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Abstract -- “Tail-Splitting” is a new technique to identify
defect prone modules by enhancing the focus of the Pareto
distribution by a development process factor. The simple
yet powerful influence of a varying tail membership as a
function of development process phases is captured by the
tail-split-string which tags each module. The case studies
on an operating systems product demonstrate that the tail-
split-string identifies a small set of modules with a high
probability of field failure. The tail-boundary in the algo-
rithm provides for a natural tuning parameter to control
the size of the identified set to suit the resources available
for rework. Release managers have found that the method
is particularly useful to sift modules, with low false posi-
tive, for late stage rework.

1.  Introduction

Managing a software release is a complicated task. With
legacy products there is always the concern about the inher-
ent defect rate of the base code. These defect rates need to
be managed and reduced as products gain market share and
customers become more demanding of a product's quality.
This leads to a regular amount of rework, in the back-
ground, to identify latent defects and remove them from
future releases. The benefits are not merely to the customer
but also to the developer since it reduces the overall cost of
test and development, which grows non-linearly with size
and complexity.  At a gross level there exists knowledge in
an organization based on historical data and experience.
However we need module identification at a finer level of
granularity to drive specific test and development activities
with resources attached to them. 

The problem of identifying faulty modules has been well
studied. References [1-12] provide a sample of this large
body of work. The different approaches  vary in terms of
input factors, analyses techniques and outputs predicted.
Consequently they require various degrees of tracking and
historical data. Analysis techniques include: classification
trees [1], module ordering models [2], discriminant analy-
sis [3,4], regression models [5], Dempster-Shafer belief
networks [6], random forests [7], complexity analysis [8],
neural networks [9], etc. A recent study [10] even consid-
ered the number of defects discovered by static analysis as
a predictor of fault prone modules. In addition to  the work
based on code/product based metrics some studies [11-14]
have also considered software process related metrics in
predicting fault prone modules. Some process metrics are:
development activity, designer experience in the module
[11], number of defects found by process phases (e.g. func-

tion test, system test, integration test, etc.) [12,13], and the
number of defects from prior releases [14].  Clearly, there
is no one simple answer to this problem. The applicability
of a particular approach depends largely on the nature and
volume of data available and the investment  to achieve the
desired improvement.

The Pareto principle [15] (also called the 80/20 rule) is
widely used to focus quality improvement. When applied
to software defect densities, it translates to 20% of the
modules containing 80% of the defects. A belief behind
such an approach  is that  modules with most faults are fault
prone due to some intrinsic reasons. These reasons could be
complexity, legacy, skill, etc., thus necessitating further
scrutiny and rework. Biyani and Santhanam [14] analyzed
defect data from four releases of a large mature application
product with thousands of modules and showed that that
higher number of pre-release defects in modules during
development did predict higher number of defects in the
field usage, supporting the above assumption.  However,
the results from Fenton and Ohlsson [13] based on a study
of the subset of a few hundred modules from two releases
of a large telecommunication system software were in con-
flict with the results from [14].  The value of empirical
studies is that they provide us perspectives on the nature of
software engineering. The answers to the underlying nature
of product defects  may lie in understanding whether test-
ing and customer usage are approaching the limit of the
finiteness of defects in software. However, in large com-
plex software products with on-going development work, it
is unlikely that we approach this limit.  

This paper describes a method called ‘Tail Splitting’ to
focus the application of the Pareto analysis in identifying
fault-prone modules.  The key idea is to include informa-
tion about the effect of the pre-release test phases in expos-
ing the defects across the development cycle. This
approach gives a finer control in managing the number of
the defect prone modules identified to a few that are most
likely to fail in the field.  We report two case studies: the
first uses field defect data to validate the fault-prone mod-
ule selection and the second that supplements the field vali-
dation with explicit comments on the modules from the
development team.

