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ABSTRACT 
Successful collaboration is not only an occasion for the 
accomplishment of shared goals, but also provides  opportunities 
for individual collaborators to learn from each other.  Extended 
interaction allows for participants to resolve personal and 
professional differences and thus create a foundation for 
successful collaboration.  This paper contrasts opportunities for 
learning in short-term and long-term collaboration in the context 
of scientists working with  High Performance Computing (HPC) 
system experts.  It explores how factors conducive to successful 
collaboration in longer, more tightly organized collaboration 
might be adapted in more transient collaboration between 
scientists and HPC consultants.  

Categories and Subject Descriptors 
H.5.3 [Information Interfaces and Presentation]: Group and 
Organization Interfaces – collaborative computing, computer-
supported cooperative work. 

General Terms 
Management, Human Factors. 

Keywords 
Collaboration, teams,  consultants, learning. 

1. INTRODUCTION 
In addition to providing a means for accomplishing shared goals, 
scientific collaboration provides an opportunity for participants to 
learn from each other. In a successful collaboration, mutual 
learning is promoted through extended working histories during 
which personal and professional differences can be resolved and a 
trusting working relationship can be established (4, 5). A 
collaboration of shorter duration provides less opportunity for 
mutual learning to take place.  

Collaboration has long been recognized as critical for solving 
complex scientific problems (8).  By joining forces with experts 
who have complementary skills, scientists can explore bigger 
questions than they could do alone.  As parallel computation 
becomes an increasingly important method for accomplishing 
scientific work, the need for collaboration among scientists and 
computational experts is growing.  However, since parallel 
machines (often called High Performance Computing Systems, or 
HPCS) are still relatively rare due to their expense, many 
scientists gain access to HPCS resources through supercomputing 
centers1 where collaboration with computational experts is, 
typically, of the more transient variety.    

This paper explores factors that might be leveraged to promote 
learning opportunities in short-term collaboration between 
scientists and computational experts. In particular, it examines 
how relatively transient interactions between scientists and  
computationally skilled consultants might be exploited to teach 
computation to scientists. 

2. COLLABORATION BETWEEN 
SCIENTISTS AND COMPUTATIONAL 
EXPERTS  
Collaboration with experts who have skills complementary to 
one’s own is an important strategy for addressing complex 
scientific problems.  As the scientific knowledge base grows, 
scientists are finding that it is not feasible for an individual to  
master all the necessary skills.  One of the informants interviewed 
for this study, a code optimizer who was trained as an electronic 
atomic physicist, voiced a common lament heard from scientists 
whose work can benefit from the use of HPC machines: Science 
and computation place conflicting time demands on the scientist. 
He described a typical path for a scientist who learns 
computation:   “… you learn Fortran, write a program … Because 
you don’t know a lot about computing, your code does not run 
well, but you spend little time on making it work better because it 
interferes with the activities you need to survive as a scientist, like 
publishing….”. In order to make one’s code run better, one needs 
to optimize it for a specific machine. This places additional 
demands on the scientist because “… you need to develop a body 
of knowledge about hardware, memory, protocols.  Basically, you 
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government scientific agencies to provide access to human and 
machine HPCS resources to qualified scientists.   



need to dig deeper, not in Computer Science, but in Computer 
Engineering. …I am no longer a practicing scientist.” 

While the first supercomputers, as HPC machines are known in 
the vernacular, were delivered in the early 1960’s, the use of 
parallel computation has been, until recently, largely limited to 
elite government laboratories (2). But, as costs of machines have 
started to decrease, use is spreading to commercial and scientific 
areas and parallel computation is increasingly being taught in 
Computer Science departments at universities (2, 7). However, 
instruction in parallel computing for scientists during university 
training is lagging training for computer scientists (1).  
Consequently, scientists have to learn parallel computation “on-
the-job.”  

For scientists, access to on-the-job training in computation varies.  
A successful instance has been identified in a recent study of the 
organization of code development teams at one of the national 
laboratories in the United States (3).  There the scientific coding 
work is carried out by teams composed of scientists and 
computational experts.  Since many of these are long-lived, there 
is considerable opportunity for mutual learning to take place.  
However, many university scientists do not have access to HPC 
resources  –  neither human nor machine – at their universities. 
Thus, the necessity for the supercomputing center resource model.  

