
RC24053 (C0609-006) September 15, 2006
Computer Science

IBM Research Report

Flow Management for SIP Application Servers

Jing Sun
Department of Computer Science and Technology

Tsinghua University
Beijing, China

Jinfeng Hu, Ruixiong Tian, Bo Yang
IBM Research Division

China Research Laboratory
HaoHai Building, No. 7, 5th Street

ShangDi, Beijing 100085
China

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Abstract—Building healthy, long-running SIP application
servers is more challenging than WEB servers. Since SIP has been
adopted by telecom industry, SIP servers should meet car-
rier-grade QoS requirement, which is more critical than WEB
services. SIP messages are well organized into sessions. When a
server experiences an incoming message burst or a relatively long
time of overload, many transactions would experience very long
response time, even resulting in session failures. This is not ac-
ceptable by telecom providers. Unlike http, most SIP messages are
transmitted by UDP protocol and retransmissions are employed
to improve the transmission reliability. However, these retrans-
missions would exacerbate the situation when the server is under
high load. In this paper, we use front-end flow management to
address these challenges simultaneously. Our method integrates
concurrency limit, message scheduling, and admission control to
achieve overload protection and QoS guarantee. We also devise
some novel techniques such as twin-queue scheduling, retrans-
mission removal, and GC detection to improve the effectiveness of
the method. Experiments show that the system apparently re-
duces the average response time and improves the response time
distribution.

Index Terms—SIP, Flow Management, Session, SLA

I. INTRODUCTION
Session Initiation Protocol (SIP) [1] has been widely ac-

cepted as a major signaling protocol to establish and manage
sessions in IP networks. Here, a session can be a simple tele-
phone call, a collaborative conference, or any other kind of
multimedia session. Moreover, it is also adopted in carrier
grade environments, such as the IP Multimedia Subsystem
(IMS) of the 3rd Generation Partnership Project (3GPP) in the
emerging Universal Mobile Telecommunications System
(UMTS) networks [2]. Under this circumstance, leading J2EE
middleware providers also embraces SIP and integrates cor-
responding support (e.g., JSR 116 [10]) into their major
products, such as IBM WebSphere and BEA WebLogic.

Compared to web servers, a server running SIP applications
has some different characters. First, During a SIP session,
messages compose transactions, the failure of which might
cause the whole session to fail. A simple call session is shown
in Fig. 1, in which there are three transactions: the INVITE one,
the ACK one, and the BYE one.

Second, SIP is chosen by telecom industry as the signaling
protocol in 3G network and NGN. Therefore, SIP servers
should meet more critical QoS requirements than http servers.
For a simple telephony call, the response time of a ses-
sion-establishing request (an non-retransmitted INVITE) on
the server end should not exceed 100 milliseconds with a high

 This work was done when Jing is working as intern in IBM research.

possibility [3]. Here “response time” is defined as the time
interval from receiving an INVITE to sending out its first syn-
chronous reply, which means the first non-100 response, if the
server is a SIP User Agent Server (UAS) or the first corre-
sponding outbound INVITE if the server is a SIP proxy. When
the SIP server encounters an incoming message burst, or a long
period of overload, many requests would fail to meet the QoS
requirement, or even fail to establish the session because of the
too long response times. Fig. 2 gives a real server running
profile. In this case, the server ran a simplest SIP UAS as
shown in Fig. 1 based on a JSR-116-compliant SIP container
on top of RedHat ES 3 update 3. The node has an Intel 2.4G
hyper-threaded P4 CPU and 4G RAM. A SIPP [4] on a similar
configured server in the same network ran as a User Agent
Client (UAC) and initializes sessions at a rate of 400 calls per
second (CPS). The running lasted 3641 seconds, during which

Flow Management for SIP Application Servers
Jing Sun1, Jinfeng Hu2, Ruixiong Tian2, Bo Yang2

1Dept. Computer Sci. and Tech., Tsinghua University, Beijing, China
2IBM China Research Lab, Beijing, China

E-mail: sunjing05@mails.tsinghua.edu.cn, {hujinf, tianruix, boyang}@cn.ibm.com

UAS

INVITE

180 Ringing

200 OK

ACK

BYE

200 OK

media

UAC

a session

synchronous

no response

UAS

INVITEINVITE

180 Ringing180 Ringing

200 OK200 OK

ACKACK

BYEBYE

200 OK200 OK

mediamediamedia

UAC

a sessiona session

synchronoussynchronous

no response

Fig. 1. The simplest SIP session.

