
RC24048 (W0609-014) September 7, 2006
Computer Science

IBM Research Report

Predicting Labor Cost through IT Management
Complexity Metrics

Yixin Diao, Alexander Keller, Sujay Parekh
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Vladislav V. Marinov
Department of Computer Science
International University Bremen

Campus Ring 1
28759 Bremen

Germany

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Predicting Labor Cost through IT Management
Complexity Metrics

Yixin Diao, Alexander Keller, Sujay Parekh
IBM Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598, USA

Email: {diao|alexk|sujay}@us.ibm.com

Vladislav V. Marinov
Department of Computer Science
International University Bremen

Campus Ring 1, 28759 Bremen, Germany
Email: v.marinov@iu-bremen.de

Abstract— We propose a model for relating IT management
complexity metrics to key business-level performance metrics
like time and labor cost. In particular, we address the problem of
quantifying and predicting the value that automation and IT ser-
vice management process transformation will yield before their
actual deployment. Our approach looks at this problem from a
different, new perspective by regarding complexity as a surrogate
for potential labor cost and human-error-induced problems: It
consists in (1) assessing and evaluating the complexity of IT
management processes and procedures, (2) separately measuring
business-level performance metrics (3) relating the collected
complexity metrics to business-level performance metrics by
means of a quantitative model, and (4) validating the model
through a field study. Algorithms are presented for selecting a
subset of the complexity metrics to use as explanatory variables
in a quantitative model and for constructing the quantitative
model itself. Besides improving decision making for deploying au-
tomation technologies and transforming IT service management
processes, our quantitative IT management complexity model
can help service providers and outsourcers predict the amount
of human effort and skills that will be needed to provide a given
service, thus allowing them to more effectively evaluate costs and
benefits of automation technologies and IT management process
transformations.

I. INTRODUCTION

One of the key promises of IT to business is to deliver
greater efficiencies through faster processing, labor savings
and by enabling novel capabilities. In particular, IT depart-
ments of enterprises and service providers are increasingly
looking to automation and IT process transformation as a
means of containing and even reducing the labor costs of
IT service management. However, there is much anecdotal
evidence as well of a reduction in efficiencies and productivity
when new technology or transformed processes are introduced
into business operations. This raises a critical question from
the point of view of both the business owners and CIOs
as well as service and technology providers: how can one
quantify, measure and (ultimately) predict whether and how
the introduction of a given technology can deliver promised
efficiencies?

The two most popular strategies that aim at reducing labor
cost in IT service management – the factor dominating total
cost of ownership – are (1) the deployment of automation
to reduce human involvement, and (2) the transformation of
IT service management processes so that they comply with

standardized frameworks, such as the IT Infrastructure Library
(ITIL) [1], or the enhanced Telecom Operations Map (eTOM)
by the TeleManagement Forum. Both strategies have in com-
mon that they focus on the creation of standardized, reusable
components that replace today’s custom-built solutions and
processes — the former at a system level, the latter at a process
level. While both service providers and IT management soft-
ware vendors heavily rely on such qualitative statements to
justify investment in new technologies, a qualitative analysis
does not provide direct guidance in terms of quantitative
business-level performance metrics, such as labor cost, time,
productivity and quality.

In previous work [2], we have introduced a framework for
measuring IT system management complexity, which has been
subsequently extended to address the specifics of IT service
management processes [3]. The framework relies on cate-
gorical classification of individual complexities. For example,
for characterizing the execution complexity of an individual
task, three categories are defined based on the degree of
automation: automatic, tool-assisted and manual. A complexity
score derived from such categorization does not directly reveal
the actual labor reduction or cost savings.

In order to address this issue, this paper describes an ap-
proach to relate the metrics of our IT management complexity
framework to key business-level performance metrics. Our
proposal is to develop a quantitative model based on a qual-
itative description of IT complexity parameters together with
quantitative calibration data of the IT process. We believe such
a hybrid approach is more practical than a pure qualitative or
quantitative approach, since extensive quantitative IT process
measurements are notoriously difficult to obtain in the field.

Such a model has many benefits: First, the model can be
used to assist in return-on-investment (ROI) determination,
either a-priori or post-facto. Across multiple products (for
example, IT offerings from different providers), a customer
can use models involving each product for a comparison in
terms of the impact on the bottom line. Conversely, IT sales
personnel can make a substantiated, quantitative argument
during a bidding process for a contract.

Second, using the cost prediction based on the model, the
customer can further use the model output for budgeting
purposes.

Third, a calibrated model for a particular process can reveal
which are the important factors that contribute to the overall
complexity of the process, along with a measure of their
relative contributions. IT providers can use this data to improve
their products and offerings, focusing on areas which yield the
largest customer impact.

Fourth, a particular process can also be studied in terms of
its sensitivity to skill levels of individual roles. Because labor
cost of different skill levels varies, this sensitivity analysis can
be used for hiring and employee scheduling purposes.

Finally, process transformation involves cost/benefit analy-
sis. These decisions can be guided by the quantitative predic-
tions from the model.

As a key step towards this vision, the goal of this paper is to
address the problem of quantifying and predicting labor cost
for IT service management by means of a quantitative model
that relates IT management complexity metrics to business-
level performance metrics. It is organized as follows: Section II
overviews our model for IT management processes, discusses
its challenges and outlines our approach to address them.
Section III details our quantitative model for IT complexity
metrics and the calibration algorithms. In section IV, we
perform a quantitative complexity analysis by applying our
model to a small-scale user study. Section V reviews related
work. Our conclusions are contained in section VI.