This paper explores how short-term collaborative interactions 
might provide opportunities for less computationally skilled 
scientists to acquire computational skills. It explores the nature of 
the collaboration that takes place and identifies factors that may 
obstruct and those that may facilitate collaborative learning. It 
does this through contrasting two forms of collaborative 
relationships: long-term, enduring teams and short-term, transient 
collaboration that occurs through consultation.  

3. SITES AND STUDY METHODS 
The data in this paper are drawn from interviews with ten 
individuals who are highly skilled at computation for HPC 
systems.  Five (four consultants and their manager) work at one of 
the supercomputing centers in the United States that is funded by 
the National Science Foundation, a government agency.  
Scientists gain access to the center’s resources by writing a 
proposal requesting computer time. The criteria for selection at 
this particular supercomputing center includes demonstration that 
the scientist’s application can scale to the terascale capabilities of 
the center’s machines. Once accepted, the scientist can request 
computational help from the center’s consultant staff.  All four 
consultants and their manager have post-graduate degrees in 
science. In addition to their consulting work, they develop HPC 
codes in their areas of scientific interest.   

The other five interview participants are current or former 
employees of an international vendor of HPC hardware and 
software. Three are current or former employees of the research 
division who develop tools and applications for experimental 
HPC systems.  The other two are technical employees of the 
company’s HPC sales organization. Their job responsibilities 
include improving the performance of clients’ codes.  

The data reported here were gathered primarily through semi-
structured interviews designed to elicit information about the 
educational and work training of the interview participant and to 
understand his or her current work practices in detail. Each 
individual was interviewed at least once for between 60 and 90 

minutes.  Six  of the interviews were done face-to-face at each 
individual’s workplace; the others were done over the telephone.  
Nine of the informants was interviewed only by the author, while 
the tenth interview included a colleague of the author’s. The 
author made transcriptions soon after an interview using audio-
taped records or from handwritten notes taken during the 
interview.  Additional briefer follow-ups, targeted to specific 
questions were conducted through email, telephone or face-to-
face with 5 of the interview participants.   

4. FORMS OF COLLABORATION IN HPC 
The first form, designated team collaboration, is represented here 
by data from a four person core team that has collaborated 
intermittently for almost a decade on one evolving code project. 
Discussed below is a portion of their collaboration which 
occurred over a period of 1.5 years. The second form, designated 
short-term consultancy, is represented by data from short-term, 
sporadic interactions between a scientist, who is the primary 
author of a code, and a consultant, who has been assigned to help 
him or her to bring the code to production readiness on one of the 
supercomputing center’s machines. The discussion of the short-
term consultancy includes examples from four consultants. 

The two forms of collaboration differ in terms of how intensely 
the work of the collaborators is coordinated,  the duration of the 
collaboration (years vs. weeks), the role of the computational 
expert (part of  the core team vs. consultant) and the nature of the 
information exchange (face-to-face vs. email or telephone).  In 
addition, while the participants  in both forms share the overall 
goal of producing production-level code, the consultants do not 
share the scientists’ scientific goals.   

4.1 Team Collaboration  
To illustrate team collaboration, I draw on examples from a team 
that in 2003 completed an extensive simulation of earthquake 
damage to buildings in the San Fernando Valley. The underlying 
science is about the propagation of waves through materials and 
the faults that set off the earthquakes. The core team included two 
civil engineers with expertise in the impact of earth movement on 
structures built on various types of soils,  a computer scientist 
with expertise in irregular meshes which are needed to map a 
physical area onto an appropriate data structure and the informant 
whose role was that of a code optimizer.  His expertise is in areas 
such as communication bandwidth, latency, I/O and he has a deep 
understanding of the particular machines that were used for 
production runs of the earthquake codes. In testament to its 
scientific achievement, the code was awarded the prestigious 
Gordon Bell prize which recognizes a code of scientific merit that 
achieves the best raw performance on an HPC machine.  

The core members of this team had been collaborating for several 
years by the time the work discussed here took place, and seem to 
have followed a style that Hara et al. (4) call integrative 
collaboration. The core members’ distinct areas of expertise 
allowed them to partition the work so as to work independently 
during long periods2. But, after several months, they would meet 
for month-long co-located  periods of  tightly coupled 
collaboration during which they would test the combined code on 
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more closely coupled collaboration during these periods. 



the production machine. It is during these periods that needs and 
opportunities for mutual learning and cross-influence arose.  

