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Abstract –  

 
The observation and elucidation of power-law scaling of Species-area relationships has 

recently emerged as an area of significant interest.  This study takes guidance from some 

prior studies to identify some salient features of the distribution of inter-species 

populations over multiple scaling regimes.  Particularly, we seek to explain the transition 

from weak to strong scaling in the species-area relationship as the scale is expanded 

through ecological meso-zone to inter-biome scales.  We explore a Poisson-without-

replacement process as a simplified model of the type of sampling that would produce 

such a cross-over behavior, producing weak dependence and strong-scaling regimes, as 

well as effective weak-scaling exponents that span several decades of scaling factors. 



 

Introduction 

 

The power-law scaling of the number of species with area has been described since the 

early 20th century, [1] which has continued in the expression of recent interest. [2][3]  

Indeed, power-law scaling is ubiquitous in ecological systems, [4] and habitat. [5]   It is 

of continuing interest to catalogue and understand the reason for this ubiquity of power-

law scaling behavior. 

 

Of these, the Species-Area Relationship (SAR) is one of the more challenging to 

understand.  One recent study to attempt to understand why this scaling form should be 

so common and robust [3] demonstrates this difficulty.  The authors identify the 

importance of the clustering of species in promoting the emergence of a scaling law, yet 

leave to a supplementary section the actual arguments leading to this conclusion.  The 

argument depends on a scaling of their “proximity function” 
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The authors then consider field data, and find that the assumption of scaling for 

! 

" r( )  

does not describe the data as well as 

! 

" br( ) =" r( ) + k lnb , for which the authors could not 

construct a simple scaling form leaving the argument of 

! 

F  invariant. Further, they report 

their derived scaling form was not observed to hold in application to the field data, which 

challenges the premise that the clustering of species’ individuals allows the separability 

of  contributions 

! 

F
s from each species 

! 

s to 

! 

S. 



 

It is clear that the issue of scaling in species number with area demonstrates some 

complex features, where the challenges begin at the level of formulation. It is worth 

exploring the issues involved with construction of a scaling form for 

! 

F , as well as the 

assumptions upon which the derivation was constructed.  Particularly, there are the 

questions of segregation (“The importance of clustering,”) and the question of weak 

scaling at smaller scales, vs. the stronger scaling observed at larger scales.  This paper 

explores the issues involved with construction of a consistent scaling form for the 

proximity function, as well as a possible mechanism for the crossover from micro-

ecosystem scales to the scaling observed when crossing biome boundaries.  



 

Analysis 

 

It is possible to explore a functional form 
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" r( ) =" 1( ) + k ln r  form (which may be obtained from the 

scaling form 
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b =1/r ).  The proposed ansatzen for the 

scaling of the proximity function are extremely restrictive.  It is possible to construct 

scaling forms that are far more general. [6][7] 

 

If species clustered, this form might explain such a scaling behavior.  Indeed, even if such 

clustering, or segregation between species’ territories is not observed, this may be 

important in understanding human culturally enforced geographic variations, as well as 

scaling in numbers of species in geographic isolation.  However, there is a significant 



literature that seeks to explain [8-13] species enrichment where numbers of species are 

observed with overlapping ranges within any particular biome that has been observed 

among a wide variety of biomes [14-19].  The whole field of species interactions and 

modeling, with its long history, seeks to describe and explain the interactions between 

species that occupy the same ecological zones.[20-22] 

 

On the other hand, the gross features of the scaling behavior may simply be due to 

considerations of sampling.  Those features in question are as follows.  The range of 

exponents 
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z  in the species-area relationship 
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z has been reported to vary from nearly 

zero for microbes in controlled experiments, through ranges of 0.1-0.4 over smaller 

scales, among birds and plants, and on islands, with significantly larger values up to 

nearly 1 over intercontinental, or inter-biome, scales. [23-24]   Within a biome, the 

species occupation is fairly uniform, with only minor regional variations. This leads to 

the observation that there appears to be two regimes of scaling: weak scaling (or simply 

weak dependence), observed over shorter scales, and strong scaling observed at larger 

inter-biome scales.  

 

Consider the standard Poisson process is modified to exclude “replacement” in the 

sampling of species.  In this case, the sampling of an area 
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N  is very large, this reduces to the standard Poisson distribution results.  The expected 

scaling “exponent” is then 
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This shows two regimes.  When 

! 

a << NA , the standard Poisson distribution results apply, 

and 

! 

z "1.  When 

! 

a >> NA , the total number of species are expected to have been found, 

and 

! 

z " 0.  The transition is displayed in figure 1.  