II. QUANTITATIVE COMPLEXITY MODELING

A. IT Management Complexity Metrics

Our discussion is based on the IT management complexity
framework first described in [2] and further extended by [3].
Within the scope of this paper, we rely on a subset of the
former model whose intent is to capture and quantify the
complexity of a straight-line flow through a configuration pro-
cedure. Three different complexity dimensions – each having
several complexity metrics – were identified, which are briefly
summarized below in order to provide some background for
the following discussion: Execution Complexity refers to the
complexity involved in performing the configuration actions
that make up the configuration procedure, typically charac-
terized by the number of actions and the context switches1

between actions. Parameter Complexity is the complexity
involved in providing configuration data to the computer
system during a configuration procedure. For examples, each
parameter is assigned a source score on a linear scale from 0
– 6 based on how its value was obtained; low scores represent
easily-obtained values (such as those surfaced earlier in the
procedure) whereas high scores represent more obscure values
(such as those that must be extrapolated from the system
environment – a JVM path, for instance – or chosen based
on experience). Finally, Memory Complexity takes into account
the number of parameters that must be remembered, the length
of time they must be retained in memory, and how many

1A context switch occurs between any two consecutive configuration actions
that act upon different containers, such as the command-line interface of an
operating system or an installation wizard for a software product.

intervening items were stored in memory between uses of a
remembered parameter.

B. Challenges

While this simple complexity model permits – in addition
to capturing the complexity metrics – the direct recording of
execution times, the latter is often difficult to obtain in practice.
The complexity metrics are easier to describe/obtain in qual-
itative terms, since they do not require detailed user studies
and can sometimes even be done by interviewing a subject
matter expert. For example, in the case of parameter source
scores (see above), it is relatively easy to describe whether a
parameter is obtained from documentation or must be specified
based on environmental constraints. Such a description is
rather general and applies to many (or all) instantiations of
the process, compared to quantitative data about, say, the time
it takes to first come up with a value for the parameter, or
some other encoding of its information content. Unfortunately,
a complexity evaluation based on qualitative data alone does
not provide direct guidance in terms of quantitative business-
level performance metrics.

There are some challenges in taking this approach as many
of the complexity metrics have categorical descriptions: First,
the categories intuitively represent different degrees of infor-
mation content or difficulty in obtaining the values. However,
we need to assess whether the complexity metrics contained
in the model are actually the right ones, i.e., whether they cor-
relate with independently captured business-level performance
metrics.

Second, as a starting point, we have chosen that metric
values are expressed in a linear scale throughout the model.
For example, by assigning a freeChoice (numerical value:
0) for the parameter source score, one indicates that this
configuration parameter is clearly easier to specify than an
environmentFixed parameter (value: 5). Although one may
order these classifications according to their relative difficulty,
the exact quantification of the increase in terms of complexity
may vary. In particular, it is not clear if the linear scale for
the parameter source score is appropriate, or if a polynomial
(or even exponential) scale is more suitable.

Third, there is a need to capture the degree of expertise
and the skill set of the role that is carrying out a task. This
may impact the exact translation from qualitative value to
quantitative value.

Building a quantitative model helps in calibrating the IT
management complexity metrics by determining how each
of the individual metrics correlates with the independently
observed business-level metrics. By helping eliminate metrics
that are not relevant, the quantitative model provides guidance
on how to simplify the model while maintaining its applica-
bility.

C. A 4-Step Approach to Predicting Labor Cost

Our approach to predicting labor cost through IT manage-
ment complexity metrics is depicted in Figure 1. It consists of
four distinct steps, which can be summarized as follows:

Predicted
Business-level
Performance

Metrics

Measured
Business-level
Performance

Metrics

Calibration

Quantitative
Model

Managed System

Process

Complexity
Analysis

Representation
of Process v1

Goals

Docs

Admin

Complexity Metrics

BEFORE PROCESS
TRANSFORMATION

AFTER PROCESS
TRANSFORMATION

Representation
of Process v2

...
p1

p2

...
p1

p2

Complexity Metrics

Managed System

Process
Goals

Docs

Admin

Complexity
Analysis

...
p1

p2

...
p1

p2

Fig. 1. Approach to constructing and applying a quantitative model

1) Collecting Complexity Metrics: As depicted in the upper
part of Figure 1, an administrator configures one or more man-
aged systems, according to the goals he wants to accomplish.
To do so, he follows a process that may either be described
in authoritative documents, or as a workflow in an IT process
modeling tool.

This process (called ‘Process version 1’ in the Figure)
reflects the current (‘as-is’) state of the process, which serves
as a baseline for our measurements. While carrying out the
configuration process, an administrator logs – by interacting
with a web-based graphical user interface [3] – the various
steps, context switches, and parameters that need to be input
or produced by the process. In addition, the administrator
assesses the complexity for each of the parameters, as per-
ceived by him. The complexity data that an administrator
records by means of the web-based graphical user interface
is recorded by our tooling on a step-by-step basis. The key
concept of the process representation is that it is ‘action-
centric,’ i.e., the representation decomposes the overall process
into individual, atomic actions that represent the configurations
steps an administrator goes through.

Once the process has been carried out, the process capture is
input to the Complexity Analysis Tool we implemented, which
contains our scoring algorithms for execution, parameter, and
memory complexity. The tool also outputs aggregated com-
plexity metrics, such as the maximum number of parameters
that need to be kept in memory during the whole procedure,
the overall number of actions in the process, or the context

switches an administrator needs to perform. Both the indi-
vidual and the aggregated complexity metrics will be used to
construct the quantitative model.

We note that by assigning a complexity score to each
configuration action, it is possible to identify those actions in
the process (or combinations of actions) that have the greatest
contribution to complexity (i.e., they are complexity hotspots).
As a result, the methodology facilitates the task of process
designers to identify targets for process transformation and
optimization: If, for example, a given step has a very high
complexity relative to other steps in the process, a designer
obtains valuable guidance on which action(s) his improvement
efforts need to focus first in order to be most effective.