As all of the team members were computationally skilled, the co-
located periods were opportunities to combine the various code 
modules and test the whole on the production machine.  Many test 
runs were done to determine how the algorithms that had been 
developed over the previous six months would perform on the 
target machine.  Considerable iteration took place in the codes as 
a result of the performance measurements. To be effective, the 
code optimizer  had to learn enough about the science and the 
data structures to be able to suggest changes that would exploit 
the capabilities of the target machine yet preserve the scientific 
validity of the algorithms. The algorithmic changes that were 
made by the individual team members in response to data from the 
test runs were critical for scaling the code to test a problem of 
large enough magnitude to be of scientific interest  – mapping an 
area 80 kilometers square by 30 kilometers deep of the San 
Fernando Valley.  Without integrating the knowledge held by the 
code optimizer, only a smaller, less scientifically significant 
problem would have been solvable.  

In addition to the opportunities for learning from each other that 
repeated co-located work sessions afforded the team members, 
additional credit was given to one of the co-principal investigators 
for his skill at assembling a “learning organization.”  He 
emphasized the need for all team members, including the array of 
relatively transient graduate students and post-doctoral fellows, to 
learn about each other’s work.   

An appreciation of the scientific accomplishment of one’s team 
members is that it both helped “avoid making unreasonable 
demands of each other” and conversely, prevented “push-back” 
when others’ demands were reasonable, but costly for oneself.  In 
any collaborative problem solving effort, there are bound to be 
differences of opinion on how to solve a problem (5).  These can 
escalate, especially if alternative solutions have a disproportionate 
impact on the work of one sub-group.  For example, the code 
optimizer described an incident in which  a particular partitioning 
of the data across processors assumed by the data structures expert 
resulted in significant engineering challenges for the optimizer.  
The data configuration was straining capabilities of network 
latency and performance of I/O nodes. Given the challenges that 
this created for the optimizer, he could have resisted the 
recommendation of the data structures expert.  However, since the 
optimizer could appreciate the goal of his colleague, which was to 
load balance the system in order to use all available processors 
efficiently, he worked to figure out a way to make it work.  

In these examples, the extended nature of the collaboration  both 
creates the needs and the opportunities for mutual learning. 
Through learning from each other, the team is better able to 
achieve its scientific goals. 

4.2 Short-term Consultancy 
The role of the consultant, at the supercomputing center where 
interviews were carried out, is to “…help the scientist fix any 
problems that prevent the code from achieving a production run.” 
The amount of help provided by the consultant depends on the  
scientist’s level of computational skill. The more sophisticated 
users only need assistance related to the particular HPC machine 
and infrastructure in use at the center. For example, one scientist 
required help with scientific debugging the operation of the 

function MPI3_Wait that stemmed from different implementations 
of the MPI library in use at the center and the scientist’s 
university.  Less-skilled users required more extensive help 
related to programming of the problem, sometimes even requiring 
help with serial constructs.   

Scientists initiate contact with the consulting staff through an 
email to the supercomputing center’s “hotline” after their proposal 
for use of the center’s resources has been approved. The head of 
the support organization then assigns a Scientific Computation 
Consultant to work with the scientist, matching domain expertise 
whenever possible. Once the scientist’s code is completely 
debugged it enters the production run stage and a consultant in the 
Runtime Support group assumes responsibility for the remaining 
production runs.  As this may take several weeks to months (most 
codes share the HPC machine at the center with many other 
users), there is ample opportunity for  interaction with a 
consultant.  The focus for the remaining discussion is on 
collaboration between a scientist and the Scientific Computation 
Consultant, who works with multiple scientists concurrently.  

A domain match between a scientist and a Scientific Consultant is 
not necessary for the collaboration to be successful. For example, 
one consultant reported how he resolved a memory leak problem 
in a scientist’s code.  He noted that solving many of his clients’ 
problems  “… requires careful analysis – we may not know the 
science behind it but we know what the program is doing”.  

There were cases, however,  when the “common ground” (1) that 
derives from shared intellectual background is required for the 
consultant to provide value to the scientist.  For example, most 
Quantum Chemists do not write code from scratch, but instead use 
one of the several “packages” that are sold in this computationally 
mature area.  The concept of packages in Quantum Chemistry is 
similar to statistical packages used by social scientists: Standard 
types of analyses are encoded in pre-specified methods into which 
the user inserts her data.  The consultant needs to understand the 
models behind the various analyses in order to advise the scientist 
appropriately.  

