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Abstract – Quantum measurement has relatively recently become a topic of practical 

concern, as well as one of prodigious growth.  The need to illuminate the principles 

and problems of measurement in presentations that can be easily grasped within a 

lecture period have led to some excellent developments.  A survey of modern texts 

reveals a diversity of treatments of the Copenhagen interpretation.  Tracing these 

variations to the primary literature reveals differences of opinion and treatment 

among the individuals who comprised the Copenhagen school.  Since these 

presentations are already in use in classrooms, they can be adapted to present a much 

richer picture of the development of the problem of quantum measurement within a 

context that fits in teachable lecture blocks.  This paper reviews key discussions from 

Heisenberg and von Neumann.  The results suggest there were indeed differences in 

the sensibilities concerning quantum measurement between the participants at 

Copenhagen.  Further, the tensions not just between those participants, but between 

the questions they raise, reflect a true difficulty in the nature of the foundations of 

quantum mechanics that can be clearly identified in Feynman’s treatments (which 

also came in lecture-sized chunks).  These issues provide the foundation for almost all 

of the new treatments of quantum measurement that have emerged in recent years, 

and which still deeply affect the controversial character of the topic. 



Introduction 
 

Quantum measurement had been long relegated to obscurity in the pedagogical literature 

due to its controversial character and near impossibility of testing some of the more 

curious features of the questions addressed.  However, the onset of quantum 

cryptography [1] and quantum teleportation [2] has brought the area into the practical 

experimental domain.  While nearly absent from the pedagogical literature, interest in the 

field has been strong.  A recent study seeking to construct an interpretation of quantum 

measurements using Hagelian dialectics has produced a significant and exhaustive review 

of the field, [3] a necessary by-product of producing a synthesis from theses and 

antitheses.  The sheer size of that text reveals something of both the magnitude of the 

interest, and the difficultly coming to a clear answer to the problems of measurement. 

 

Often, one seeking a clear, clean, and deep understanding of a problem might explore 

Richard Feynman’s pedagogical literature.  His presentations in his “Lectures on 

Physics”  [4] are a standard.  But his deepest treatment was presented in his lectures on 

gravity, [5] prepared during the same years he prepared his famous lectures on physics.  

He ventured into the domain of quantum measurement when he considered whether it 

would or would not be possible to construct a classical theory of gravity that interacted 

with quantum particles since there is essentially a measurement question that must be 

answered – specifically, that must be  built into the formalism of such as theory -- to 

connect quantum source terms with a classical gravitational field. 

 

Yet, it is the burden of every text and course on quantum mechanics to explore the 

question of measurement at least deeply enough to make sense of the connection between 

quantum mechanics and macroscopic experience.  Quantum mechanics texts show some 

diversity on their approaches in a number of different dimensions.  The component this 

paper focuses on is demonstrated most clearly in the contrast between the text by L. I. 

Schiff, [6] and Cohen-Tannoudji, et al, [7] or Sakurai. [8]  The approach adapted by 

Cohen-Tannoudji and Sakurai are very closely aligned with Dirac, [9] first published in 

1930.  The arguments that Dirac endorsed were originally articulated by von Neumann, 
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[10] which was first published afterwards in 1932.  These represented the first publication 

of the notion of a collapse of the state vector upon measurement.  Schiff’s treatment is 

much softer on the notion of such a collapse.  Specifically, Schiff explores an argument 

proposed in a monograph by Heisenberg, [11] first published in 1930, describing the 

formation of a bubble chamber track, and avoids the issue of state vector collapse.  

Therefore, the two monographs, by von Neumann and Heisenberg, represent a dialogue 

between Copenhagen members on the issue of quantum measurement and state vector 

collapse.  (On the side, David Bohm’s text on quantum mechanics [12] presents a 

reconciliation of Heisenberg’s bubble chamber argument and von Neumann’s collapse 

picture.  The experience of writing this text apparently provoked him to explore an 

alternative construction of quantum mechanics known as a “hidden variables theory.”) 

 

The very short review presented above highlighted a very interesting fact of history: there 

appears to be some differences in the treatment of measurement by the students of the 

Copenhagen school.  A review of the arguments upon which this long standing difference 

rests reveals that the division involves significant questions concerning measurement.  

