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Abstract. Mass-produced goods tend to be highly standardized in or-
der to maximize manufacturing efficiencies. Some high-value goods with
limited production quantities remain much less standardized and each
item can be configured to meet the specific requirements of the customer.
In this work we suggest a novel methodology to reduce the number of
options for complex product configurations by identifying meaningful
sets of options that exhibit strong empirical dependencies in previous
customer orders. Our approach explores different measures from statis-
tics and information theory to captures the degree of interdependence
between the choices for any pair of product components. We use hierar-
chical clustering to identify meaningful sets of components that can be
combined to decrease the number of unique product specifications and
increase production standardization. The focus of our analysis is on dif-
ferent similarity measure including chi-squared statistics and versions of
mutual information on the ability of the clustering to find meaningful
clusters.

1 Introduction and Motivating Example

While bundling of products has received significant attention in the economic
literature (e.g., [1–3]), the bundling of product options is typically limited to
considerations of production efficiency and engineering. In order to optimize
the tradeoffs between maximizing production efficiencies and making products
that meet the individualized requirements of particular customers, manufactur-
ers have developed techniques of combining options into bundles so that batches
of similarly customized products may be made together, rather than making each
customized product individually. Existing approaches to developing such bun-
dles, however, have been driven by the choices of product designers and have not
afforded a systematic way of incorporating customer preference data. Examples
of products that offer option bundles can be observed in the car industry. Toyota
for instance offers an ‘All Weather Guard Package’ that includes an Intermittent
Rear Window Wiper, Windshield Molding, Heavy-Duty Heater and Rear-Seat
Heater Ducts. All of the above components appear related to the requirements
of driving under harsh weather. However, Toyota also offers Option Combina-
tion B for a Toyota Matrix that contains 50 State Emissions, Cruise Control,
and Power Package. For this combination it is much less clear whether there is



any relationship between the components. In this work we explore the task of
finding good sets of components for bundling on the example of truck configura-
tions. Even considering all the different options, passenger cars remain a highly
standardized product class. Trucks on the other hand are ordered for a specific
use and the customer can specify all major components separately. A truck will
only be produced after the customer has made his choices. However, one would
suspect a limited set of usage categories and certain recurring patterns in the
customer orders. A customer that typically uses a truck for long-haul purposes
is likely to require optional sleeper cab facilities, while a customer using the
same type of truck for local hauling would not be willing to pay for. In addition,
requirements for safety and handling options relevant to various types of road
and weather conditions may differ from customer to customer. So the objective
of our bundling task is to find component combinations that empirically exhibit
strong customer-choice interdependencies and will appeal to future customers of
new orders. To address this objective we need to quantify dependencies between
components. In order to achieve this goal we will explore potential measures
of dependencies between nominal variables in Section 3 and discuss properties
of such similarity measures. Given that such measures can capture only pair
wise dependencies, we propose in Section 4 the use of hierarchical clustering to
find larger sets of components that all exhibit large pair wise dependencies. We
will illustrate the issues and results on the example of the truck configuration
domain.

While the work in this paper is applied, but we think that the business
problem is of general interest and we are not aware of prior work on this formal-
ization as hierarchical clustering under an appropriate similarity measure. Other
contributions are the identification of desirable properties in the given context
of nominal variables with difference in the number of choices and the skew of
the probabilities. While there has been substantial work on clustering using chi-
square based similarities as well as clustering with mutual information (e.g.,
[4–6]), we are not aware of the proposed combined methods that incorporates
both, the information content and the statistical reliability.

2 Notation and Formalization

Formally, a complex product consists of n components C1, ..., Cn. For every com-
ponent Cj , there is a limited set of kj possible choices {cj1, ..., cjkj

} where the
number of choices kj differs across components. We also assume that we have N

past observations that indicate for each order the particular choices as a vector
o1, ..., on with oj ∈ {cj1, ..., cjkj

}. Note that this setup differs considerably from
the typical basket analysis of customer choices that motivated the work on large
itemsets and mining of association rules [7]. The notion of components imposes
additional constraints:

– all customers have the identical number of n components and
– for each component only one choice is permissible.