2) Measuring Business-level Performance Metrics: The
second step consists in measuring the business-level perfor-
mance metrics. The most common example of a business-
level metric, which we use for our analysis, is the time it
takes to complete each action in the process, and the aggre-
gated, overall process execution time. This is also commonly
referred to as the Full Time Equivalent (FTE). Labor Cost,
another key business-level performance metric, is derived in a
straightforward way by multiplying the measured FTEs with
the administrator’s billable hourly rate.

Note that while our tooling allows an administrator to record
the time while he captures the actions in a configuration
process, the time measurements are kept separately from the
complexity metrics.

3) Model Construction through Calibration: The step of
constructing a quantitative model by means of calibration,
depicted in the middle of Figure 1, is at the heart of this
paper and is explained in detail in the following section III.
Calibration relates the complexity metrics we computed in step
1 to the FTE measurements we performed in step 2. To do
so, we have adapted techniques we initially developed in [4]
(where we were able to predict the user-perceived response
time of a web-based Internet storefront by examining the
performance metrics obtained from the storefront’s database
server) to the problem domain of IT management complexity.
The purpose of calibration is to set the time it takes to execute
a configuration process in relation to the recorded complexity
metrics, i.e., the former is being explained by the latter.

4) Predict Business-level Performance Metrics: Once a
quantitative model has been built based on the ‘as-is’ state
of a process, it can be used to predict the FTEs and there-
fore the labor cost for an improved process that has been
obtained through process transformation based on analyzing
and mitigating the complexity hotspots that were identified in
step 1. This ‘to-be’ process is referred to as ‘Process version
2’ in the bottom part of the Figure as it accomplishes the
very same goal(s) as the ‘as-is’ version 1 of the process. It is
therefore possible to not only apply the quantitative model that
has been developed for the ‘as-is’ state in order to estimate
the FTEs from the complexity metrics of the ‘to-be’ state,
but also to directly compare both the complexity metrics and
the FTEs of the before/after transformation versions of the
process. The difference between the ‘as-is’ and the ‘to-be’

FTEs and, thus, labor cost yields the savings that are obtained
by process transformation.

For the scope of this paper, we use the measured FTEs
that were collected by running a similar, but slightly different
process (namely, the installation of a different product within
the same family) to validate our quantitative model that is build
by calibration. However, we envision a future scenario where
our validated quantitative model is built directly into an IT
process modeling tool, so that a process designer can simulate
the execution of an IT management process during the design
phase. The designer is then able to obtain the predicted FTEs
by running the complexity metrics that were automatically
collected from the process model – by means of a plugin –
through the quantitative model. (See [3] in which we detail
extensions of our complexity model to address the specifics
of IT process models.) It is then possible to determine if the
process transformation is likely to yield the expected savings in
terms of labor cost/FTEs, or if further optimization is needed
before the transformed process is ready for deployment.

III. A QUANTITATIVE MODEL

This section describes the method of building a quantitative
model to predict labor cost based on complexity metrics.
The model structure and usage scenarios are first discussed
in detail. Subsequently, we explain the algorithms for model
construction and exploitation.

A. Model Structure and Usage Scenarios

Many system modeling methods have been studied and
applied to solve real world problems in function approximation
and system identification (e.g., [5], [6], [7]). However, most
of them are used to model the input-output relationships of
quantitative variables (e.g., arrival rate, response time).

In this paper, we need to build the model for IT management
complexity metrics which – as mentioned in section I – have a
strong qualitative nature and are represented with categorical
descriptions. We choose to use the multiple linear regression
method [8]. This is because the linear models tend to be
more robust than nonlinear models such as neural network
models, especially when a large number of model inputs are
involved. The general form of our linear quantitative model
can be written as

y = b0 + b1x1 + b2x2 + · · ·+ bnxn (1)

where the explanatory variables xi are used to represent the
IT management complexity metrics (cf. section II-A), and the
response variable y refers to the business-level performance
metrics such as labor time. Their relationships are character-
ized through model parameters bi. When multiple business-
level performance metrics exist, different quantitative models
can be constructed, each of which has a different set of model
parameters.

The main scenario of using the quantitative model is to
predict the labor cost (or FTEs/time) for the IT manage-
ment processes. This is useful to validate the design of new
processes when the time measurements can only be collected

for the existing or related ‘as-is’ processes, but not for the
new ‘to-be’ process. Although it is always preferred to capture
and quantify how an administrator experiences the system in
terms of both labor time and complexity, having a compre-
hensive user based study is typically difficult. The quantitative
complexity model provides an alternative way to evaluate new
products or processes with respect to their values in reducing
the operational complexity.

B. Model Algorithm

The quantitative model is constructed and exploited as
follows:

1) Baseline Evaluation: The baseline (‘as-is’) process is
executed through a group of system administrators, and the
time measurements for each operational task are recorded. In
addition, the complexity of the process is evaluated through
the IT management complexity model defined in [2] and [3].

2) Quantitative Model Calibration: The quantitative model
is calibrated using the least square approach [5]. Least square
operates by minimizing the sum of the squared deviations
between the measured response data and the estimated values
from the model. That is,

min
K∑

k=1

(y(k)− ŷ(k))2 (2)

where K is the total number of measurements, y(k) is the k-th
measurement, and ŷ(k) is the k-th estimated value. Assuming
the data follows a normal distribution, least square gives an
unbiased estimation of model parameters bi.

In order to have enough data to build an accurate model,
the more explanatory variables we have, the more time
measurements we need. Since the number of available time
measurements is generally limited, we need to identify a
small set of IT complexity metrics to be used as explanatory
variables.

