, then the view of the
portfolio can tag the IBM stock entry as “pending” and then
committed as the serialized operator calls move between the
queues.

In addition to organizing the messages, the logger can
serialize the contents of the store & forward, pending, and
committed queues. Applications that end abruptly can resume
execution using the state of their last known interactions with
the server. This is potentially useful for application recovery
and rollbacks. As future work, we plan on investigating more
robust recovery mechanism.

E. Operator Framework

The operator framework allows applications to specify
operators over the model instance. These operators are
application-specific and semantically represent high-level
operations over data. For example, a user can modify a shared
portfolio by buying and selling equities.

The operator template captures application-specific
operations over a datadom. This allows the enforcement of
high level update policies that may not be expressible or
supported in low level schema languages. This is particularly
useful to handle the case where one value might depend on
another (e.g. if you delete a user from iClub, then you should
also delete any proposals initiated by that user).

Ripple-X uses the operator framework to filter what data
update operations should be logged, and act as a foundation
for application-level synchronization mechanisms.

Figure 6 shows the operator template and an implementation
of a buy operator. Applications create operators using this
template and Javascript. The template says that an operator
must implement an action() method, and optionally
pre() and post() condition methods. The latter methods

Figure 6 - Definition of Buy Operator using the
operator framework

are checks an operation may want to perform before and after
the actual update operation described in action().

The execute() method is passed any parameters needed
by the aforementioned methods. The executeLog()
method is not user specified but acts as a hook into the logger
code.

Once the operator is defined, the application creates
operators bound to a datadom. For example:

var buyOperator = new
portfolio.BuyOperator(portfolio);
buyOperator.execute(“IBM”,100”);

where the variable “buyOperator” is bound to the datadom

variable “portfolio.”
Operators form the foundation for a richer form of data

synchronization. In conjunction with the logger, it provides a
mechanism for sending high-level descriptions of changes
made to the data to the server. The server can “replay” these
changes in a more robust manner since pre and post condition
calls can encapsulate conflict handling routines. We plan to
investigate the use of application-specific operators vs. a
lower-level approach for AJAX applications as part of our
research.

In the current prototype application, we use the operator
framework to create a log of high-level updates and as an
implementation of a command pattern when informing the
server that the client has initiated an update. We envision that
operator definition is not mandatory; the application can also
access a default set of operators which represent low-level
mutations of the DOM such as setNodeValue() and
setAttribute().

F. Logging: ripplex-logger.js

AJAX applications may experience extended periods of
autonomous operation before communicating with the server.
If the application is sharing state with the server, it needs a
convenient way to communicate data changes it has made
since the last communication. Ripple-X provides a logging
component that works in conjunction with an operator
framework for keeping track of these changes. Applications
can send a serialized version of this log to the server in lieu of
sending the actual data itself. At the same time, servers can
send a log of operations to the client to be replayed as a means
to synchronize data.

To get access to the logger, an application calls

var buyOperator = new

portfolio.BuyOperator();
var logger =

ripplex.getDatapage.getLogger();.
Logger.attatch(buyOperator);
buyOperator.execute(“IBM”,100);
var log = logger.serialize();
The code creates a buy operator. and retrieves the logger

service from the datapage. It then binds the buy operator to
the logger using the attach method. When the buy operator
executes, the logger creates a change entry in the log. A
serialized version of the log contents is available via the

serialize method.
The log contains a serialized representation of the executed

operators. The current implementation stores:
• The name of the operator, which is assumed to be

unique for the current application
• The UUID of the model instance over which the

operator was executed
• A name-value pair list of any parameters that the

application passed to the operator.
For example, if we buy 100 shares of IBM stock using

portfolio with id=”portfolio1”, the log would contain the string

name=buy&modelID=portfolio1&symbol=IBM&n

umber=100

We can optionally include a timestamp in the log for each

entry.
In the current version of Ripple-X, it is left to the

application to process the log (on the server or client) for data
synchronization, though we hope to extend our capabilities in
this area.