2.  Data

Our approach to this problem has been motivated by the
specific needs of the release manager in an operating sys-
tem product with a large and robust code base with a
mature development process. As markets evolves and new
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features are added the demand for higher product quality
accelerates. The release we studied had a base of several
tens of million lines of code and  half a million lines of new
and changed code. The release manager wanted to identify
a small number of modules with a high probability of field
failure. The practical limitations were that input data
should be readily available and the analysis be simple and
straightforward. This would then increases the chances that
managers could relate to the data and commit scarce
resources to take action.  

In this work, a ‘module’ refers to the basic program unit
which is tracked and typically ranges in size up to a few
thousand lines of code. This product contained more than
thirteen thousand modules.  A ‘defect’ refers to a specific
unique programming fault exposed by testing or customer
usage. The pre-release testing activities exposed 5544
unique defects  across all the four severities (1 through 4, 1
being the highest) touching 3732 modules.  Thus, there
were a large number of modules with no defects.   To
reduce the scope of analysis to a manageable size, the
development team wanted to focus on defects with severi-
ties 1 and 2. This step reduced the scope of the analysis to
2791 defects in 1565 modules.  Figure 1 shows the Pareto
distribution of modules vs. the number of defects, along
with the cumulative distribution. Focusing on modules
with more than 3 defects, yields 276 modules (17.6%) con-
tributing to 1229 defects (44%). If we consider modules
with more than 4 defects, 145 modules (9.3%) contained
836 defects (33%) - all these amount to numbers of mod-
ules, well beyond the resources the release manager could
allocate for late stage rework.

The release manager wanted a range of 20-60 modules
that have a high chance of failing in the field. A larger set
with higher false positives would be of little value since it’s
resource intensive. The method should factor recent data
and have a tuning parameter to control the size of the indi-
cated set. If the method was verified to yield low false pos-
itives, then the modules could be the subject of rework
competing for scarce resources from the mostly stretched
and skeptical development managers. 

3.  Tail-Splitting Algorithm

3.1  Process Influence

In a mature organization with decades of experience in
developing release after release, people tend to anticipate
the amount of defect removal efforts based on release con-
tent and experiences from prior releases.  The development
process and the testing methods have a significant influ-
ence on whether defect prone modules get the adequate
coverage. As we progress through different phases of
defect removal activities such as inspection, unit testing,
function testing, and system testing, each exercises the
code in different ways.  The ability of a module to pass
without defects through one or more of these phases is an
indication of its robustness. On the other hand when mod-
ules tend to break in more than one of these phases, it is an
indication of the fragility in the modules. This thought, we
have found, agrees with instinct of many development
managers and is a motivating factor in developing this
algorithm and the quantification of this measure. The tail
splitting algorithm incorporates the notion that succes-
sively defective modules across phases are more prone to
fail in the field than others. Our case studies corroborate
this observation and validate the value of the algorithm.
Since the data for this identification comes from the current
release the calculations are done in-process and not retro-
spectively. Such an in-phase calculation automatically fac-
tors in the influence of any recent best practices or process
changes incorporated in the release.

3.2  Tail-Boundary

In Figure 2, we show the defect density distributions cor-
responding to a particular phase of the project, say, Func-
tion Test. We first pick a tail-boundary, which partitions
modules into two groups. Those with defect density greater
than or equal the tail boundary, and those less than the tail
boundary. One choice for the definition of the tail-bound-
ary is the mean number ( ) of defects, in that phase. If the
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Figure 1: Pareto distribution of 2971 Severity 1 and 2
defects in 1565 modules. Left axis is the count of modules
and right axis the percentage.

Figure 2: For each phase of testing, the tail boundary parti-
tions the disribution. Modules in the tail get the label ‘1’ and
others get ‘0’.

Tail boundary

Label=0 Label=1

0

2 5 0

5 0 0

7 5 0

1 0 0 0

1 2 5 0

Y

0 1 2 3 4 5 7

N o . o f D e fe cts

No. 
Modules

μ



number of modules identified by the analysis is too large to
allocate actions satisfactorily, then we could choose the
tail-boundary at , where  is the standard deviation.