Moreover, having a small set of explanatory variables avoids
“overfitting” the modeling data, thereby preserving the adapt-
ability to new data. The quantitative model is built based on the
data from an existing process in order to characterize the rela-
tionship between the complexity metrics and the business-level
performance metrics. Although more explanatory variables
provides better modeling capabilities and reduces modeling
errors for this data set, this does not necessarily increase the
quality of the model. The extra variables tend to model the
“noise” instead of the true relationship; which will impair its
prediction capability for a new ‘to-be’ process. To solve this
problem, we enhance the metric selection process with a cross
validation technique [9]. It divides the available modeling data
set to several subsets, and only uses a part of them as the
training data to build the model. The remaining data sets are
used as testing data to assess the quality of the model and help
determine if we need to include more complexity metrics into
the explanatory variable set. The above process is repeated in
order to use different data subsets for training and testing, so
that all the available data can be effectively used.

We identify this set of dominant metrics using an incremen-
tal approach: It incrementally selects the best metric based on
what the current model does not explain. The steps for metric
selection are summarized as follows.

1) Initialization. Define an initial model with zero explana-
tory variables.

2) Evaluation. Given the explanatory variable set, use the
least square method to compute the model parameters
and the modeling error.

3) Cross correlation. Compute the correlation coefficients
between the modeling error and the complexity metrics
that are not in the set of explanatory variables.

4) Model increment. Add the complexity metric that gives
the largest correlation coefficient into the explanatory
variable set.

5) Test for termination. If the model quality stops improv-
ing, then metric selection is complete; otherwise, go to
Step 2.

More details on the algorithm can be found in [4]. We will
also illustrate the metric selection process in Section IV.

Identifying the dominant complexity metrics also helps
further analysis as we can focus our attention on this small
set of complexity indicators. For example, we can assess the
quality of the studied product or process by evaluating the
average and standard deviation of the dominant complexity
metrics identified above. Furthermore, we can estimate what
would be the loss if certain metrics were not available, and
what the redundant metrics are. Collecting redundant metrics
can be costly, whereas their incremental benefit is limited. On
the flip side, eliminating redundant metrics helps simplify our
IT management complexity model and thereby improves its
consumability.

3) Model Accuracy Assessment: The accuracy of the quan-
titative model constructed above is quantified through the
R-Square metric (R2) and the Root Mean Squared Error
(RMSE). The R-Square metric is defined as

R2 = 1− var(y − ŷ)
var(y)

(3)

where var(.) denotes the variance. The R2 metric quantifies
the amount of variation for a response variable that can
be explained by the model. A R2 value of 1 indicates all
the variability has been captured by the model; R2 = 0
means fitting the data into a constant where the response data
variability is not captured at all. Note that it is also possible to
get a negative R2 value if the model performs worse than just
fitting to a constant. The Root Mean Squared Error is defined
as

RMSE =

√√√√ 1
K

K∑

k=1

(y(k)− ŷ(k))2 (4)

A high quality model with a large R2 value and a small
RMSE value indicates a consistent mapping between the
complexity metrics and the labor time, that is, both of them
accurately represent the studied process. On the other hand, a

Windows 2003 Server R2 SE

VMWare Server

Windows 2003 Server
R2 SE

Virtual Machine

SuSE Linux Enterprise
Server 9

Virtual Machine

Fig. 2. System Architecture

low quality model may indicate problems in biased complexity
metrics due to improper complexity evaluation, or skewed
labor time due to an incomplete user study.

4) Model Extrapolation: The constructed quantitative
model is applied to a transformed (‘to-be’) IT management
process to predict the labor cost. As shown in Figure 1, the
model uses the complexity metrics as inputs and predicts the
business-level performance metrics for that process.

IV. EVALUATION

A. System Environment

In order to construct and validate our quantitative model
for predicting labor cost through IT management complexity
metrics we have performed a small user study to collect
time data from several IBM Tivoli product installations. The
system environment throughout the experiments consists of
six physical machines connected to the IBM internal network,
each hosting one or more virtual machines.

All physical machines were running Windows 2003 Server
R2 Standard edition as an operating system and VMware
Server 1.0.0 was used as a platform to host the virtual ma-
chines. An illustration of the system architecture used during
the experiments can be seen in Figure 2.

The Windows sysprep tool and the VMWare Console were
used to prepare Windows 2003 Server R2 Standard Edition
and SuSE Linux Enterprise Server 9 installation images. Every
participant in the user study received a virtual machine with the
required operating system image before each installation. Vir-
tualization using pre-built images ensured that all experiments
were performed in an identical operating system environment
and allowed us to compare and analyze the data collected
from the different participants. Furthermore, virtualization also
improved the time efficiency of the user study as the time
required for installation of an operating system and preparing
it for an experiment was reduced to approximately five minutes
by simply cloning a virtual machine and starting it.

B. Data Capture Methodology

Throughout the user study each participant was asked to
install five IBM Tivoli products:
• IBM Tivoli Composite Application Manager (ITCAM)
• IBM Tivoli Identity Manager (ITIM)
• IBM Tivoli Provisioning Manager (TPM)

• IBM Tivoli Monitoring (ITM)
• Configuration Discovery and Tracking (CDT) feature

for IBM Tivoli Change and Configuration Management
Database (TCCMDB)

All of the above are implemented as J2EE applications
whose setup required installation and configuration of a web
application server, database server, directory server and some
additional prerequisite software. Some of the installation im-
ages provided an automated installer that bundles the appli-
cation, its underlying middleware and any applicable fixes; in
other cases, the installations had to be performed completely
manually. The participants evaluated each installation step by
taking a screen capture and annotating the current context
as well as the configuration parameters that were produced
or consumed, according to the complexity model described
in [2]. Afterwards, the collected data were run through the
Complexity Analysis Tool which generated the complexity
metrics for each installation step as well as for the whole
process. Furthermore, every participant recorded the time spent
for each step.