The same is true in some cases when standard HPC programming 
languages, rather than domain-specific packages, are used. This is 
particularly true in cases where the problem occurs in the 
algorithmic portion of the code designed to carry out the scientific 
work. The consultant without knowledge of the scientist’s domain 
may not be able to detect problems should the scientist’s intent be 
violated by the computation, even though the program completes 
without error. In such cases, the consultant depends on the 
scientist to detect that the results “don’t seem right.”  

The distributed nature of the collaboration, as well as the 
competing demands on each member’s attention introduce 
inefficiencies into the collaboration and dilute opportunities for 
mutual learning (6).   For example, in one case that involved a 
computationally knowledgeable scientist, one described as  a 
“good type of user; one who could isolate what he needed,” who 
only needed help adapting his code to the center’s infrastructure, 
it took a pair more than two weeks to determine the cause of 
invalid scientific results from production runs. Because the 
scientist was computationally knowledgeable, he was able to 
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determine that the program “… wasn’t working as he had 
expected,” even though it ran without errors.  However, the pair 
failed to resolve the problem with several rounds of emails back 
and forth.  Eventually, the scientist created a short, one page 
program that isolated the problem and the pair was able to trace 
the root cause to the different implementations of the 
programming language at the center and scientist’s serial machine 
(where he wrote and debugged his code prior to submitting it to 
the center). The implementation differences had masked the 
scientist’s misunderstanding of the method for doing data updates. 

Another example of “universal problems that collaborators need 
to resolve” (5) concerns occasional disagreements on the division 
of labor between scientist and consultant. One consultant reported 
a case of a professor who was having many problems with using a  
Quantum Chemistry package. He developed a work-around for 
one of  the problems that he had traced to a defect in the version 
of the package in use at the center. However, he felt that the 
scientist should resolve another problem that had to do with the 
data structures that she had created. While she was inexperienced 
in the use of the current package, the consultant concluded that 
she should be able to leverage her experience with another 
package to solve the current problem.  However, she pushed back, 
giving him the impression that  “she wanted me to do it for her.” 
Another consultant also noted that many users are only interested 
in getting their code to run, and are unwilling to work to make it 
run well. He noted that there are “all kinds of users who are 
capable but it takes quite a time commitment to do that; but most 
users are not interested in it.”  This sentiment is reminiscent of the 
feelings expressed by the atomic physicist turned optimizer 
quoted early in this paper: Computation can seem like a 
distraction from the main work of the scientist.   

In spite of the above examples of challenges that arise in the 
short-term, consultancy form of collaboration, there are some 
factors that might be leveraged to increase opportunities for 
scientists to learn computation skills.  

The Scientific Computation Consultants reported that 
occasionally the scientists reverted to asking them for help after 
responsibility for their codes had been passed to the Runtime 
Support staff. One consultant hypothesized that this might 
indicate that the scientist had gotten comfortable with him and 
perhaps felt he could rely on him.  The preference thus expressed 
by these scientists is reinforced by the center’s practice of 
assigning a returning user to the consultant they worked with 
previously. Whether this is done intentionally to develop working 
relationships or as a side-effect of matching domain expertise, the 
practice extends the collaboration though time and may 
episodically begin to mimic longer-term collaboration.  

Another possibility is trying to shape the scientist’s behavior 
during the short-term collaboration episode.  For example, one 
consultant reported that he tried to enforce good programming 
practice as a condition for helping users.  He had grown dismayed 
that some “users are stuck in the old practices” and fail to take 
advantage of newer tools that can make them more efficient.  He 
tried to shape better programming practice, by, for example, 
giving his scientific collaborators an ultimatum around declaring 
all variables in a single place even though the language they were 

using in combination with MPI, Fortran does not require it.  “I tell 
users that if you don’t use it you are on your own.  I keep telling 
him ‘hey you have to put this in; it’s good practice.”   

5. CONCLUSIONS AND FUTURE WORK 
These data support the expected differences between the value 
provided between team collaborations and short-term 
consultancies. With more interaction, there is more opportunity to 
develop shared understandings, more reason to make 
commitments to accommodate each other (4, 5, 6).  Learning from 
each other is not only necessary but also possible.  However, the 
picture for the more transient collaborations is not hopeless.  
Some of these consultants demonstrate that they have some 
leverage with their users to encourage them to learn more, though 
the generality of this is yet to be explored. Repeated interactions 
may also provide occasions for more learning opportunities to 
occur naturally.   

This is preliminary work and requires further investigation.  The 
next step is to include the scientists in subsequent  interviews, so 
that a more complete view of the collaborative relationships may 
be obtained.   
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