G. Server-initiated Updates: ripplex-rssupdate.js

In the iClub application, multiple clients share portfolio data
with each other. A user should receive updates made by other
clients even if the user is idle. Currently, browsers have very
limited facilities for receiving events from servers. For
example, maintaining an open HTTP connection between the
browser and server can be inefficient and unreliable because of
timeouts that can result in undesired application behavior.

To support server initiated updates, Ripple-X provides an
RSS/ATOM updater component that subscribes to a standard
RSS or ATOM feed to receive changes made to the data on the
server. Browsers traditionally use RSS and ATOM to
subscribe and aggregate news feeds. Both types of feeds have
support for polling and some support for asynchronous
messaging. These specifications define a standard type of
XML document that contains information regarding news
feeds but can be tailored to carry arbitrary data. As RSS and
ATOM are supported by base configurations of most
browsers, we can leverage this to open “data consistency”

Figure 7 - Declarative interface implementing using
Mozilla XBL

channels with servers to keep local data copies up to date.
The feed can contain changes in the form of a log, diffgrams

[7], or just the latest copy of the data. In the iClub application,
the server puts its copy of the portfolio state in the feed.

For example, the portfolio datadom can receive updates
from the server through the following code:

portfolio.setUpdateFeed(url);
portfolio.subsribeToFeed(5);

which will set the URL of the RSS feed to the variable url

and poll this feed every 5 seconds for updates. Alternatively,
an application can set the “rss-url” attribute on the datadom
element to specify the RSS/ATOM feed to subscribe to for
changes. For security reasons, this feed must have the same
origin as the AJAX application.

In the current implementation, the RSS/ATOM updater
allows applications to poll an RSS feed representing server
initiated changes to the local model. Currently, the application
extracts the entire state of the model from the server from the
application feed and overwrites the current local model. A
more robust application would implement some reconciliation
procedure to synchronize the two copies of the data on both
the client and server.

H. Declarative and Javascript APIs

For convenience, we have implemented a declarative API
for some of the Ripple-X libraries. Figure 2 shows how a
datapage and datadom are declared using the ripple-x
namespace

In Ripple-X, we take advantage of the Extensible Binding
Language (XBL) [27] facility in Mozilla to define custom tags
that provide an application with access to the core Javascript
libraries. This requires that the application include a new style
sheet in its definition that describes the definitions of the
custom tags. The style sheet refers to a Ripple-X XML binding
specification that must be accessible to the application. This
binding specification defines the functions that can be called
on the custom tags and their implementation.

Application code can access the underlying Ripple-X
libraries using the document.getElementById(id)
method where “id” is the id of the custom datapage or datadom
tag. This call is standard on all base browser configurations
that support Javascript. Once the application has a handle to
that element, it can just call the Ripple-X libraries as if it were
directly calling the Ripple-X Javascript code.

Figure 7 shows the mapping between the declarative API
and the underlying Javascript code. In the figure, custom tag
names are defined by the style sheet. Behaviors for elements
bearing the custom tagname are defined in the XBL binding
files. In Ripple-X, this binding file links to the Ripple-X
libraries. As a simple example, for the declaration in Figure 7,
the following code can retrieve the datapage:

var datapage =
document.getElementById(“datapage”);
var portfolio =

datapage.getInstance(“portfolio1”);

We utilize the declarative interface to extend Ripple-X

features into existing HTML elements. Using style sheets and
XBL, we have added checkpointing to standard HTML
elements. For this to work, the application only needs to
import the ripplex-core.js package and the included Ripple-X
CSS styles and XBL specifications. With these installed, the
application can create an HTML element and assign its class to
be “checkable.” This effectively extends the element with the
checkpointing methods described previously. Thus,
application programmers can checkpoint forms and visual
elements in the same manner as Ripple-X checkpoints
application state.

I. Persistence

Existing persistence mechanisms such as browser cookies or
Internet Explorer UserData limits the size the application
state. To have more flexible persistence options, we
implemented two experimental local persistence mechanisms
to support the Ripple-X services. Both currently require the
use of the Mozilla browser as they are implemented as Mozilla
extensions.