Fig. 2. The server’s response time under 400 CPS

 2

152 calls failed and 95634 messages were retransmitted. As
shown in Fig. 2, once the server experienced overload, not only
many calls failed, but also the response times of a mass of calls
were heavily prolonged, exceeding the requirement of the
service level agreement (SLA).

Third, because SIP messages are usually transmitted by UDP,
when the server does not respond timely, the client will re-
transmit the message, maybe for many times. This further ex-
acerbates the overload situation. Moreover, SIP servers em-
bedded in a Java-based middleware have to experience long
no-service pause times due to the Java garbage collections
(GC), which is the reason why spikes appear periodically in Fig.
2.

Consequently, to keep a SIP server running smoothly in a
long term, we should address the following challenges:

1. A server should be always protected from overload;
2. A server should keep response times within the limit

specified by SLA for as many requests as possible;
3. The session integrity should be honored. Only ses-

sion-establishing requests could be rejected if some
admission control method is applied.

4. GC’s affection should be taken into account.
In this paper, we propose a front-end flow management sys-

tem (FEFM) to do overload protection and QoS improvement
for SIP servers. FEFM uses concurrency limit to control the
rate of new session creation on the server, preventing it from
overload. To adjust the response times to meet the SLA re-
quirement as much as possible, the INVITE messages are
scheduled according to the prediction of the next request's
response time. If a request is predicted to be able to have its
response time meet the SLA, it would be prior to send to the
server. To eliminate the prediction error caused by GC, a GC
detector judges whether a request has been affected by GC; if
so, its response time would not be used in the predictor. FEFM
also adopts a twin-queue structure to improve the server’s
throughput, which can also be used to compromise a suitable
trade-off between the SLA guarantee and the throughput.
Elaborated experiments are made to evaluate FEFM from many
sides and show its effectiveness for overload protection and
response time management.

The rest of the paper is organized as follow. Section III de-
scribes the system architecture and major algorithms. Section

IV gives experiment results. Section IV discusses related works.
Section V concludes the paper.

II. SYSTEM ARCHITECTURE AND ALGORITHMS
The Front-end Flow Management system (FEFM) runs as a

SIP stateless proxy [1] on a node in front of a SIP server (or a
set of SIP servers). The client sends SIP messages to the proxy
who decides which of them are delivered to the server and
which are rejected. The system’s primary work is to provide
overload protection for the SIP server. As mentioned in Section
I, it should also shape the response times to maximize the suc-
cessful rate of sessions that conform to the SLA requirement.
However, the SLA is not the only target. We could not reject
too many sessions just in order to ensure a small part of re-
quests’ response times. The system should also maintain the
SIP server’s throughput as much as possible, while considering
the SLA constraint.

The FEFM’s architecture is shown in Fig. 3. When a new
request comes, FEFM firstly classifies it. If it belongs an on-
going session, it will be directly sent to the server. Otherwise, it
will be put into a new-request queue that buffers the ses-
sion-establishing requests. Meanwhile, a selector picks up a
proper session-establishing request from the header of the
new-request queue or the header of the old-request queue to
deliver it to the server when required by the throttle. (The
scheduling between the two queues will be described in sub-
section C.) The throttle limits the number of the concurrent
requests that are being executed on the server to guard against
server overload. The timestamps of any request and its reply
when they pass through the throttle will be written down by a
recorder. (The reply of a non-INVITE request is defined as its
response if the server acts as a SIP UAS or the corresponding
outbound request if the server acts as a SIP proxy.) The time-
stamps are used to help the selector make its decision. The
parameters used in FEFM are defined in Table I.