While frequent itemsets may be indicators of semantic interdependencies be-
tween choices, they do not measure the interdependence of components. Each
itemset considers only one particular choice cjg ∈ {cj1, ..., cjkj

} and how of-
ten it appears with another choice for another component, but not how much
each possible choice cj1, ..., cjkj

for component cj correlates with the choices for
the other component. Another problem with the notion of frequent itemsets is
its dependence on the prior probability of a particular choice. In particular, a
frequent itemset analysis identifies typically combinations of default values for
components with one very common default value and a small set of much less
common values. That does not mean that there is any deeper semantic depen-
dency between the components. It is just an artifact of the high skew of the
probabilities. While there are measures of the ‘unexpectedness’ of an itemset,
these measures are typically a function of the size of the set and with larger sets
exhibiting much more unexpected behavior.

To address our specific bundling objective we need to quantify dependencies
between sets of components, not sets of choices. In order to achieve this goal
we will explore potential measures of dependencies between nominal variables in
the following Section and discuss properties of such similarity measures.

3 Measuring Dependence

The objective in our bundling task is to find sets of components where past
customer choices exhibit some form of dependence. So far we have used the term
dependence rather loosely in a non-technical sense of some form of a semantic
connection. While it is difficult to formalize dependence without a clear prior
notion of how things depend on each other, there is a clear statistical notion
of the opposite: independence between random variables. We can formalize the
observation of a customer choice oi for a particular component Ci as the outcome
of a random experiment over the sample space Ωi = {ci1, ..., cik}. Formally,
two random variables are independent if their joint distribution is equal to the
product of their individual distribution functions

P (oj = chp, ol = clm) = P (oh = chp) ∗ P (ol = clm) (1)

for all elements of the Cartesian product of the two sample spaces Ωi × Ωj (all
possible choice pairs for the two components). Independence is defined generally
over an arbitrary number of variables and we could attempt to devise a measure
the interdependence within entire sets of components. However, such a strategy
will not lead to non-overlapping bundles as desired in our case. In addition, given
the somewhat vague business objective, the final choice of bundles is potentially
subject to many additional production constraints and considerations. We will
therefore restrict our work to pairs of components and employ hierarchical clus-
tering to suggest potential non-overlapping bundles.

We can now measure dependence in terms of the degree of violation of this
equality 1 over all pairs of choices chp, clm) for a pair of components (Ch, Cl).



This requires initially the estimation of the distribution for all possible com-
ponents and their choices P (ol = clm) and choice pairs p(chp, clm). We will
simplify the notation and use p(chp) to denote P (oh = chp) and p(chp, clm) for
P (oj = chp, ol = clm) respectively. Note that for the posed business problem,
we do not have a clear evaluation metrics. Otherwise we could hope to derive
(either implicit or explicitly) an appropriate similarity measure subject to opti-
mal bundling performance. Our results will depend very much on the particular
choice of similarity. We will therefore discuss in more detail some desirable and
useful properties and frame existing measure with respect to this properties.

While there are many possible choices of a similarity measure D([0, 1]s, [0, 1]s) →
R (where s = kh ∗ kl is the number of choice pairs), reasonable candidates can
be constructed from i) an ‘atomic’ measure of similarity D0([0, 1], [0, 1]) → R of
the elements (chp, clm) of the Cartesian product over the sample spaces and ii)
an aggregation function A(Rn) → R over all the atomic similarities.

In order to be suitable for our bundling task, we would like the similarity to
exhibit three other desirable properties:

– It has to be symmetric with D(Ch, Cl) = D(Cl, Ch), since there is no
special order on the components;

– It should to be comparable across component pairs. In particular, it should
be rather insensitive to the specific size of the Cartesian product of the
sample spaces;

– It should be robust towards estimation errors of the distribution. Given a
limited sample of prior customer orders and a large sample space for some
components with many possible values, the estimation quality of both the
single probabilities and even more so the probabilities of choice pairs will be
limited. This problem is particularly dominant for rare choices.

The issue of assessing independence has been considered in different fields
and contexts including the analysis of contingency tables in statistics and infor-
mation theoretical work on the information content of signals.

3.1 Chi-Square Based Similarities

Measures of association have a long history in the context of the analysis of con-
tingency tables. For an extensive overview consider [8]. However, the majority
is not very suitable for our task for various reasons including a lack of symme-
try, and focus on the conditional mode of the distribution while ignoring less
common choices. One standard approach to evaluate the significance of statis-
tical dependencies of two nominal random variables (Ch and Cl) is based on a
Chi-square test.