The first mechanism, OpenCache, uses the standard browser
cache as a store. We added a callback mechanism to the cache,
which allows the application to register for callbacks when
changes occur to a cache object. This version requires
changes to the core browser code.

The second mechanism, OpenCache-JS, is accessible as a
browser extension and stores application data on the file
system. The current version does not support callbacks but we
plan to add this in the future. OpenCache-JS uses the
nsLocalFile XPCOM component in Mozilla to write data files
to a user configurable “cacheroot” directory. The default
location of the cacheroot is the current user profile directory.

The iClub application uses OpenCache-JS to store
application state. This state includes serialized datadom,
serialized log contents, and initial state checkpoints.

V. DISCUSSION

In this section we discuss some of the issues in designing a
client-side state management system and its implications for
browser design and web infrastructure.

A. Security & Privacy

Ripple-X does not change the security model for AJAX
applications. Browsers policies nominally rely on same origin
semantics for access control of backend data sources. An
AJAX application can only communicate back to the same
domain from which it originated. Cross-domain scripting is not
allowed for AJAX applications originating from a server but
allowable if the AJAX application is loaded from a local file
on the client.

For Ripple-X, potential security and privacy issues arise
from the persistence of application state on the client or
remotely on the server. Two important issues are 1) access

control of local application state and 2) prevention of snooping
application state from non-browser-based applications.

For the first issue, same origin semantics may be sufficient
for limiting access to application data [15]. This may be too
limiting if we want to enable client-based mash-ups [18],
where we can create a new application that uses data from
other applications. Allowing cross-domain scripting is
dangerous from a privacy perspective since it may allow
stealth user tracking. It may be possible to employ certificates
to control access to data to a collection of authorized
applications.

For the second issue, persistence mechanisms may not have
protection mechanisms for sensitive application data that is
stored locally on the client. For instance, browser cookies are
fully readable by text editors. Clearly, some type of encryption
could be employed to prevent snooping, though how this might
interact with mash-ups is not clear.

For all security and privacy issues, it is critical that the user
have control over security policies through clear and consistent
mechanisms.

B. Standardization of models/data instances

In Ripple-X, we have adopted certain syntax to enable the
MVC pattern on the browser. Similar efforts are underway by
other communities, e.g. data islands in IE, XForms models,
and MVC enablement by the Dojo Toolkit. Clearly, AJAX
application developers would benefit from a standard syntax
for defining the MVC pattern in the browser in much the same
way as the DOM API is standard across browsers. For
example, XForms models could exist independently of the
XForms specification and provide a starting point on which to
build a rich set of client- and server-based data-centric services
for AJAX applications.

C. Standardization of data synchronization control formats

Ripple-X relies on RSS/ATOM news feeds to support
server-initiated updates. RSS and ATOM are fairly generic but
not optimized for the representation of consistency
information. We utilize these feeds because code to support
this is ubiquitous for browsers; a consistency mechanism could
potentially be pushed into core browser code using existing
components. As is the case for model and data definitions,
AJAX developers may benefit from a standardized form of
data feed that provides information about data changes. One
example format could be the diffgram.

D. Browser Abstractions and AJAX Applications

The browser UI is primarily geared for surfing the web.
Newer browser implementations, like Flock, add extra UI
features that allow closer ties to socially oriented web services
like shared photo databases and blogging. If may be useful to
augment or modify the UI of the browser to support client-side
state management utilities. For example, we have implemented
a Datapage Inspector, which is a Mozilla extension for Ripple-
X that displays the datapage and datadoms for a webpage in a
tree view. This is similar to the DOM Inspector that can be

installed in Mozilla but is tailored to the datapage and datadom
abstractions. Another example for a UI component could be a
versioning navigator like the automatic profile versioning from
Figure 4. A versioning navigator could implement the
browser’s back and forward button semantics for an AJAX
application based on how the application state has evolved.