Those arguments are short, simple, and instructive in a pedagogical environment.  This 

paper purposes to present these arguments in sizes suitable for inclusion in lectures. A 

study of the dialogue between von Neumann and Heisenberg, seen in publications by 

these authors from this same period in time, provides a unique insight still deeply 

relevant today.  This dialogue reflects the contributions seminal to the discussions of 

measurement now presented in many quantum mechanics texts, together with some 

simple observations.  Particularly, von Neumann’s arguments are usually not included in 

the texts that cite his measurement postulates. 

Background 
 

The thread of this question is picked up following Born’s Nobel Prize lecture [13] with 

Heisenberg’s seminal paper on matrix mechanics. [14]  This left open the question of 

what the matrices operated on.  Schrödinger’s solution to the quantum problem, and 

particularly to the hydrogen atom, [15] assumed an 

! 

e"
2  electron charge density, but that 
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this was interpreted as a density, not a probability that a particle would be observed..  

This was considered to be objectionable by the Copenhagen group because of the particle 

like behavior in Geiger counters, etc. suggested that the electrostatic field should be 

seeing charged particles distributed by a probability computable from the quantum state 

vector.  Born considered that, if the force involved the exchange of photons in some kind 

of scattering process, consistent with Einstein’s argument, then 

! 

e"
2  would reflect a 

probability proportional to 

! 

"
2. [16]  The notion of uncertainty as expressed in 

Heisenberg’s paper on the uncertainty principle, [17] connected the nature of the state 

vector to quantum uncertainty and probabilities much more clearly. 

 

The Heisenberg uncertainty principle was pivotal in establishing a picture of quantum 

measurement, and which placed measurement in the center of the discussion in 

Copenhagen and in the famous debates with Einstein.  The argument revolved around the 

notion that measurement of location involved scattering by a photon, which introduces an 

uncertainty in the momentum.  Since photon resolution depends on wavelength, and 

higher resolution and decreased wavelength implies higher energy and momentum 

transferred, the more precise you measure location, the more uncertain the resulting 

momentum.  Heisenberg and Bohr considered uncertainty to be an aspect of measurement 

rather than of the underlying nature of quantum mechanics – or rather quantum 

mechanics takes into account in some way the effects of uncertainty in measurement, 

even when no such measurement method is posited.  Lastly, the result of measurement 

was to leave the system in an essentially undetermined state. 

 

It is worth while looking at a typical derivation of the Heisenberg uncertainty 

relationship, because it sheds light on the relationship between the formalism, and how 

the uncertainty principle was used in various arguments from the Copenhagen school.  

Consider a state 

! 

"  subject to the estimation of operators 

! 

"A = A # A  and 

! 

"B = B # B .  Define vectors 

! 

u = "A#  and 

! 

v = "B# .  Construct 

! 

w = u " v v u v v .  Then 

! 

w w " 0  implies 

! 

u u v v = "A
2
"B

2
# u v

2

# Im u v
2

= A,B[ ]
2

4 .  If 

! 

A  and 

! 

B are location and 
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momentum, this reduces to the familiar result.  It is clear that there is no explicit 

involvement of a measurement process in the above limit. The derivation suggests that 

the uncertainty is a property of the operator algebra independent of any particular 

condition of the state vector.  

 

For Heisenberg, the question of where the uncertainty is injected inverts the position 

adapted in Planck’s original derivation of his black-body distribution, [18] where Planck 

assumed the quantization was a peculiarity of the interaction of light with any system, 

such as classical oscillators that the light was in thermal equilibrium with, rather than of 

the mechanics of light and oscillators themselves.  Heisenberg argued that the structure of 

uncertainty in measurement, and measurement itself, was integral to the structure of  

mechanics, being inherent in the quantum operators themselves -- being built into their 

algebra.  Measurement is a part of the dynamics described by quantum mechanics. [11] 

Von Neumann’s Argument 
 

The focus of von Neumann’s argument was the Compton effect. [19]  In this experiment, 

an X-ray is scattered from an electron.  It imparts momentum to the electron.  The 

photon’s velocity and angle of scatter are measured, which given the initial momentum of 

the photon, is sufficient to determine the energy and momentum of the scattered electron.  