For the subsequent data analysis, we only considered the
busy time, i.e., the time spent reading instructions, determining
the right actions and parameter values, entering parameters
into the install wizard, and taking notes for a specific step.
The time after a participant had completed a screen of data
capture and waited for the next data screen to be displayed
was considered idle time and discarded.

The five Tivoli products used in the field study (each product
being installed by several different participants, leading to
a total of twelve independent installs) allowed time data to
be correlated with various complexity metrics and thus a
comprehensive quantitative model to be built. For example,
the participants were asked to perform a manual installation
of ITIM in which case all prerequisite software had to be
installed separately (including manually applying fixes to the
application server). This process involved a higher number
of context switches; the corresponding time data helped us
analyze the amount of time spent on context switches. On
the other hand, the installation of TPM featured a prerequi-
site installation wizard, where a higher number of produced
parameters had to be stored in the participant’s memory and
reused later on during the installation process. By analyzing
how much time it took to retrieve data produced earlier in
the process we were able to associate memory complexity
metrics with time. Last but not least, providing input data
during the installation of TPM required an extensive study of
the product documentation and the system environment. This
led to a significant increase in the parameter complexity and
required to correlate parameter source complexity with time.

C. Data Capture Example: 2-Node ITCAM Installation

In order to illustrate our experiments, we briefly describe
what the participants were required to do for installing ITCAM
for the IBM WebSphere Application Server (WAS). ITCAM
for WAS provides problem determination, availability monitor-
ing and performance analysis for enterprise WAS applications

running on Windows, UNIX, OS/400, and z/OS environments.
It consists of one Managing Server and one Data Collector
(agent) on each of the managed resources. Each Data Collector
monitors an application server and communicates essential
operational data to the ITCAM Managing Server. The partici-
pants were asked to perform a 2-node topology installation by
installing an ITCAM Managing Server on one machine and an
ITCAM Data Collector on another machine. Furthermore, as
a clean operating system build was used as a starting point, all
prerequisite software had to be installed and configured. We
outline the major steps that the participants had to perform
in order to install the product as well as the data they had to
record.

1) Create User on the ITCAM Server: As the first step
in ITCAM Managing Server installation, an installation user
had to be created in the operating system. Following the
install manual, the participant configured the username with
a parameter source complexity of documentationDirect[2]
(the number in brackets represents the numerical value on
a linear scale that corresponds to the textual categorization).
In addition, a password was specified; since the password
could be chosen freely, its parameter source complexity was
freeChoice[1] (for further details regarding the IT complexity
model the reader is referred to [2]).

2) Install Prerequisite Software: The next step was to
install Microsoft Windows Services for UNIX (SFU). Invoking
the SFU installer caused a context switch from the operating
system to the SFU installer. The participants had to select cus-
tom installation from the set of possible choices as described
in the installation guide and thus supplying another parameter
that has source complexity of documentationDirect[2]. In
addition, a selection of the SFU packages to be installed had to
be made. This was considered as another parameter that had
to be retrieved from the product documentation. At the end
of the SFU installation the system PATH variable had to be
updated by adding adding the locations of the SFU executa-
bles. This step required providing two environmentally fixed
parameters of source complexity environmentFixed[5]. After
the installation of SFU the system mode had to be changed
through a shell command, thus performing a context switch to
the operating system and providing a documentationDirect[2]
parameter, specified in the installation guide.

3) Start ITCAM Installation Wizard: The ITCAM wizard
had to be started, an activity which involved another context
switch from the operating system to the ITCAM install wizard.
The installation user and password had to be specified; these
two parameters were produced earlier in the process and
thus considered internal[0]. Then, the user was asked by the
installation wizard to specify both the WAS installation image
location as well as the WAS Fixpack image location. The
image directories were at a specific location within the file
system of the machine. Thus, this step involved providing
two parameters that were environmentFixed[5]. The WAS
installation and the application of the fixpack were carried out
by the wizard without further user involvement. In the next
step, another parameter of the same type had to be provided as

0

5

10

15

20

25

30

35

40

45

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Action #

Execution Parameter Memory

Fig. 3. Per-action complexity metrics from ITCAM install.

the location of the DB2 installation image had to be specified.
Then, the WAS server had to be restarted by the user by
means of two activities that involved a context switch from
the ITCAM installer to the operating system. No additional
parameters were required from the user.

4) Install WebSphere Application Server on the Managed
System: After completing the installation of the ITCAM Man-
aging Server on one system, the participants had to perform
a context switch to a second machine to install the Data
Collector. This was started by installing an instance of the
WAS server which mainly involved accepting a set of default
settings. In addition, a context switch was invovled from the
operating system to the WAS installation wizard.

5) Install ITCAM Data Collector on the Managed System:
After completing WAS install, the participants need to switch
to the context of the ITCAM Data Collector installation wiz-
ard. Apart from accepting default settings, they were required
by the wizard to provide both the hostname and the home
directory of the previously installed ITCAM Managing Server.
Thus, two environmentally fixed parameters were supplied —
the hostname being part of the DNS and the home directory
being part of the filesystem.

D. Evaluation Results

In this section we demonstrate and evaluate our quantita-
tive model for predicting labor cost through IT management
complexity metrics. To illustrate the operation of the model,
we start with two field study experiments; both of them were
conducted by the same participant. The data from installing
ITCAM were first used to calibrate the model. Afterwards, the
model was extrapolated to predict the installation time for a
different product – ITM. The model accuracy was validated
against the actual time measurement. Finally, we apply the
model to all the installation data that we have, and discuss the
insights from these results.

