
RC24049 (W0609-032) September 12, 2006
Computer Science

IBM Research Report

Forms of Collaboration in High Performance Computing:
Exploring Implications for Learning

Catalina Danis
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Forms of Collaboration in High Performance Computing:
Exploring Implications for Learning

Catalina Danis
Social Computing Group

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598 USA

danis@us.ibm.com

ABSTRACT
Successful collaboration is not only an occasion for the
accomplishment of shared goals, but also provides opportunities
for individual collaborators to learn from each other. Extended
interaction allows for participants to resolve personal and
professional differences and thus create a foundation for
successful collaboration. This paper contrasts opportunities for
learning in short-term and long-term collaboration in the context
of scientists working with High Performance Computing (HPC)
system experts. It explores how factors conducive to successful
collaboration in longer, more tightly organized collaboration
might be adapted in more transient collaboration between
scientists and HPC consultants.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces – collaborative computing, computer-
supported cooperative work.

General Terms
Management, Human Factors.

Keywords
Collaboration, teams, consultants, learning.

1. INTRODUCTION
In addition to providing a means for accomplishing shared goals,
scientific collaboration provides an opportunity for participants to
learn from each other. In a successful collaboration, mutual
learning is promoted through extended working histories during
which personal and professional differences can be resolved and a
trusting working relationship can be established (4, 5). A
collaboration of shorter duration provides less opportunity for
mutual learning to take place.

Collaboration has long been recognized as critical for solving
complex scientific problems (8). By joining forces with experts
who have complementary skills, scientists can explore bigger
questions than they could do alone. As parallel computation
becomes an increasingly important method for accomplishing
scientific work, the need for collaboration among scientists and
computational experts is growing. However, since parallel
machines (often called High Performance Computing Systems, or
HPCS) are still relatively rare due to their expense, many
scientists gain access to HPCS resources through supercomputing
centers1 where collaboration with computational experts is,
typically, of the more transient variety.

This paper explores factors that might be leveraged to promote
learning opportunities in short-term collaboration between
scientists and computational experts. In particular, it examines
how relatively transient interactions between scientists and
computationally skilled consultants might be exploited to teach
computation to scientists.

2. COLLABORATION BETWEEN
SCIENTISTS AND COMPUTATIONAL
EXPERTS
Collaboration with experts who have skills complementary to
one’s own is an important strategy for addressing complex
scientific problems. As the scientific knowledge base grows,
scientists are finding that it is not feasible for an individual to
master all the necessary skills. One of the informants interviewed
for this study, a code optimizer who was trained as an electronic
atomic physicist, voiced a common lament heard from scientists
whose work can benefit from the use of HPC machines: Science
and computation place conflicting time demands on the scientist.
He described a typical path for a scientist who learns
computation: “… you learn Fortran, write a program … Because
you don’t know a lot about computing, your code does not run
well, but you spend little time on making it work better because it
interferes with the activities you need to survive as a scientist, like
publishing….”. In order to make one’s code run better, one needs
to optimize it for a specific machine. This places additional
demands on the scientist because “… you need to develop a body
of knowledge about hardware, memory, protocols. Basically, you

1 Supercomputing Centers in the United States are funded by

government scientific agencies to provide access to human and
machine HPCS resources to qualified scientists.

need to dig deeper, not in Computer Science, but in Computer
Engineering. …I am no longer a practicing scientist.”

While the first supercomputers, as HPC machines are known in
the vernacular, were delivered in the early 1960’s, the use of
parallel computation has been, until recently, largely limited to
elite government laboratories (2). But, as costs of machines have
started to decrease, use is spreading to commercial and scientific
areas and parallel computation is increasingly being taught in
Computer Science departments at universities (2, 7). However,
instruction in parallel computing for scientists during university
training is lagging training for computer scientists (1).
Consequently, scientists have to learn parallel computation “on-
the-job.”

For scientists, access to on-the-job training in computation varies.
A successful instance has been identified in a recent study of the
organization of code development teams at one of the national
laboratories in the United States (3). There the scientific coding
work is carried out by teams composed of scientists and
computational experts. Since many of these are long-lived, there
is considerable opportunity for mutual learning to take place.
However, many university scientists do not have access to HPC
resources – neither human nor machine – at their universities.
Thus, the necessity for the supercomputing center resource model.

This paper explores how short-term collaborative interactions
might provide opportunities for less computationally skilled
scientists to acquire computational skills. It explores the nature of
the collaboration that takes place and identifies factors that may
obstruct and those that may facilitate collaborative learning. It
does this through contrasting two forms of collaborative
relationships: long-term, enduring teams and short-term, transient
collaboration that occurs through consultation.