In addition to tooling, UI design may need to provide user-
centered feedback regarding the status of the data on the client.
Applications may need to provide visual cues for data that is
only locally updated and not committed to the server. Deeper
abstractions, such as the concept of external synchrony [20]
presented in file I/O research, may be applicable to UI issues
regarding data persistence for AJAX applications. In external
synchrony, the file system processes updates asynchronously
but changes are buffered and not output to the user until
committed to the file system.

E. Support for Disaggregation

The impact of AJAX applications may be felt across all tiers
of the web infrastructure. Clearly, security and performance
are impacted by changing user behavior and application
workloads. As browsers become aggregation points for data
and applications, it is possible that the trend will lead to further
disaggregation of the web infrastructure on both the client and
server tiers.

For example, the two dominant browsers in today’s market
IE and Mozilla Firefox, have moved more towards providing
programming platforms. IE is closely integrated into the
Windows operating system while Mozilla provides a
comprehensive SDK to build non-browser applications with
Mozilla libraries; for example, Songbird is a media player [22]
which combines the open source media player VLC with
Mozilla code and runs outside a browser. Using these
platforms, developers can create applications where being
disconnected is the exception rather than the rule. Internet-
ready applications are already appearing without need for a
browser. For example, Konfabulator [17] allows authors to
create useful desktop widgets using Javascript for accessing
information like stock prices, the weather, photographs, etc.
from Internet sources.

This trend may lead to disaggregation on the server-side as
well. Server-side mash-ups may give way to composable
applications on the client. For example, the site Housing Maps
[14] combines Google Maps [13] with housing information
from housing lists to provide a geographically organized
listing of available housing in major metropolitan areas. In the
future, this mash-up can occur directly on the client, bypassing
previous server-side aggregation points on the network.
Clients may have a personalized version of housing maps by
culling information directly from the source data providers.

VI. RELATED WORK

The MVC pattern is first described by Burbeck [2], and
later in many papers regarding application design. The
application of this pattern to web application design is

prevalent in web literature, recent examples include [21][1].
Ripple-X applies the MVC pattern to browser-based
applications. Toolkits like Dojo [9] and specifications like
XForms [10] also adopt the MVC pattern. Ripple-X extends
Dojo by providing client-side state management facilities.
Ripple-X specifies MVC differently from XForms models, but
is generally compatible and we are investigating the
integration of our data services into an extended version of the
XForms model.

The term AJAX first appeared in [12], and defines a
programming style using a collection of existing technologies
widely available on browsers, e.g. Javascript [11] and
XMLHttpRequest [28]. Using AJAX techniques, developers
can create browser-based applications that are much closer to
their desktop counterparts in both look and responsiveness.
AJAX is still the subject of many industry articles and books
[6].

Data durability and synchronization is large and richly
discussed research topic, e.g. [5][16][23], and our project
takes initial steps to address some of the larger issues in an
AJAX context.. In this paper we focus on browser-based
services that can assist the client before committing data to the
server. The current version of Ripple-X assumes that an
external entity will perform data synchronization; we have
implemented an application level policy-based synchronization
service in Java [4] and hope to migrate this to the browser
context.

Saving application state locally requires browser-based
extensions with access to system resources. While we have
developed OpenCache and OpenCache-JS, there are other
efforts, e.g. AMASS integration into a generic Dojo storage
framework [19].

VII. CONCLUSIONS

Ripple-X is a set of Javascript libraries and namespace
extensions that provides data-centric services to AJAX
applications. Ripple-X is designed using the MVC approach
and overlays this separation of concerns on AJAX
applications. Using Ripple-X, AJAX applications have access
to logging, checkpointing, RSS/ATOM updates, and a
connectivity manager.

We are currently implementing a new version of Ripple-X
that will incorporate support for fine-grained property
bindings. We are investigating mechanisms to support lazy
loading of large models from the server onto the client. As part
of this work we are looking at several client profiles, including
mobile devices.

ACKNOWLEDGMENT

The authors thank Lionel Villard, Apratim Purakayastha,
Charlie Weicha, and Rich Thompson at IBM Research for
their help designing and developing this project.