3.3  Tail-Split-String

Each module is tagged by a tail-split-string that captures
how the module traversed through the development phases
in terms of its position in the defect density distribution.
The length of the string is equal to the number of phases
that are used for this analysis. The tail-split string captures
the influence of the process on the Pareto at each of the
phases. The following description communicates the algo-
rithm and its implications.  Let us consider a development
process that could be partitioned into three distinct phases,
A, B and C. These phases are typically test or verification
phases, but could as well be design and development so
long as there are distinct phases that identify defects and
tag them against modules.  Figure 2 illustrates fault density
distribution for one such phase where a given module may
or may not belong to the tail and accordingly receive a
label of either a 1 or a 0 respectively. 

As the development process progresses from phase A to
phase B, there are changes in the faults that are identified
yielding a different fault density distribution. Statistically
these distributions might look similar; but the parts that
contribute to making up of that distribution could be very
different.  A module may belong to the tail in phase A,  but
may not belong to the tail in phase B, thereby the label it
acquires through the second fault distribution could be dif-
ferent from the one that it had during phase A.  Thus, by
generating a sequence of these fault density distributions
we would be bringing into effect the factors of the develop-
ment process that influence the fault density distributions.
Each module that goes through the development process
would result in a label of 0’s and l’s that reflect whether it
belonged to the tail or not.  This sequence of 0’s and l’s that
label a module is called the tail-split string reflecting the
dynamics of the software development process. For a three
phase process, there are 8 three-bit strings possible and
each module will acquire one of the eight strings as a result
of the analysis of its membership in the tail. 

Let us examine the tail-split-strings with leading 0s fol-

lowed by trailing 1s. They reflect modules that were not
considered very defective early, but that changed later in
the development process, and there is less guarantee that
they will not fail in the field, especially when there is more
than one consecutive trailing 1. Modules with tail-split-
strings such as: (000), (100), (010) and (110) are more
likely to be considered satisfactory while modules with
tail-split-strings (111), (001), (011) and (101) will be con-
sidered risky. Among the risky modules the tail-split-string
of (111) represents the most consistent behavior and hence
a top priority. On the other hand, when there is a suspicion
that a certain phase did not have adequate testing, then
those modules with the tail-split-string of trailing 0s with
leading 1s may represent inadequate test. For instance
(110) could represent inadequate system test.   

3.4  Fine Tuning 

3.4.1 Tuning: Number of Phases

The number of phases that can be used with this algo-
rithm is flexible. At the same time the definition of what
makes up a phase is flexible. A practical application usu-
ally makes these choices based on what is meaningful to
the development process. Often there are many sub-phases
in a development process, which can be collapsed to a set
of larger phases. We have found that practitioners would
run the Tail-Splitting algorithm with multiple choices of
phases to see what difference occurs in the outcome. For
our case studies, we grouped the various sub-phases of
development into three broad phases termed pre-function
test, function test and post-function test. This choice was
motivated by the amount of data in these phases which
helped tie these conclusions to specific activities in the
development organization. This usually provides for better
understanding of the data, and communication on the
impact of the results. 

At the same time, it is not necessary that this analysis be
restricted to the phases of a development process or a
release. The three phases could very well be three different
releases of the same product. In which case, we would ana-
lyze the change in membership of what constitutes faulty
parts across releases.
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Figure 3: The distribution of modules by number of defects for the three phases: Pre-Function test, Function test
and Post-Function test. N, is the number of modules and the arrow points to the tail boundary at 1 defect/module.
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3.4.2 Tuning: Tail Boundary

Another tuning parameter to obtain fewer numbers of
modules is the tail boundary.  Moving the boundary to a
larger value will  reduce the number of modules chosen for
consideration. In this paper, the two case studies illustrate
the different choices of tail boundary.