1) Model Calibration: To calibrate the model, we need both
the complexity metrics and time measurements. According

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

Action #

T
im

e
(m

in
)

Actual
Predicted

Fig. 4. Model calibration with data from ITCAM install.

to the complexity model defined in [2], we consider a total
of ten complexity metrics which include two execution com-
plexity metrics (Base Execution Complexity, Context Switch
Distance), four parameter complexity metrics (Base Parameter
Complexity, Parameter Source Complexity, Parameter Source
Context Distance, Parameter Adaptation Indicator), and four
memory complexity metrics (Memory Size, Memory Addi-
tions, Memory Latency, Memory Depth).

Figure 3 provides a per-action view for all 51 actions
involved in the ITCAM installation. The x axis indicates the
actions, and the y axis indicates the metric values. Although all
ten complexity metrics can be plotted separately, we aggregate
them into three high-level views that correspond to execution
complexity, parameter complexity, and memory complexity
(the three complexity dimensions defined in [2]).

Besides the complexity metrics, we also collected the per-
action time measurements. They are shown as the solid line in
Figure 4, where the x axis indicates the actions and the y axis
indicates the labor time. Based on the complexity metrics and
the time measurements, a quantitative model was constructed
using the least squares approach. The predicted time is shown
as the dashed line in Figure 4, which indicates a close fit
between the measured data and the predicted values. The R2

error is 0.61, which means the model can explain 61% of
the variability in the time data. The root mean square error is
0.37; that is, the average difference between the measured and
predicted time is 0.37 minutes.

Furthermore, we perform metric selection to determine the
dominant complexity metrics. We start from an initial model
and perform cross correlation between the ten complexity
metrics and the modeling error (that is, the measured labor
time, since the initial model with zero explanatory variables
could not give any useful prediction). Figure 5 shows the
absolute values of the correlation coefficients. The fourth
complexity metric (i.e., Parameter Source Complexity) shows
the highest value (0.68) and will be added into the explanatory
variable set to build the model. The relatively large correlation

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Complexity metrics

|C
or

re
la

tio
n

co
ef

fic
ie

nt
|

Fig. 5. Correlation analysis with data from ITCAM install.

coefficient values also indicate a strong linear correlation
between the complexity metrics and the labor time, so that
building a linear model for labor time prediction is feasible.

Following the above metric selection process, the impor-
tance of each complexity metric can be determined and
ordered as shown in Table I. Note that the metrics are
ordered according to their contribution to the model, and thus
follow a different sequence as the correlation coefficients in
Figure 5. Although the metric with the highest correlation
coefficient is the one that contributes the most to the model,
the metric with the second highest correlation coefficient may
not contribute much because it can be correlated to the first
so that its contribution is discounted. This is the case for the
third metric (Base Parameter Complexity) in Figure 5. Even
if its correlation coefficient is second to that for the fourth
metric (Parameter Source Complexity), its contribution to the
model is not the second because Base Parameter Complexity
is strongly correlated to Parameter Source Complexity.

Table I also gives the R2 error for the model with increasing
number of complexity metrics; it indicates that the quality
of the model mainly is affected by the first few metrics.
The last column of Table I gives the modeling parameters in
Equation (1). The magnitude of the modeling parameter does
not indicate its importance since the magnitude of the metric
can be drastically different. In addition, the negative values
of the modeling parameters indicate “overfitting” where the
metrics are used to best fit into the data but do not improve
the relationship characterization.

We use the cross validation technique to determine the
right number of complexity metrics to be included in the
explanatory variable set. Figure 6 displays how the root mean
square error changes with respect to the number of complexity
metrics used. The x axis indicates the complexity metrics
in the same order as that in Table I, whereas the y axis
indicates the modeling error. We separate the 51 actions from
the ITCAM installation into two data sets, and iteratively
use one for training and the other for testing. The top plot
displays the modeling error during the training phase. The two
dashed lines indicate the training errors for the two iterations;
the solid line represents the average. Note that having more

TABLE I
COMPLEXITY METRICS ORDERED ACCORDING TO THEIR CORRELATION

TO THE LABOR TIME.

Complexity Metric R2 bi

1 Parameter Source Complexity 0.46 0.22
2 Memory Additions 0.51 0.31
3 Base Parameter Complexity 0.54 -0.31
4 Memory Size 0.57 -0.08
5 Parameter Source Context Distance 0.57 -0.16
6 Context Switch Distance 0.59 0.09
7 Memory Depth 0.61 0.02
8 Memory Latency 0.61 -0.06
9 Base Execution Complexity 0.61 0
10 Parameter Adaptation Indicator 0.61 0

1 2 3 4 5 6 7 8 9 10
0.3

0.35

0.4

0.45

0.5

T
ra

in
in

g
er

ro
r

1 2 3 4 5 6 7 8 9 10
0

1

2

3

T
es

tin
g

er
ro

r

Complexity metrics

Fig. 6. Model cross validation with data from ITCAM install.

variables always improves the training quality. In contrast, as
shown in the bottom plot, having more variables may impair
the model quality due to overfitting. As a result, we only
choose the first two complexity metrics, Parameter Source
Complexity and Memory Additions, to build the model. The
relative importance of these two metrics is consistent with
the experience of system administrators as most of the labor
time was spent in determining the right values for the required
parameters. In addition, memory additions also result in longer
labor time because the system administrators need to absorb
the parameters produced by the system.

2) Model Validation: To validate the quality of the quantita-
tive model constructed above, we consider a slightly different
Tivoli installation process, namely the installation of the IBM
Tivoli Monitoring (ITM) product. The quantitative model
we built above is used to predict the ITM installation time
based on the ITM complexity metrics. Then, we compare the
predicted labor time with the measured time to evaluate how
well the model performs in predicting the time.