REFERENCES

[1] F. Bellas, D. Fernandez, A. Muino, “ A Flexible Framework for
Engineering "My" Portals,” Proceedings of the 13th International World
Wide Web Conference WWW 2004, May 2004, New York, NY USA

[2] S. Burbeck, “Application Programming in Smalltalk-80: How to use
Model-View-Controller (MVC),” University of Illinois in Urbana-
Champaign (UIUC) Smalltalk Archive. http://st-
www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

[3] R. Cardone, D Soroker, A Tiwari, “Using XForms to Simplify Web
Programming,” Proceedings of the 14th International World Wide Web
Conference WWW 2005, May 2005, Chiba Japan

[4] P. Castro, F. Giraud, R. Konuru, A. Purakayastha, D. Yeh:, “ A
Programming Framework for Mobilizing Enterprise Applications,”.
Proceedings of the IEEE Workshop for Mobile Computing Systems and
Applications,WMCSA 2004, Nov 2004

[5] J. Cho, H. Garcia-Molina, “Synchronizing a Database to Improve
Freshness”. SIGMOD 2000.

[6] D. Crane, E. Pascarello, D. James, “Ajax in Action,” Manning
Publications, Greenwich CT USA 2006

[7] Diffgrams,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpcondiffgrams.asp

[8] Document Object Model, http://www.w3.org/DOM/
[9] Dojo Toolkit, http://dojotoolkit.org
[10] M. Dubinko, L. Klotz, R. Merrick, T. Raman, “XForms 1.0,” World

Wide Web Consortium (Recommendation) October 2003.
http://www.w3.org/MarkUp/Forms.

[11] ECMA International Standard EMCA-262, “ECMAScript Language
Specification,” 3rd edition, http://www.ecma-
international.org/publications/standards/Ecma-262.htm.

[12] J. Garrett, “AJAX: A New Approach to Web Applications,”
http://adaptivepath.com/publications/essays/archives/000385.php

[13] Google Maps, http://maps.google.com
[14] Housing Maps://www.housingmaps.com
[15] C. Jackson, D. Boneh, A. Bortz, J.C. Mitchell, “Protecting Browser

State from Web Privacy Attacks.” Proceedings of the 15th International
World Wide Web Conference, WWW 2006, May 2006.

[16]] J. Kistler, M. Satyanarayanan, “Disconnected Operation in the Coda
File System,” ACM Transactions on Computer Systems, 10(1):3-25,
February 1992.

[17] Konfabulator, http://widgets.yahoo.com
[18] D. Merrill, “Mashups: the New Breed of Web App,” IBM

DeveloperWorks, http://www-128.ibm.com/developerworks/library/x-
mashups.html?ca=dgr-lnxw16MashupChallenges, Aug 2006

[19] B. Neuberg, “Now in a Browser Near You: Offline Access and
Permanent, Client-Side Storage, Thanks to Dojo.Storage,” available at
http://codinginparadise.org/weblog/2006/04/now-in-browser-near-you-
offline-access.html

[20] E. Nightingale, K. Veeraraghavan, P. Chen, J. Flinn, “Rethink the
Sync,” Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, WA, November
2006

[21] T. Parr, “Enforcing Strict Model-View Separation in Template
Engines,” Proceedings of the 13th International World Wide Web
Conference WWW 2004, May 2004, New York, NY USA

[22] Songbird, http://www.songbirdnest.com
[23]] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, C.

Hauser, “Managing Update Conflicts in Bayou, a Weakly Connected
Replicated Storage Sys-tem,” SOSP 1995.

[24] VLC Media Player, http://www.videolan.org/vlc/
[25] V. Vukicevic, “Mozilla2 Unified Storage,

http://wiki.mozilla.org/Mozilla2:Unified_Storage:
[26] Writely, http://www.writely.com
[27] XBL, Extensible Binding Language,

http://www.mozilla.org/projects/xbl/xbl.html
[28] The XMLHttpRequest Object, W3C Working Draft 19 June 2006,

http://www.w3.org/TR/XMLHttpRequest