A. Overload protection
To control the server load, FEFM limits the number of the

requests being concurrently executed on the server. By setting a
threshold N, the throttle can prevent the server from overload.
The throttle observes the number of the concurrent requests on
the server at runtime, noted as n. After a request is sent to the
server, whatever it is a session-establishing request or not, the

…...

new-request queue

old-request queue

store box control box

selectorselector

throttlethrottle

recorderrecorder

requests responses
network

classifyclassify
ongoing session

new session

servers

…...

new-request queue

old-request queue

store box control box

selectorselector

throttlethrottle

recorderrecorder

requests responses
network

classifyclassify
ongoing session

new session

servers

Fig. 3. The Frond-end Flow Management System Architecture

 3

throttle increases n by 1. When the reply of a request is re-
ceived, it decreases n by 1. For a request with no response, such
as ACK, a timer is set to be triggered periodically (in our sys-
tem, it is set to D/2, where D is the response time requirement
documented in SLA) to decrease n by the number of ACKs that
are sent to the server in the last period. When a request that
should have a response but does not get a response for a long
time (2·D in our system), it expires and n is then decreased by 1.
Every time when n is decreased, the throttle will check if n<N
holds. If so, it would notify the selector to select N−n new
session-establishing requests to send to the server.

It should be noted here that setting N does not mean that the
number of concurrent executed requests would be never be-
yond N because all the non-INVITE requests are admitted into
the server immediately without checking n. However, when n is
over N, no session-establishing request will be admitted into the
server any more. Such a situation will persist until some re-
quests get their replies or expire, which cause n to drop under
N.

B. Retransmission removal
As mentioned above, a SIP client would retransmit a mes-

sage if it does not receive any expected response in time. The
retransmission interval commonly starts at 500ms and doubles
after every retransmission. By default, a message will not be
retransmitted more than 7 times. However, the retransmissions
that originally designed to improve the message reliability will
hurt the performance, especially when the load is already high.

As listed in section I, during one-hour running, the UAC
retransmitted 95634 messages. Unfortunately, most of the
retransmissions occurred when the server was under high load
(after GC), which further exacerbated the situation: the load
imposed on the server gets even higher, the request queue on
the server gets even longer, and consequently the response
times gets even larger (more than 8 seconds at the most). As a
matter of course, if we eliminate unnecessary retransmissions
that are sent to the server, the server’s load will be alleviated,
especially during the high-load or overload period.

The retransmission removal is implemented as follows. If a
request has already been sent to the server but has neither got its

reply nor expired, it will be recorded in the recorder. The
INVITE requests that have not been sent to the server will be
buffered in the new-request queue or the old-request queue.
When FEFM receives a new request, it first checks if it has
already been in the recorder, the new-request queue, or the
old-request queue. If so, it will be judged as a retransmission
and discarded immediately. If a request gets its reply from the
server or expires, it will be removed from the recorder. After
that, its retransmission will be treated as a non-retransmitted
request and not be removed. Therefore, the retransmission
removal mechanism of FEFM will not hurt the message reli-
ability.

C. Response time management
Generally, a SLA imposes response time requirements on

many kinds of requests. In FEFM, we focus our response time
management on session-establishing requests. Other requests
are admitted into the server as soon as possible without being
queued, so they must have better response times than ses-
sion-establishing requests. Such a design is because 1) the
response time of session-establishing request is a part of the
end-to-end “post-dialing delay” (a.k.a., “post-selection delay”),
which is a highly important QoS metric in telecom standards
 [11] [12]; and 2) queuing or even rejecting other requests takes
the risk of cutting off an existing session, which means call
failure and should be intensively avoided in telecom services.

When the server load is high, admitting all sessions implies
long response times that might be far beyond the SLA re-
quirement. Therefore, FEFM would rather only admit those
session-establishing requests that could meet the SLA re-
quirement and reject others. To achieve this, FEFM needs to
estimate each session-establishing request’s response time,
which is composed by Tw (the time that a session-establishing
request has been waiting in the queues before it is sent to the
server) and Tm (its execution time on the server). Tw is measured
by the recorder (according to the time when the request is re-
ceived by the proxy and when it is about to admitted into the
server). Tm is estimated by an exponentially moving average:

Tm = α · Te + (1−α) · Tm (1)
Every time a session-establishing request gets its reply, Tm is

updated using the equation (1), in which Te is the request’s
execution time measured by the recorder and α is a weight. α is
larger, Tm is more responsive. When the load is light, α should
be set relatively small to prevent temporarily fluctuation of the
response time from causing the estimated Tm deviating from the
stable value too much. On the contrary, when the load is high, α
should be set larger to reflect the current runtime status rapidly.