 



An extension to uneven proportions 
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In the case of nearly equal 

! 

"
i
’s, saturation occurs when 

! 

a " NA , roughly the scale needed 

to detect 

! 

N  individual animals, which  can happen in a fairly small area compared to the 

size of a biome.  The transition is fairly rapid from a large 

! 

z  down to a very weak 



dependence. Even so, as is seen in figure 1, this transition can require more than a decade 

to occur.  The scale over which 

! 

z  stays in a range of 0.2 or 0.3 is much smaller, however.  

 

The effect of including a range of 

! 

"
i
’s that spans several decades does increase the 

region of cross-over, and can produce a region of nearly constant  scaling exponents

! 

z  

spanning  several decades (Figure 2).  Once the sampling has become saturated, it will 

continue to be saturated until the length scale starts to sample biomes, at which time, the 

numbers of species being accumulated scales as the number of biomes, and the sampling 

is back to the 

! 

a << NA  regime. 

 



 

Conclusions 

 

Given the ubiquity of power-law scaling behavior in biological systems demands 

consideration of the possibility of such scaling behavior in the species-area relationship.  

This type of question is more than significant given the current interest in quantifying 

biodiversity and its importance for ecosystem stability.  Yet it has been challenging to 

identify which features are most important in characterizing scaling in the SAR.  [3][26-

28]  It is possible that several of those features identified in the literature play a role. 

 

One such model [3] proposes a particular character of species clustering to explain how 

such scaling arises simply from geometric considerations.  We have shown that the 

scaling issues detailed in the supplementary material are overly restrictive in form to 

accommodate observed variations, and that a simple repair is not possible given the 

proposed scaling form.  More general scaling forms might produce consistent results.  

More to the point, the question of clustering and segregation in scale sizes smaller than a 

biome (this could be taken as a definition of biome) runs counter to a significant volume 

of literature.  Yet, it is the nature of biomes that species segregation by biome is 

expected, and scaling as described by species clustering could apply there.  There are also 

domains where such clustering could lead to scaling behavior, such as the geographical 

distribution of human cultures segregating by language and custom.   

 

The sampling models described above are oversimplified.  Yet, we have shown that a 

range of species densities that spans several decades can produce some regimes where 

approximate scaling behavior is expected.  Scaling may also emerge in the relationship of 

the scaling [25-26] of micro- and meso-zone to the species they contain, as well as the 

various ways the species interact with each other [27-29] within their zones.  The 

problem of empirically establishing scaling behavior is made more complicated by the 

presence of weak relationships at smaller length scales.  Exponents of 0.2 or 0.3 require 

at least 4 decades in scale of the independent variable to see scaling of one decade in 



scale of the dependent variable.  Scaling should be established over several decades of 

scale.  Confounding contributions, such as logarithmic additions, may contribute to a 

false or apparent exponent. However, simple sampling of random mixed-species 

populations with densities spanning several orders of magnitude can also account for 

such scaling.  All of these factors have been observed in the wild, and any of them may 

contribute to scaling behavior. 

 

The issue of more homogenous mixing of species’ ranges does suggest a sampling model 

that could explain some of the changes in the strength of scaling that was observed.  The 

models presented here are based on several simplifying assumptions, yet it demonstrate 

crossover from a strong scaling regime to a weak dependence regime as the number of 

species detected within a habitat type saturates over almost all scales within that biome, 

yet will return to stronger scaling dependence as the length scale sampled starts to 

incorporate multiple biomes.  Moreover, when a range of species abundances was 

included that spans multiple decades of scale, an effective scaling of the number of 

species with area was produced.  While the details of such crossover behavior and the 

geographical distribution of each species may be required to make detailed predictions of 

the behavior in the transition scaling region, the model is sufficient to demonstrate the 

character of such a transition, produces scaling behavior in the observed numbers of 

species with area scaling, and explains the transition from weak scaling within regional 

habitats to strong scaling as habitat type boundaries are crossed, one of the more 

significant features previously observed in the field. [23,24] 
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Figure 1.  The crossover behavior of the scaling exponent
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Figure 2.  Crossover with a distribution of species’ member densities 
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