3. SITES AND STUDY METHODS
The data in this paper are drawn from interviews with ten
individuals who are highly skilled at computation for HPC
systems. Five (four consultants and their manager) work at one of
the supercomputing centers in the United States that is funded by
the National Science Foundation, a government agency.
Scientists gain access to the center’s resources by writing a
proposal requesting computer time. The criteria for selection at
this particular supercomputing center includes demonstration that
the scientist’s application can scale to the terascale capabilities of
the center’s machines. Once accepted, the scientist can request
computational help from the center’s consultant staff. All four
consultants and their manager have post-graduate degrees in
science. In addition to their consulting work, they develop HPC
codes in their areas of scientific interest.

The other five interview participants are current or former
employees of an international vendor of HPC hardware and
software. Three are current or former employees of the research
division who develop tools and applications for experimental
HPC systems. The other two are technical employees of the
company’s HPC sales organization. Their job responsibilities
include improving the performance of clients’ codes.

The data reported here were gathered primarily through semi-
structured interviews designed to elicit information about the
educational and work training of the interview participant and to
understand his or her current work practices in detail. Each
individual was interviewed at least once for between 60 and 90

minutes. Six of the interviews were done face-to-face at each
individual’s workplace; the others were done over the telephone.
Nine of the informants was interviewed only by the author, while
the tenth interview included a colleague of the author’s. The
author made transcriptions soon after an interview using audio-
taped records or from handwritten notes taken during the
interview. Additional briefer follow-ups, targeted to specific
questions were conducted through email, telephone or face-to-
face with 5 of the interview participants.

4. FORMS OF COLLABORATION IN HPC
The first form, designated team collaboration, is represented here
by data from a four person core team that has collaborated
intermittently for almost a decade on one evolving code project.
Discussed below is a portion of their collaboration which
occurred over a period of 1.5 years. The second form, designated
short-term consultancy, is represented by data from short-term,
sporadic interactions between a scientist, who is the primary
author of a code, and a consultant, who has been assigned to help
him or her to bring the code to production readiness on one of the
supercomputing center’s machines. The discussion of the short-
term consultancy includes examples from four consultants.

The two forms of collaboration differ in terms of how intensely
the work of the collaborators is coordinated, the duration of the
collaboration (years vs. weeks), the role of the computational
expert (part of the core team vs. consultant) and the nature of the
information exchange (face-to-face vs. email or telephone). In
addition, while the participants in both forms share the overall
goal of producing production-level code, the consultants do not
share the scientists’ scientific goals.

4.1 Team Collaboration
To illustrate team collaboration, I draw on examples from a team
that in 2003 completed an extensive simulation of earthquake
damage to buildings in the San Fernando Valley. The underlying
science is about the propagation of waves through materials and
the faults that set off the earthquakes. The core team included two
civil engineers with expertise in the impact of earth movement on
structures built on various types of soils, a computer scientist
with expertise in irregular meshes which are needed to map a
physical area onto an appropriate data structure and the informant
whose role was that of a code optimizer. His expertise is in areas
such as communication bandwidth, latency, I/O and he has a deep
understanding of the particular machines that were used for
production runs of the earthquake codes. In testament to its
scientific achievement, the code was awarded the prestigious
Gordon Bell prize which recognizes a code of scientific merit that
achieves the best raw performance on an HPC machine.

The core members of this team had been collaborating for several
years by the time the work discussed here took place, and seem to
have followed a style that Hara et al. (4) call integrative
collaboration. The core members’ distinct areas of expertise
allowed them to partition the work so as to work independently
during long periods2. But, after several months, they would meet
for month-long co-located periods of tightly coupled
collaboration during which they would test the combined code on

2 Interviews with other members of the team may have revealed

more closely coupled collaboration during these periods.

the production machine. It is during these periods that needs and
opportunities for mutual learning and cross-influence arose.

As all of the team members were computationally skilled, the co-
located periods were opportunities to combine the various code
modules and test the whole on the production machine. Many test
runs were done to determine how the algorithms that had been
developed over the previous six months would perform on the
target machine. Considerable iteration took place in the codes as
a result of the performance measurements. To be effective, the
code optimizer had to learn enough about the science and the
data structures to be able to suggest changes that would exploit
the capabilities of the target machine yet preserve the scientific
validity of the algorithms. The algorithmic changes that were
made by the individual team members in response to data from the
test runs were critical for scaling the code to test a problem of
large enough magnitude to be of scientific interest – mapping an
area 80 kilometers square by 30 kilometers deep of the San
Fernando Valley. Without integrating the knowledge held by the
code optimizer, only a smaller, less scientifically significant
problem would have been solvable.