4.  Case Studies

The two case studies discussed below involve the same
set of data across three phases during development, defined
as pre-function test, function test, and post-function test.
The development process has several sub phases which
were collapsed into these three phases, which are meaning-
ful to the development team. Function test is mostly black
box testing. Pre-function test can be unit testing and some
inspection as well, whereas, post function test tends to have
far greater integration testing, systems testing, performance
testing, etc. As discussed in the earlier section, Tail-Split-
ting lends itself to any number of sequential phases that can
be deemed meaningful to a process. It also does not have to
be a waterfall process - any process, but with defined

phases with changes in activities will suffice. 
First case study used 1 defect/module in each phase as

the tail boundary, while the second case study used  2
defect/module as the tail boundary. We evaluated the per-
formance of the tail splitting algorithm against the field
data which recorded the actual incidence of failed modules.
The field data was tracked for 30 months. In the second
case study, we also include the comments on the selected
modules by the development team.

4.1  First Case Study

Figures 3a-3c show the defect density distribution for
three phases.  For Pre-Function test, ,  ,
for-Function test, , , for post-Function
test, , .  Looking at the mean defect den-
sity per module, it is already clear that the different test
activities are not equally effective in exposing defects in
the modules. Table 1 shows the results of the analysis with
1 defect/module as the tail boundary.   There are 19 mod-
ules that get the tail-split-string (111) and represent the
modules that consistently fail across the test phases. The

μ 0.63= σ 0.90=
μ 0.71= σ 1.17=

μ 0.39= σ 0.65=

D N R (001) (100) (010) (101) (110) (011) (111)

1 1016 1565 377 275 364 0 0 0 0

2 273 549 11 60 43 67 55 37 0

3 131 276 2 12 21 13 62 17 4

4 54 145 0 3 7 2 35 4 3

5 33 91 0 0 3 0 26 2 2

6 28 58 1 0 1 0 19 3 4

78 6 30 0 0 0 0 6 0 0

8 8 24 0 0 0 0 6 0 2

9 1 16 0 0 0 0 1 0 0

10 6 15 0 0 0 0 4 0 2

11 5 9 0 0 0 0 5 0 0

12 3 4 0 0 0 0 1 0 2

21 1 1 0 0 0 0 0 1 0

Total 1565 391 350 439 82 220 64 19

Table 2. 

D: Defects/Module
N: No. of Modules
R: Reverse Cumulative 
Count

The table shows the
composition of the Pareto
distribution versus the tail-
split-string populations.
Column R has the reverse
cumulative count of mod-
ules in the tail, starting
from row D=21. This is
useful to compare Tail-
Splitting with the Pareto, by
picking a small number of
modules and studying how
the two would make differ-
ent choices. 

Table 1. The first row are the eight tail-split-strings representing the three phase process. The second row contains the 
numbers of modules matching the strings. The third row is the perentage of modules that failed in the field after six months 
and fourth row after 30 months.

Tail-Split-String (000) (001) (100) (010) (101) (110) (011) (111)

Number of Modules 0 391 350 439 82 220 64 19

% of modules failing after 6 months 8 15 28 10 50 42 63

% of modules failing after 30 months 13 22 35 10 58 52 74



field data 6 months after product release shows that 63% of
those modules failed and the percentage increases to 74%
after 30 months of customer usage. (110) and (011) are next
in the priority list. In addition, note the  marginal increase
in the failure probability between 6 months in the field and
30 months for all the tail-split-strings.

4.1.1 Comparing Tail-Splitting with the Pareto

These data also allow us to compare the performance of
Tail-Splitting with the classical Pareto approach. Table 2
shows the distribution of defects in modules grouped by the
tail-split-strings. If we were to pick most fault prone mod-
ules, based on the simple Pareto Distribution (represented
in the first two columns) we will start with the one module
with 21 defects, then 3 modules with 12 defects, then 5
modules with 11 defects, etc., in that order. In contrast,
using the Tail-Splitting method, we will select the 19 mod-
ules with the string (111) in the last column which com-
prises  4 modules with 3 defects, 3 modules with 4 defects,
2 modules with 5 defects, etc. Interestingly, we will not be
selecting the module with 21 defects as the highest priority
since it has the less  risky (011) string.  This illustrates the
fact that the population of modules selected can be quite
different based on the two methods.  The probability of
failure being the highest for the (111) modules, the same
number of modules selected by the simple pareto will have
less probability of failure in the field. 