The selector checks the header of the new-request queue
whenever it is asked by the throttle to admit a new ses-
sion-establishing request. It predicts the request’s response
time as (Tw.+ Tm). If it is less than D1, a preset threshold, the
request will be admitted into the server immediately. Otherwise
it will be moved to the old-request queue and the selector will
turn back to check the new header of the new-request queue.
Such a process continues until the selector admits a request
from the new-request queue or the new-request queue turns

TABLE I
THE PARAMETERS DEFINITION

Parameter Definition

N Max number of concurrent requests on a server

n Number of current requests running on a server

D Response time required by SLA

D1 The threshold for the new-request queue

D2 The threshold for the old-request queue

Te Last request’s real execution time

Tw Waiting time of a request in the new-request queue

Tm The predicted execution time of the mth request

α Weight of the exponentially moving average

 4

empty. If the latter happens, the selector will then turn to check
the header of the old-request queue. If its predicted response
time is less than D2, another preset threshold, it will be admitted
into the server immediately. Otherwise, it will be rejected (by
sending back a “503 Service Unavailable” response) and the
selector will turn back to check the new header of the
old-request queue. Such a process continues until a request is
admitted into the server from the old-request queue or the
old-request queue turns empty. If the latter happens, this round
of selection terminates. When the selector is asked by the
throttle to admit N−n new session-establishing requests, it runs
N−n rounds of selection.

D. The twin-queue scheduling
The above twin-queue scheduling is illustrated in Fig. 4.

FEFM chooses this strategy, other than a simple FIFO queue, in
order to improve the server’s throughput, while simultaneously
considering the SLA requirement. Any request not being able
to meet the response time requirement with a high possibility is
not directly rejected, but is put into the old-request queue,
which gives it another opportunity to be admitted. When the
incoming rate of session-establishing requests declines, the
new-request queue would be empty in some time. If FEFM has
no request hold in the old-request queue, the server will be idle,
which would cause the server‘s throughput to decrease. In this
situation, the requests in the old-request queue will be valuable
to maintain the server’s throughput, even though they do not
conform to the SLA requirement. Moreover, since the requests
do not come evenly, (it is more reasonable to assume that the
incoming rate of session-establishing requests conforms to a
Poisson distribution), the requests accumulated in the
old-request queue during a peak will be processed at the
off-peak time. Therefore, it not only maintains the server’s
stable throughput, but also decreases the rejection rate of the
session. Regarding the parameters of the twin-queue schedul-
ing, D1 maximizes the rate of admitted sessions that success-
fully conforms to the SLA requirement, while D2 minimizes the
rejection rate of the sessions.

Carefully selecting D1 and D2 could balance the SLA guar-
antee and the server’s throughput. Commonly, we can set D1 as
the SLA-specified response time requirement. However, in
practice, we recommend setting it a litter smaller than the re-
quirement. This is because the response time prediction could
have some error, overestimation or underestimation. Setting D1
as SLA requirement would move some requests into
old-request queue by mistake due to overestimation. Lowering
D1 can help reduce the possibility of this mistake. However, it

would increase the possibility of another mistake that is due to
underestimation: admitting some requests that eventually fail to
meet the SLA requirement. This is not a big problem because
we have some room to tolerate it. Most SLAs do not impose a
strict requirement upon all the requests. They commonly pro-
vide a percentile requirement, e.g., a 95 percentile value.

D2 should be larger than the SLA requirement. But we don’t
recommend a very large D2. Large D2 indicates long
post-dialing delay, which is a bad experience for users. The
area of D1 and D2 is depicted in Fig. 4, in which the SLA re-
quirement is noted as D.

E. GC detection
For a SIP server implemented in Java, garbage collection

(GC) is inevitable in a long run. GC will heavily prolong the
execution time, which will hurt the accuracy of the response
time prediction. If an execution time during GC period is used
in equation (1), Tm will deviate too much from the real value. If
it is an overestimation, it will cause all the succeeding ses-
sion-establishing requests to be pushed into the old-request
queue for a long time, which therefore impairs the ability of the
system to meet the SLA requirement. FEFM develops a tech-
nique to avoid such an overestimation.