In addition to the opportunities for learning from each other that
repeated co-located work sessions afforded the team members,
additional credit was given to one of the co-principal investigators
for his skill at assembling a “learning organization.” He
emphasized the need for all team members, including the array of
relatively transient graduate students and post-doctoral fellows, to
learn about each other’s work.

An appreciation of the scientific accomplishment of one’s team
members is that it both helped “avoid making unreasonable
demands of each other” and conversely, prevented “push-back”
when others’ demands were reasonable, but costly for oneself. In
any collaborative problem solving effort, there are bound to be
differences of opinion on how to solve a problem (5). These can
escalate, especially if alternative solutions have a disproportionate
impact on the work of one sub-group. For example, the code
optimizer described an incident in which a particular partitioning
of the data across processors assumed by the data structures expert
resulted in significant engineering challenges for the optimizer.
The data configuration was straining capabilities of network
latency and performance of I/O nodes. Given the challenges that
this created for the optimizer, he could have resisted the
recommendation of the data structures expert. However, since the
optimizer could appreciate the goal of his colleague, which was to
load balance the system in order to use all available processors
efficiently, he worked to figure out a way to make it work.

In these examples, the extended nature of the collaboration both
creates the needs and the opportunities for mutual learning.
Through learning from each other, the team is better able to
achieve its scientific goals.

4.2 Short-term Consultancy
The role of the consultant, at the supercomputing center where
interviews were carried out, is to “…help the scientist fix any
problems that prevent the code from achieving a production run.”
The amount of help provided by the consultant depends on the
scientist’s level of computational skill. The more sophisticated
users only need assistance related to the particular HPC machine
and infrastructure in use at the center. For example, one scientist
required help with scientific debugging the operation of the

function MPI3_Wait that stemmed from different implementations
of the MPI library in use at the center and the scientist’s
university. Less-skilled users required more extensive help
related to programming of the problem, sometimes even requiring
help with serial constructs.

Scientists initiate contact with the consulting staff through an
email to the supercomputing center’s “hotline” after their proposal
for use of the center’s resources has been approved. The head of
the support organization then assigns a Scientific Computation
Consultant to work with the scientist, matching domain expertise
whenever possible. Once the scientist’s code is completely
debugged it enters the production run stage and a consultant in the
Runtime Support group assumes responsibility for the remaining
production runs. As this may take several weeks to months (most
codes share the HPC machine at the center with many other
users), there is ample opportunity for interaction with a
consultant. The focus for the remaining discussion is on
collaboration between a scientist and the Scientific Computation
Consultant, who works with multiple scientists concurrently.

A domain match between a scientist and a Scientific Consultant is
not necessary for the collaboration to be successful. For example,
one consultant reported how he resolved a memory leak problem
in a scientist’s code. He noted that solving many of his clients’
problems “… requires careful analysis – we may not know the
science behind it but we know what the program is doing”.

There were cases, however, when the “common ground” (1) that
derives from shared intellectual background is required for the
consultant to provide value to the scientist. For example, most
Quantum Chemists do not write code from scratch, but instead use
one of the several “packages” that are sold in this computationally
mature area. The concept of packages in Quantum Chemistry is
similar to statistical packages used by social scientists: Standard
types of analyses are encoded in pre-specified methods into which
the user inserts her data. The consultant needs to understand the
models behind the various analyses in order to advise the scientist
appropriately.

The same is true in some cases when standard HPC programming
languages, rather than domain-specific packages, are used. This is
particularly true in cases where the problem occurs in the
algorithmic portion of the code designed to carry out the scientific
work. The consultant without knowledge of the scientist’s domain
may not be able to detect problems should the scientist’s intent be
violated by the computation, even though the program completes
without error. In such cases, the consultant depends on the
scientist to detect that the results “don’t seem right.”

The distributed nature of the collaboration, as well as the
competing demands on each member’s attention introduce
inefficiencies into the collaboration and dilute opportunities for
mutual learning (6). For example, in one case that involved a
computationally knowledgeable scientist, one described as a
“good type of user; one who could isolate what he needed,” who
only needed help adapting his code to the center’s infrastructure,
it took a pair more than two weeks to determine the cause of
invalid scientific results from production runs. Because the
scientist was computationally knowledgeable, he was able to

3 The Message Passing Interface is a library of parallel constructs

added to C or Fortran to enable writing of parallel code.

determine that the program “… wasn’t working as he had
expected,” even though it ran without errors. However, the pair
failed to resolve the problem with several rounds of emails back
and forth. Eventually, the scientist created a short, one page
program that isolated the problem and the pair was able to trace
the root cause to the different implementations of the
programming language at the center and scientist’s serial machine
(where he wrote and debugged his code prior to submitting it to
the center). The implementation differences had masked the
scientist’s misunderstanding of the method for doing data updates.