The scattered electron’s momentum and energy can also be measured, necessarily at a 

later time.  The measured energy and momentum are consistent with the prior 

measurement.  This suggested to von Neumann that subsequent measurements of the 

system must be consistent with the measured state at a prior time, and that the process of 

measurement, to make all future measurements consistent, must modify the system’s 

state vector accordingly.  That modification of the state vector 

! 

"  must require the 

uncertainty in the measured variable 

! 

A  to be zero.  Then 

! 

"A2 = A # A( )$
2

= 0 , so 

that 

! 

A" = A " .  Thus, it follows that the state vector must be reduced to an eigenstate 

of the measured operator, and the measured expectation value must be an eigenvalue of 

that operator. 
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It is clear von Neumann’s construction is intended to preserve conservation. However, 

this argument opens the question of the possibility that measurement can change a state 

vector --  do work on a system or exert force on a system -- without any more effort than 

passively observing that system.  This opens the arena to a host of problems, such as what 

qualifies as an observer, [20] and whether the act of observation could satisfy Lorentz 

covariance. [21] 

Heisenberg’s Argument 
 

Heisenberg’s book, [11] which Schiff [6] cited for the bubble chamber track argument, 

contained critiques of the corpuscular theory and of the wave theory, a presentation of 

statistical theory, as well as discussions of experiments that demonstrate quantum 

character, and finishes with a description of analytical technique.  Bubble chamber tracks 

figure in the introduction and in his chapter on experimental results.  He stands in 

agreement with Bohr concerning wave/particle complementarity at the end of his chapter 

on statistical theory.  He describes measurable operators as being imbued with dynamical 

meaning only in the context of being measurable – exactly as noted in the above 

observation of the treatment of the uncertainty principle.  This goes a bit further than the 

operationalism or logical positivism that considered that physical quantities should be 

defined or definable in terms of experimental procedures as much as possible as a way of 

removing circularities that emerge when faced with defining undefined terms. 

 

Heisenberg’s argument regarding bubble chamber tracks demonstrated that apparent 

examples of collapse, such as the formation of bubble-chamber tracks, could be explained 

using the normal dynamics embodied by Schrödinger’s equations, without resorting to 

collapse events.  As an example, he presented the formation of bubble-chamber tracks.  

The development described here follows Schiff. 

 

Consider a cross-section 
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where 
  

! 

"
0
(
r 
k )  is the asymptotic scattering state, and the transfer matrix 

  

! 

T E
0
(
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k ) + i"( ) 
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! 
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0
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0
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0
V +L (a good development is presented in Taylor [22]).  

The leading term that includes excitations at more than one site (as in multiple vapor 

condensation points) is 

! 
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0
V .  Now, this term may be expanded as 
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For the purposes of this discussion, it is adequate to simply assume that the 

! 

V ’s are 

localized so that 
  

! 

V
2
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x +

r 
R ( ) = V

1

r 
x ( ) = V

r 
x ( ), where 

  

! 

V
r 
x ( ) " 0  when 

  

! 

r 
x >> a , the scattering 

centers are separated by a distance much larger than both the incoming particle’s 

wavelength and the scattering center volume.  Then the matrix element is 
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The oscillations in the integrals cancel unless 
  

! 

r 
k 

0
" k

0

ˆ R a #1 and 
  

! 

r 
k " k

0

ˆ R a #1, or when 

! 

ˆ k 
0
" ˆ R #1 ka  and 

! 

ˆ k " ˆ R #1 ka.  In other words, mechanics, as embodied in 

Schrödinger’s equation, predicts that the cross section for the production of bubble 

chamber tracks is insignificant if any two of the vapor molecules are not lined up with the 

momentum. 
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Necessary to the above computation is the insertion of a complete set of bases 
  

! 

r 
" k 

r 
" k .  

This act involves a sum over all possible momenta.  Some intermediate collapse in 

momentum space, representing a measurement of the momentum in order to determine 

the alignment of the scattering sites, would have changed the effective form of 

  

! 

r 
x 
1

G
0

r 
x 
2

, which could, ironically, break the localization of the cross-section. 