The recorder continuously monitors the time interval of two
consecutive replies received from the server. Assume at time t,
this value suddenly increases and exceeds a threshold (100ms is
good enough based on our experiments). Then FEFM presumes
that a GC just completed on the server. From then on, all the
response times whose related requests are admitted into the
server before t will not be used for the response time prediction,
more specifically, the estimation of Tm by equation (1).

III. EXPERIMENT RESULTS AND DISCUSSIONS
We used a lot of experiments to evaluate the FEFM system.
The test bed includes three nodes, running SIP server, FEFM,

and client respectively, connected by 1G Ethernet. The servers
have the same configuration: 1* 2.4 G HyperThread Pentium 4
CPU, 4G RAM, Redhat ES 3 update 3, and Linux 2.4.3-smp.
The SIP server runs a simple UAS (as illustrated in Fig. 1.) on
top of the SIP container within IBM WebSphere 6.1, which is
compliant with JSR 116 [10]. FEFM is implemented in Java
and runs on a SIP stack compliant with JSR 32 [15]. Both the
server and the FEFM use IBM JVM 1.5. The client runs SIPP
1.1 [4] as a UAC. The parameters of SIP server and FEFM are
shown in Table II. We don’t need more than one SIPP client to
generate SIP traffic because SIPP is written in C and can gen-
erate enough loads for the SIP server which is Java-based*.

A. Response time prediction
The system heavily depends on the execution time prediction.

Fig. 5 shows predicted execution times vs. real execution times
(from recorder). The statistics are presented in Table III. The
predicted execution times match the real values well. There are

* It is certain that C-based server could provide higher performance than Java.
However, Java middleware is more attractive in the market for building appli-
cation servers because of its ease-to-use.

D1

D2

new-request queue

old-request queue

blocked

D1

D2

new-request queue

old-request queue

blocked

D

D

D2

D1

the area of
D1 and D2

D

D

D2

D1

the area of
D1 and D2

Fig. 4. Twin-queue schedule

 5

some underestimations, especially during GC periods, but
almost no overestimations are observed. This is because FEFM
only detects GCs after they occur, but does not predict GCs
before they occur. Therefore, it is possible for a quest admitted
into the server whose execution time has been predicted as
common finally encounters a GC when being executed on the
server. As discussed above, underestimations have no signifi-
cant impact on the performance management, whilst overes-
timations have, which are eliminated by our GC detection
technique.

B. GC policy selection
As shown above, GC has ill impact on response times. We

have tested difference kinds of GCs and tried to choose the one
with the least impact. IBM JVM has three kinds of GCs:
Optthrughput, Optavgpause, and Gencon (SUM JVM has some

similar ones). Optthrughput tries to maximize the server's
throughput. Optavgpause is optimized towards the average
response time. Gencon is a generational plus concurrent GC
policy. When JVM are specified to use Gencon, the Java heap
is split into two areas, a new area (say “nursery”) and an old
area (say “tenured”). A Java object is first created in the nursery
area, and then moved to the tenured area if it lives a long time.
JVM only do GC in the nursery area. Only when the available
space in the nursery area is not enough for a new object, it will
perform a global GC that covers the old area. Since the nursery
area is often set rather small, most GCs can be completed very
quickly while global GCs happen periodically with long in-
tervals. We compare the three kinds of GCs using 4-minute
experiments win which the load is light (300 CPS). Fig. 6
shows the result. We can see that Gencon increases the re-
sponse times slightly in ordinary running time, but
Optthrughput and Optavgpause often perform GC and heavily
increase the response times during the GC period. Gencon’s
global GC also produces response time spikes, but they show
up much less frequently than the other two. Therefore, for the
time-critical SIP applications, we should choose Gencon.