Another example of “universal problems that collaborators need
to resolve” (5) concerns occasional disagreements on the division
of labor between scientist and consultant. One consultant reported
a case of a professor who was having many problems with using a
Quantum Chemistry package. He developed a work-around for
one of the problems that he had traced to a defect in the version
of the package in use at the center. However, he felt that the
scientist should resolve another problem that had to do with the
data structures that she had created. While she was inexperienced
in the use of the current package, the consultant concluded that
she should be able to leverage her experience with another
package to solve the current problem. However, she pushed back,
giving him the impression that “she wanted me to do it for her.”
Another consultant also noted that many users are only interested
in getting their code to run, and are unwilling to work to make it
run well. He noted that there are “all kinds of users who are
capable but it takes quite a time commitment to do that; but most
users are not interested in it.” This sentiment is reminiscent of the
feelings expressed by the atomic physicist turned optimizer
quoted early in this paper: Computation can seem like a
distraction from the main work of the scientist.

In spite of the above examples of challenges that arise in the
short-term, consultancy form of collaboration, there are some
factors that might be leveraged to increase opportunities for
scientists to learn computation skills.

The Scientific Computation Consultants reported that
occasionally the scientists reverted to asking them for help after
responsibility for their codes had been passed to the Runtime
Support staff. One consultant hypothesized that this might
indicate that the scientist had gotten comfortable with him and
perhaps felt he could rely on him. The preference thus expressed
by these scientists is reinforced by the center’s practice of
assigning a returning user to the consultant they worked with
previously. Whether this is done intentionally to develop working
relationships or as a side-effect of matching domain expertise, the
practice extends the collaboration though time and may
episodically begin to mimic longer-term collaboration.

Another possibility is trying to shape the scientist’s behavior
during the short-term collaboration episode. For example, one
consultant reported that he tried to enforce good programming
practice as a condition for helping users. He had grown dismayed
that some “users are stuck in the old practices” and fail to take
advantage of newer tools that can make them more efficient. He
tried to shape better programming practice, by, for example,
giving his scientific collaborators an ultimatum around declaring
all variables in a single place even though the language they were

using in combination with MPI, Fortran does not require it. “I tell
users that if you don’t use it you are on your own. I keep telling
him ‘hey you have to put this in; it’s good practice.”

5. CONCLUSIONS AND FUTURE WORK
These data support the expected differences between the value
provided between team collaborations and short-term
consultancies. With more interaction, there is more opportunity to
develop shared understandings, more reason to make
commitments to accommodate each other (4, 5, 6). Learning from
each other is not only necessary but also possible. However, the
picture for the more transient collaborations is not hopeless.
Some of these consultants demonstrate that they have some
leverage with their users to encourage them to learn more, though
the generality of this is yet to be explored. Repeated interactions
may also provide occasions for more learning opportunities to
occur naturally.

This is preliminary work and requires further investigation. The
next step is to include the scientists in subsequent interviews, so
that a more complete view of the collaborative relationships may
be obtained.

6. ACKNOWLEDGEMENTS
My thanks to the consultants and managers who shared their
experiences with me.

7. REFERENCES
[1] Clark, H.H. and Brennan, S.E. Grounding in

Communications, in Perspectives on Socially Shared
Cognition, Resnick, L.B., Levine, J.M. and Teasley,
S.D. (Eds.). 1991, APA, p. 127-149.

[2] Graham, S. L., Snir, M., and Patterson, C.A. (Eds.)
Getting Up To Speed: The Future of Supercomputing,
2005, National Academies Press.

[3] Halverson, C. Personal communication, March 2006.

[4] Hara, N., Solomon, P., Kim, S-L., and Sonnenwald, D.
H. An Emerging View of Scientific Collaboration:
Scientists’ Perspectives on Collaboration and Factors
that Impact Collaboration. Journal of the American
Society for Information Science and Technology, 2003,
54 (10): p. 952-965.

[5] Kraut, R., Galegher, J. and Egido, C. Relationships and
Tasks in Scientific Collaborations. Human-Computer
Communication, 1988, 3: p. 31-58.

[6] Olson, G. O. and Olson. J. S. Distance Matters. Journal
of Human Computer Interaction, 2000, 15 (2-3): p.
139-178.

[7] Pollock, L. and Jochen, M. Making Parallel
Programming Accessible to Inexperienced
Programmers through Cooperative Learning. In ACM
Special Interest Group on Computer Science Education
(SIGCSE ’01), ACM: New York, p. 224-228.

[8] Weinberg, A.M. Impact of large-scale science on the
United States. Science, 1961, (134): p. 161-164.