χ2(Ch, Cl) = N

kh∑

i=1

kl∑

j=1

(p(chp, clm) − p(chp)p(clm))2

p(chp)p(clm)
(2)



Note that this formulation uses an ‘atomic’ Euclidean similarity and a weighted
sum as aggregation function where the weight reflects the expected probability
of observing a pair under the null-hypothesis of independence. Let us make a
few observations that contradict our two desirable properties for the bundling
task:

– The measure from Equation 2 follows (under certain assumptions) approxi-
mately a Chi-square distribution with (kh − 1)(kl − 1). This means that its
expected value is a function of the sizes of the sample spaces and renders a
comparison across component pairs impossible.

– The Qui-square statistic is known to be sensitive to small number of ex-
pected observations in the nominator. The Fisher exact test is correcting for
this problem but becomes computationally infeasible already for moderate
sample spaces (e.g., size of 4).

One can consider ad-hoc solutions for both issues. To address the depen-
dence on the degrees of freedom, we can either convert the statistic into the
corresponding p-value or correct it based on the Normal approximation. The
p-value is derived from the cumulative distribution with the appropriate degrees
of freedom and reflects the probability of such a Chi-square occurring by chance.
However, as we will see in the experiments, this correction eliminates most of the
information. Given the comparably large size of our dataset, almost all observed
values are significant with high probability and most of the p-values are indis-
tinguishable from 0. The second correction takes advantage of the fact that a
Chi-square with large number of degrees of freedom d is approximately normally
distributed with a mean equal to d and a variance equal to 2*d. We can therefore
use the following correction:

Nχ2(Ch, Cl) =
χ2(Ch, Cl) − d√

2d
(3)

To address the issue of small expectations, we combine multiple rare com-
ponent choices into a new value ‘others’. Note that a replacement with ‘other’
can artificially create dependencies and should be taken with a grain of salt: the
fact that for two components some cases have both the value ‘other’ is likely
to indicate that the customer is picky and always wants something special, not
that this choice of one component affects the other.

3.2 Mutual Information

Intuitively, mutual information [9] measures the information about one compo-
nent that is shared by another. If the components are independent, then one
contains no information about the other vice versa, so their mutual informa-
tion is zero. Formally, the mutual information MI of two random variables for
components Ch and Cl is defined as:

MI(Ch, Cl) =

kh∑

i=1

kl∑

j=1

p(chp, clm) log
p(chp, clm)

p(chp) ∗ p(clm)
(4)



In the case of mutual information the aggregation function is again a weighted
sum and the ‘atomic’ similarity is the log of the ratio of the expected and ob-
served probability. While this measure both symmetric and robust to small ex-
pectations due to the log transformation, it is not comparable across pairs of
components. If the sample space of the two variables is identical, the maximum
mutual information under complete dependence is equal to the entropy. Entropy
however is a function of the sample size. In particular, a tight upper bound on
the mutual information is given by

MI(Ch, Cl) ≤
H(Ch) + H(Cl)

2
(5)

where H(Ch) is the entropy [10] of component Ch defined as

P (Ch) =

kh∑

i=1

p(chi) log(
1

p(chi)
) (6)

We therefore define a normalized mutual information as suggested by [11] as

NMI(Ch, Cl) =
2MI(Ch, Cl)

H(Ch) + H(Cl)
. (7)

3.3 Combining Mutual Information and Significance

While both measures work on the same underlying information, the objective
for which they were developed is very different. The goal of the Chi-square mea-
sure is to assess significance relative to the null-hypothesis of independence. This
means in particular, that it matters how many observations are provided. The
power of a test is a function of the provided number of observations and as the
sample becomes very large, almost every small deviation becomes significant.
We can see the relevance of the sample size N in Equation 2.
Information theory ([10, 9]) on the other hand takes a different perspective. Mu-
tual information is completely independent of the sample size N and in does not
assess whether the observed amount of information could have been observed by
random chance. So mutual information is a closer measure of the quantity we
are interested in, the degree of dependence, but does not take randomness into
account and whether the observed quantities are significant.
We therefore propose a similarity measure that incorporates both, statistical
considerations of significance and the amount of information

SIM(Ch, Cl) = NMI(Ch, Cl)cdf(χ2(Ch, Cl), (kh − 1)(kl − 1)) (8)

where cdf(χ2(Ch, Cl), (kh − 1)(kl − 1)) is the value of the cumulative density
function for the Chi-square statistic χ2(Ch, Cl) with (kh − 1)(kl − 1) degrees of
freedom. This similarity measure weights the observed amount of shared infor-
mation by the probability of it not being random.