Figure 7 shows both the actual labor time (solid line) and
the predicted time (dashed line). The figure suggests a close fit,
where the R2 error is 0.60 and the RMSE is 1.31. The model
is able to predict the labor time spike at action 4, which con-
sumes five parameters that determine which product features
to install. All of them have the Parameter Source Complexity

0 5 10 15 20 25
0

1

2

3

4

5

6

7

Action #

T
im

e
(m

in
)

Actual
Predicted

Fig. 7. Model validation with data from ITM install.

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

Action #

T
im

e
(m

in
)

Actual
Predicted
Confidence Interval
Confidence Interval

Fig. 8. Modeling results from all Tivoli installs.

as documentationAdapted[3]. However, the model does not
provide an accurate prediction for actions 24-26. Based on the
four to five parameters consumed by these actions, all with
high Parameter Source Complexity (i.e., bestPractice[4], en-
vironmentFixed[5], environmentConstrained[6]), the model
is able to predict a long labor time. However, the actual labor
time is longer than expected. This may be due to the fact that
a command line interface (instead of an installation wizard) is
used, which complicates the task even further.

E. Accounting for Administrator Skills

Besides the ITCAM and ITM installations we considered
above, we now apply the model to all the installation data
that we have from the Tivoli install experiments.

Figure 8 gives an overview of the modeling results, where
the solid line indicates the actual labor time, the dashed line
indicates the predicted time, and the two dotted lines indicate
the upper and lower bounds of the 60% confidence interval.

Out of all Tivoli install field study experiments, we have

TABLE II
COMPARING MODELS FROM DIFFERENT TIVOLI INSTALLS.

Group Total R2 R2

Labor Time Calibration Extrapolation
1 66.12 0.73 0.32
2 78.54 0.33 0.67

two distinct groups: Group 1 contains four Tivoli product
installations (ITCAM, ITSM, ITM, and TPM), all of which
were carried out by the same participant who is experienced in
both systems management and complexity evaluation. Group
2 contains a subset of three Tivoli product installs (ITCAM,
ITSM, and TPM); however, the installations were performed
by a different participant who is less experienced in systems
management and complexity evaluation.

Table II compares the models from the two groups. The
difference in the total labor time indicates that the two partici-
pants have difference systems management skills. Even if there
are only 3 product installations in Group 2, they take longer
than the four in Group 1. Comparing the calibration R2 value
also indicates the difference in the complexity evaluation skills
—the capabilities to properly define the complexity metrics so
as to reflect the complexity in the system in a coherent way.

While Group 1 has a higher R2 value of 0.73, Group 2 has a
lower value of 0.33 due to some inconsistent complexity metric
definitions. For example, although the action of launching the
ITCAM Install Wizard only takes 3 seconds, its parameter,
the path of the Install Wizard, was given a source complexity
score of environmentFixed[5] instead of documentation-
Adapted[3]. Note that documentationAdapted[3] generally
indicates less complexity in finding the installation wizard
path, based on the instructions in the install manual. In
contrast, environmentFixed[5] indicates much more complex-
ity involving extensive work by the administrator. Examples
include finding the path to a pre-installed executable which
could be located at different directories for different systems,
or finding the listening port number of a running TCP/IP
server, without any hints in the documentation.

It is also interesting to note that although Group 2 has a
low R2 value during model calibration, its R2 value is much
higher during extrapolation when the model is used to predict
the labor time in Group 1. This is because even if Group
2’s data may not be consistent, the model is still able to find
the essential relationship between the complexity metrics and
the labor time. Therefore, when the complexity metrics are
defined properly (as in Group 1), the model is able to give a
good prediction.

F. Are linear Complexity Scales an Issue?

In Section II-B, we had expressed concerns that expressing
metric values on a linear scale throughout the model may lead
to inaccuracies when building a quantitative model. In order to
address this question, we have considered the effect of using
a nonlinear scale for Parameter Source Complexity instead of

the linear scale of (0, 1, 2, 3, 4, 5, 6) we had defined in [2].
By re-applying our quantitative model to the data from Group
1, a nonlinear scale of (0, 1, 1, 5, 6, 7, 7) can improve the
R2 by only 6%, which seems to indicate that the scale in
which qualitative metrics are recorded does not significantly
contribute to the accuracy of the model.

V. RELATED WORK

Our model is inspired by the widely successful system
performance benchmark suites defined by the Transaction
Processing Council (TPC) and the Standard Performance Eval-
uation Corporation (SPEC). In addition, we have borrowed
concepts from Robert C. Camp’s pioneering work in the area
of business benchmarking [10]. Recent related work in this
area is McKinsey & Company’s ‘Process 360’, a benchmark
that aims at comparing IT service offerings among different
providers [11].

There is increased interest in applying quality management
methodologies that have been successfully applied since the
1980s in manufacturing and production to IT services: For
example, Six Sigma (in short: 6σ) [12] evolved as a quality
initiative to reduce variance in the semiconductor industry,
thereby eliminating defects. [13] provides an overview on how
to apply 6σ to services.

Related work in the system administration discipline has
been carried out with a focus on establishing cost models,
which take into account the impact of decisions. The most
relevant work is [14], which generalizes an initial model for
estimating the cost of downtime [15], based on the previously
established System Administration Maturity Model [16].

Other related work can be found in the application of
information theory (e.g., Kolmogorov complexities [17]) in
order to quantify complexity in workflows [18]. The majority
of this work relies on the concept of cyclomatic complexity,
which has first been developed in [19].