Another perspective that illustrates the differential bene-
fit of Tail-Splitting over the Pareto is illustrated when chos-
ing a fixed number of error prone modules. Picking the top
30 modules (using the reverse cumulative count column in
Table 2) would result in different choices. Tail-Splitting
would pick several more modules from tail-split-strings of
(111) and (011) which have a high probability of field fail-
ure. The Pareto selection gets over populated by modules
with the tail-split-string of (110).  

4.2  Second Case Study

This study used a tail-boundary of 2 and Table 3 shows
the distribution of the modules by the tail-split-string and
the percentage of modules that failed after six months of
customer usage.  It is quite fascinating that the modules
with multiple consecutive 1’s failed with a higher likeli-
hood. Do note that while the number of modules with mul-
tiple 1s is lower it is still interesting since we are after
finding fewer modules to rework, but want to find those

with a higher chance of failing in the field. The fact that a
change in the tail boundary yielded results very similar to
the first case study reinforces our understanding that the
tail boundary can be used as a tuning parameter. The
choice of tail boundary determines the number of modules
that will be flagged as more error prone, and the tail-split-
string sequence helps associate a probability of field fail-
ure. This is particularly useful to a release manager, who
could use this to sift the modules towards the end of the
release and choose the range of modules they have resource
to focus on.

4.2.1 Developer Review

We had the development team review some of the mod-
ules that were identified by the tail-split-string, to associate
a technical and qualitative understanding of the types of
modules that were indicated. From failure data and the dis-
cussion in section 2, it is evident that tail-split-strings that
have consecutive 1s, especially towards the right of the
string are more likely to fail. It is interesting to note the
comments made by developers on some of these modules.
Table 4 gives some of these insights against the tail-split-
string pattern. 

Table 3. Analysis results for the second case study, with tail boundary at 2 defects/module. The first row are the eight tail-
split-strings, the second row the numbers of modules identified by the tail-split-strings, and the third row the percentage of 
modules that failed after six months in the field. 

Tail-Split-String (000) (001) (100) (010) (101) (110) (011) (111)

Number of Modules 1270 24 156 62 2 45 5 1

% of modules failing after 6 months 19 25 35 45 50 64 80 100

Table 4: Sample comments by the development team

Tail
Split

String
Samples of developer’s insights

111 “Critical timing module rewritten this release”

011 “Complex module, abbreviated development”

011 “Serializaiton problems surface under stress”

011 “Needed a formal design change review”

101 “Very complicated code - will remain problem-
atic unless redesigned”

001 “Old module, only one person understands this”

001 “Old module - steady stream of field failure”

001 “Many individual changes - needs redesign”

110 “Inadequate testing”



5.  Summary

This paper presents a technique that can enhance the
notion of the Pareto principle by factoring in the process
influence of development. The technique called Tail-Split-
ting studies the change in the makeup of the tail of the dis-
tribution as the product advances through development and
test. These changes factor in the influence of test and
development practices on the defect density. The Tail-
Splitting algorithm divides the tail membership as a func-
tion of the process - represented by a string of 0s and 1s.
The strings with trailing consecutive 1s identify groups of
modules that are far more likely to fail in the field. 

Application of the Tail-Splitting algorithm in two case
studies using real data from an operating system product
helps us to understand and compare the performance of this
algorithm against the classic Pareto analysis by observing
the performance of these predictors for 30 months of field
customer use.   While the classical Pareto spots potentially
defect prone modules, Tail-Splitting provides the addi-
tional parameters and algorithms that identify the few mod-
ules that have a higher risk of failing in the field. A side by
side comparison of real data reveals the differential advan-
tage of Tail Splitting. The product development team also
performed a more detailed assessment of the modules iden-
tified by Tail-Splitting method to provide a qualitative
understanding of  the nature of problems in those modules
and their comments support the selection of the modules as
defect prone.  Overall, Tail-Splitting algorithm provides a
simple, intuitive, flexible approach to identify fault prone
modules in a large complex software system.
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