4 Hierarchical Clustering

Clustering and cluster analysis (e.g., [12, 13]) encompasses a number of differ-
ent algorithms and methods for grouping objects of similar kind into respective
groups. Rather than finding a fixed number of clusters in the data, hierarchi-
cal clustering as proposed by Johnson [12] provides a proceeds iteratively by
combining existing clusters may be represented by a two dimensional diagram
known as dendrogram which illustrates the fusions or divisions made at each
successive stage of analysis. Examples of such a dendrograms are given Figure 1.
A dendrogram is a tree diagram frequently used to illustrate the arrangement of
the clusters produced by a clustering algorithm (see cluster analysis). The sim-
ilarities between the nodes reflect the relative similarities of the clusters. Given
a set of n items to be clustered, and an n∗n similarity matrix, the basic process
of hierarchical clustering [12] is this:

1. Start by assigning each of the n component to its own cluster. Let the sim-
ilarities between the clusters the same as the similarities between the items
they contain.

2. Find the closest pair of clusters and merge them into a single cluster, so that
now you have one cluster less.

3. Compute similarities between the new cluster and each of the old clusters.
4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size

n.

Aside from the similarity measure, the criterion to define ‘closest’ in step 2 is one
of the major components of the clustering algorithm and can affect the results
significantly. Different criteria include:

– Minimum: Similarity between clusters is the smallest similarity from any
member of one cluster to any member of the other cluster.

– Average: Similarity is the average over the similarities from any member
of one cluster to any member of the other cluster. Alternatively, one can
consider the median, which is more robust to similarity outliers.

– Maximum: Similarity between clusters is the largest similarity from any
member of one cluster to any member of the other cluster.

– Ward: Similarity is phrased in terms of the increase in diversity in the cluster
(originally considered as a total prediction error [14]). The main difference
between this and the previous criteria is the consideration of the size of the
cluster. While doubling the number of elements in each cluster has no effect
on the previous criteria, it will increase to total diversity by a factor of two
and makes it less likely to combine larger clusters.

5 Dataset and Empirical Results

Our experiments are based on non-public transaction records of a truck manu-
facture. To preserve the privacy of the client we have replaced component names



Code Component Size Mode Code Component Size Mode

001 Model 8 0.80 420 Axle Rear Drive 57 0.21
016 Exhaust Package 15 0.64 421 Axle Ration 49 0.15
018 Brake Package 4 0.92 423 Brake Rear 13 0.12
035 Dead Axle Package 11 0.98 545 Wheelbase 164 0.19
101 Engine 54 0.14 546 Frame Rail 10 0.27
128 Retarder Driveline 12 0.65 552 Frame Overhang 115 0.23
180 Clutch 717 0.51 578 Fifthwheel 33 0.91
204 LH Fuel Tank 15 0.45 620 Suspension Front 12 0.40
206 RH Fuel Tank 17 0.45 622 Suspension Rear 73 0.11
266 Radiator 8 0.40 682 SleeperCab 2 0.99
290 BatteryBox 7 0.98 829 Cab Size 7 0.74
342 Transmission 82 0.11 A84 Business Segment 30 0.33
360 PTO Engine Front 4 0.96 A85 Vehicle Service 14 0.67
362 PTO Transmission 22 0.80 AA2 Trailer Type 12 0.86
400 Axle Front 21 0.20 AA3 Body Type 30 0.44
402 Brake Front 9 0.48

Table 1. Component Codes and Definitions for the Example Domain. The size column
represents the number of possible choices for the component (size of the sample space)
and the last column presents the probability of the most common choice (Mode) as an
indicator of the skew in the probabilities.

while keeping all statistical aspect identical. We selected (based on the recom-
mendation of the manufacturer) a small subset of 30 important components for
the illustration of this work and included in the analysis a total of 3500 recent
orders. An overview of the components is provided in Table 1. The table also
provides some information about the statistical properties including the size of
the sample space for each component (Size) and the distribution of the mode for
each component (Mode).