 

Another feature of the problem is made clear in the derivation of the scattering cross-

section presented by Taylor. [22]   In this case, starting from the construction of 

asymptotic states described by 
  

! 

e
"iHt / h

#
t$±%

& $ & & e
" iH

0
t / h

#
0

 where 

! 

H
0
 contains no 

interaction, and 

! 

"
0

 is an interaction-free asymptotic state vector, he builds a cross-

section by integrating incoming packets over various impact parameters given a beam 

intensity.  The inclusion of all possible intermediate states at all possible locations is also 

built into Feynmann’s path integral formulation. [23]  During the development, 

conservation of energy and momentum, the properties that would guarantee the consistent 

treatment that von Neumann’s measurement postulate was designed to preserve, emerge 

naturally. 

Conclusions 
 
The participants in the Copenhagen school revealed some divergence.  Bohr’s sense was 

that measurement produced results leaving the system in an undetermined state.  The 

famous arguments with Einstein at the Solvoy conference treated systems classically 

subject to measurement uncertainty. [24]  Heisenberg considered measurement and its 

uncertainties to be built into the mechanics of natural systems, reflected in the very 

formalism from which the uncertainty principle was derived.  Von Neumann argued that, 

in order to preserve conservation in the face of uncertainty, measurement requires its own 

postulate distinct from Schrödinger’s equation to insist on measurements that produce 

consistent results, as demanded by some experimental systems, such as the Compton 

experiment.  It is in part due to the polarization between Einstein’s party and the 

Copenhagen party at the Solvoy conference that the notion of a single Copenhagen 

interpretation seems to have been established. This was further cemented by continuing 
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debate points such as the EPR paradox. [21]  The act of winning the Solvoy debate made 

the differences between the individuals of the Copenhagen school less visible.  A second 

reason that the differences are not more widely presented or discussed seems to be one of 

style.  The citation of von Neumann’s measurement postulate tends to follow Dirac’s 

monograph, [9] which, predating von Neumann’s own exposition, [10] did not recite von 

Neumann’s arguments.  Rather, it presents a list of postulates upon which the 

development of quantum mechanics and the analysis of quantum mechanical systems is 

built.  This has tended to exclude von Neumann’s argument from common pedagogy, 

even though it is very short and easy to describe as a part of a lecture. 

 

It is a curious point that the sequence of publications does not reflect the order of 

discourse.  Von Neumann was present in Copenhagen, and had long discussions and 

debates with Bohr about the nature of measurement. [24]  These views were 

communicated within the physics community orally for several years before they were 

finally written down, and then for the most part in monograph form rather than in the 

refereed literature, and not in order of priority.  Of those elements that the Copenhagen 

group recorded, Pauli’s probability interpretation is what made it into the refereed 

literature.  Yet, their opinions are available for review, and it is clear that much of what 

has been offered as a “Copenhagen interpretation” actually reflects multiple and 

divergent opinions. 

 

The differences in views reflected in the comparison of Heisenberg’s and von Neumann’s 

monographs emerged from a deeper question that they were trying to come to grips with.  

That is the correspondence between quantum state vectors 

! 

"  and the probabilities 

  

! 

v 
x "

2

.  The depth of the problems involved are made quite clear in Feynman’s 

development on gravitation, [5] the intractability of which explains the volume of 

literature that emerged in this field [3] in the face of a general reluctance to seriously 

consider the problem measurement, which is often characterized by the unattributable but 

widely quoted phrase: “shut up and calculate!”  Here again, recent developments [1,2] are 

rendering the problem practical.  Yet, it cannot be denied that a significant amount of that 

volume published on quantum measurement has emerged as a result of the debate 
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reflected in the published views of Heisenberg and von Neumann as much as of the 

difficulty of the underlying question they were seeking to answer.  These questions are no 

longer simply philosophical.  They are now becoming experimentally accessible.  The 

arguments that underpin our common discourse are very tractable in a classroom setting, 

and can give students of quantum mechanics a deeper appreciation of these questions at 

very little expense of effort, and it will bring to life the personalities of the research group 

that first struggled with the formulation of quantum mechanics, and which had first crack 

at these most intractable features of the formalism. 
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