VI. CONCLUSIONS AND FUTURE WORK

We have described an approach to relate the metrics of a
previously developed IT management complexity framework
to key business-level performance metrics. We have developed
a quantitative model based on a qualitative description of IT
complexity parameters together with quantitative calibration
data of the IT process and validated its applicability through
a small-scale user study. Despite the fact that our user study
was done on a small scale, we were able to derive a first set
of results that indicate the general feasibility of our approach:

First, by taking only collected complexity measures into
account, our model was able to explain 61% of the variability
in the time data, which suggests its applicability to forecast
trends.

Second, our results have shown that out of a total of ten
complexity metrics, two complexity metrics are sufficient to
build a quantitative model without jeopardizing its quality.
This suggests that there is some potential for simplifying our
IT management complexity model, which would increase its
consumability.

Third, the dimensions of the scales in which an administra-
tor rates the difficulty he experiences in setting configuration
parameters carry relatively small relevance for the accuracy of
the model, as they account for only 6%.

Finally, we have found that the skill set of complexity
evaluation has a limited impact on the accuracy of the model:
While intuition suggests that an administrator less skilled in
complexity evaluation would result in a poor data fitting (as
evident by that the R2 error was cut by more than a half), we
were surprised to find that the predictive capabilities of our
model was not impaired much and it was still able to obtain
satisfactory results for other data sets.

These results are just a starting point, and much further
work is needed to improve the accuracy of our model. First
and foremost, we plan to increase the size of our user study
to gain a larger set of data points. In addition, more work
is needed to assess whether our IT management complexity
model captures the ‘right’ parameters. So far, it reflects our
own experiences with setting up and configuring complex
systems. However, more interviews with experts are needed to
ensure the model is sufficiently complete. Finally, we envision
a future application of our model by including it directly into
an IT process modeling tool, so that a process designer can
simulate the execution of an IT management process already
during the design phase in order to determine whether further
process transformations are needed before the process can be
deployed in practice..

REFERENCES

[1] “IT Infrastructure Library. ITIL Service Support, version 2.3,” Office of
Government Commerce, June 2000.

[2] A. Brown, A. Keller, and J. Hellerstein, “A Model of Configuration
Complexity and its Application to a Change Management System,”
in Proc. of the 9th IFIP/IEEE International Symposium on Integrated
Management (IM 2005), A. Clemm, O. Festor, and A. Pras, Eds. Nice,
France: IEEE, May 2005, pp. 631–644.

[3] Y. Diao and A. Keller, “Quantifying the Complexity of IT Service
Management Processes,” in accepted for publication in: Proceedings
of 17th IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management (DSOM’06), Dublin, Ireland, Oct. 2006.

[4] A. Keller, Y. Diao, F. Eskesen, S. Froehlich, J. Hellerstein,
L. Spainhower, and M. Surendra, “Generic On-Line Discovery of
Quantitative Models,” IEEE electronic Transactions on Network and
Service Management (eTNSM), vol. 1, no. 1, Apr. 2004.

[5] L. Ljung, System Identification: Theory for the User, 2nd ed. Upper
Saddle River, NJ: Prentice Hall, 1999.

[6] J. Zhang and J. Morris, “Process modeling and fault diagnosis using
fuzzy neural networks,” Fuzzy sets and Systems, vol. 79, no. 1, pp.
127–140, 1996.

[7] Y. Diao and K. M. Passino, “Immunity-based hybrid learning methods
for approximator structure and parameter adjustment,” Engineering
Applications of Artificial Intelligence, vol. 15, no. 6, pp. 587–600, 2002.

[8] F. E. Harrell, Regression Modeling Strategies: With Applications to
Linear Models, Logistic Regression, and Survival Analysis (Springer
Series in Statistics). Springer Verlag, 2001.

[9] S. Wold, “Cross-validatory estimation of the number of components in
factor and principal components model,” Technometrics, vol. 20, no. 4,
pp. 397–405, 1978.

[10] R. Camp, Benchmarking - The Search for Industry Best Practices that
Lead to Superior Performance. ASQC Quality Press, 1989.

[11] N. Kaka, S. Kekre, and S. Sarangan, “Benchmarking India’s Business
Process Outsourcers,” The McKinsey Quarterly, July 2006.

[12] G. Tennant, Six Sigma: SPC and TQM in Manufacturing and Services.
Gower Publishing, Ltd., 2001.

[13] B. El-Haik and D. Roy, Service Design for Six Sigma - A Roadmap for
Excellence. Wiley Interscience, 2005.

[14] A. Couch, N. Wu, and H. Susanto, “Toward a Cost Model for System
Administration,” in Proc. 19th Large Installation System Administration
Conference (LISA ’05), D. Blank-Edelman, Ed. San Diego, CA, USA:
USENIX, Dec. 2005, pp. 125–141.

[15] D. Patterson, “A Simple Way to Estimate the Cost of Downtime,” in
Proc. 16th Large Installation System Administration Conference (LISA
’05), A. Couch, Ed. Philadelphia, PA, USA: USENIX, Nov. 2002, pp.
185–188.

[16] C. Kubicki, “The System Administration Maturity Model – SAMM,”
in Proc. 7th Large Installation System Administration Conference (LISA
’93). Monterey, CA, USA: USENIX, Nov. 1993, pp. 213–225.

[17] M. Li, An Introduction to Kolmogorov Complexity and Its Applications.
Springer, 1997.

[18] J. Cardoso, “Approaches to Compute Workflow Complexity,” in
Dagstuhl Seminar - The Role of Business Processes in Service Oriented
Architectures, Dagstuhl, Germany, July 2006.

[19] T. McCabe and C. Butler, “Design complexity measurement and testing,”
Communications of the ACM, vol. 32, no. 12, pp. 1415–1425, Dec. 1999.