5.1 Similarity Measures

Following the discussion in Section 3 we have 7 different similarity measure to
our disposal:

Nχ2 : Chi-sqare corrected for degrees of freedom by Normal approximation as
defined in Equation 3

Nχ2
r
: Chi-sqare without rare options (occurrence below 20) corrected for de-

grees of freedom by Normal approximation
p(χ2): p-values of Chi-square
p(χ2

r): p-values of Chi-square without rare options
MI: Mutual information as defined in Equation 4
NMI: Normalized mutual information as defined in Equation 7
SIM : Combined mutual information and p-value as defined in Equation 8

Table 2 shows the correlation (which implicitly assumes a linear relationship)



Nχ2 Nχ2
r

p(χ2) p(χ2

r) MI NMI SIM

Nχ2 1.00 0.80 0.20 0.16 0.41 0.63 0.63
Nχ2

r
0.80 1.00 0.18 0.16 0.59 0.84 0.84

p(χ2) 0.20 0.18 1.00 0.58 0.18 0.22 0.24
p(χ2

r) 0.16 0.16 0.58 1.00 0.16 0.20 0.20
MI 0.41 0.59 0.18 0.16 1.00 0.88 0.88

NMI 0.63 0.84 0.22 0.20 0.88 1.00 0.99
SIM 0.63 0.84 0.24 0.20 0.88 0.99 1.00

Table 2. Correlation of the different similarity measures.

between the measures. We can clearly identify three groups: measures based
on mutual information (MI, NMI and SIM), measure based on the p-values
and the two Chi-square values. The fact that the p-values are only very vaguely
correlated with the Chi-square measures is due to the inherent non-linearity of
the cumulative density function. Replacing rare values has a moderate effect
both in the case of p-values and the Chi-square measures. The normalization of
the mutual information has clearly an effect, much more so than the weighting
by the p-value. The only exception to the nice separation of the measures into
3 groups is the high correlation between the Chi-square adjusted for rare values
and the two normalized mutual information measures of 0.84.

As pointed out earlier, the measures using a p-value only reflect whether the
observed degree of dependence could be random. We have a fairly large dataset
and both measures assign a value of 1 to 93% of all pair wise distances. This
renders it unusable as a similarity measure for the clustering objective. The only
pairs that show values below 1 involve typically components with a very high
probability for the mode (e.g., components 035, 682, and 360).

5.2 Clustering Results

We used the Pajek [15] implementation to perform the hierarchical clustering
using the Ward and average criterion and the visualization of the corresponding
dendrograms. Given our earlier analysis of the similarity measures we consider
for clustering only SIM , Nχ2

r
.

Figure 1 shows examples of dendrograms for the two main similarity mea-
sures and different clustering criteria. Unfortunately, the effect of the clustering
criterion is at least as relevant as the similarity measure. In addition, the scale
and skew of the similarities affect the results severely. The SIM measure is lim-
ited between 0 and 1 and is typically close to 1. The Chi-square measure with
the normal correction for the degrees of freedom on the other hand ranges from
-10 to 500 with a much more uniform distribution.

We can nevertheless make some observations about the results that could be
used by a domain expert to identify bundles. We can find a number of groups
of components that are placed together by most reasonable clusterings. This in-
cludes for instance the set {A85,AA3,A84}, {204,206}, {620,400}, and {829,001}.



They are clearly good candidates for component bundles. The descriptions in Ta-
ble 1 suggest that indeed these sets are meaningful.

6 Discussion and Conclusion

We presented an analytical approach that can guide the design of appropriate
bundles of components for complex products such as trucks. While the task is
very relevant in practice, there is no clear measure of performance and the valid-
ity of the results can only be assessed based on domain specific information or by
an domain expert. We suggest the use of mutual information, adjusting for the
number of options and combining it with statistical significance, as a measure of
dependence between customer choices. Our approach could identify meaningful
candidate sets of components. An important observation of our analysis is the
relevance of the clustering criteria and its potential interaction with properties
of the similarity measure. We are not aware of studies that investigate issues of
similarity scaling and distribution in the context of different clustering criteria
and hope to address this topic in future work.
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Fig. 1. Dendrograms for hierarchical clustering using the Ward and average criteria.