TABLE II
THE SERVER’S CONFIGURATION

FEFM Parameter Value Server Parameter Value
D 200 ms Min Heap Size 2G
N 150 Max Heap Size 2G
D1 D GC policy gencon
D2 8 s
α 0.5

The FEFM has the same JVM configuration with SIP server

TABLE III
THE PREDICTON AND REAL MEASUREMENT STATISTICS

Statistic Prediction Real Measurement

Mean (ms) 5.6806 6.87468

Standard Deviation 13.59279 22.30121

Standard Error 0.06079 0.09973

Min (ms) 0.61918 0

Max (ms) 487.37405 567

Median 3.12883 3

25% (ms) 2.60938 3

75% (ms) 4.09382 4

95% (ms) 19.59743 21

TABLE IV
THE RESPONSE TIME STATISTICS

300 cps 400 cps 500 cps
Statistic with

FEFM
no

FEFM
with

FEFM
no

FEFM
with

FEFM
no

FEFM
Mean (ms) 12.04 26.42 12.37 26.35 22.05 84.39
Standard

Error 0.186 0.676 0.094 0.466 0.170 1.520

Min (ms) 1 1 1 1 1 1

Max (ms) 1699 9199 1655 9842 2184 19883

95% (ms) 20 23 65 83 119 124

< 150 ms 98.87% 98.50% 98.39% 97.64% 96.82% 96.28%

Total calls 180000 180000 240000 240000 300000 300000

Retrans 4507 7225 12439 13340 41911 46919

Timeout 0 0 0 0 333 796

Fig. 5. Predicted execution times vs. real execution times (300CPS)

Fig. 6. The comparison of three GC policies

 6

C. FEFM running results
Fig. 7 shows the response times of the session-establishing

request using FEFM vs. not using FEFM. The loads are 300
CPS (light), 400 CPS (moderate), and 500 CPS (high), respec-
tively. Some other statistics are given in Table IV. When not
using FEFM, with 300 CPS, the server’s average CPU utiliza-
tion is 37% and no session fails. With 400 CPS, the server’s
average utilization is 53% and still no session failures. With
500 CPS the server’s average utilization is 66% and 0.27% of
the total sessions fail. Though some previous flow management
works (for WEB servers) tried to fully utilize the server, with
server’s CPU utilization almost approaching 100% [7] [6], it is
not preferred in real cases. Commonly, service providers will
not have their servers running at CPU utilization larger than
60%. Or else, they would add more resources [3]. Moreover,
the session failure rate of 0.27% is much higher than the tele-
com service criterion, which is no more than 0.02% [16].

Under light load, the server runs well commonly. However,
when global GC occurs, the requests are suspended and cu-
mulated on the server, causing a huge spike, as shown in the Fig.
7 (A). When using FEFM, the spike is cut down greatly. The
maximum response time drops nearly 8s. The standard error of
all the response times is also reduced from 0.676 to 0.186,
which means that the response times are more unified. When
the server is under moderate load, FEFM also improves the

response time’s distribution. More requests’ response times
decreased than those without FEFM, as shown in Fig. 7 (D).
Under high load, the server starts to reject the requests during
global GC, which lasts longer than that of light or moderate
load. There are 796 session failures. After using FEFM, the
global GC’s impact is alleviated. Both the session failures and
the maximum response time decrease obviously.

IV. RELATED WORKS
There is no too much research work on SIP QoS manage-

ment. [13] assesses the QoS of SIP-based mobile service, but
does provide any method for improvement. In [8], an admission
controller is built based on application specific policy infor-
mation and call authorization status. However, it focuses on the
interaction of SIP authorization process and admission con-
troller, rather than how to use admission control to improve
QoS. [9] uses virtual SIP links (VSL) to build an overlay, upon
which QoS is described and guaranteed for SIP applications.
This method demand the application should be developed
compliant with the VSL specification.

Our work is more inspired by some techniques in web flow
management. [7] first uses session-based admission control to
achieve overload protection for web servers. However, it does
not manage the response time. The response time prediction
method has also been adopted by some previous work [6].
FEFM integrates these techniques together with some other

A) Response Time under 300CPS B) Response Time under 400 CPS

C) Response Time under 500 CPS D) CDF

Fig.7. The response time under various load and the cumulative distribution function graph

 7

novel techniques such as retransmission removal, twin-queue
scheduling, and GC detection, building a well-performing SIP
flow management system. There are also some systems man-
aging response time based on runtime feedback [5] [14]. We
don’t choose that because it is hard to be used for session-based
flows in which a session-establishing request indicates a
number of other requests in the next minutes or even hours.

V. CONCLUSION
The session-based message flow and strict SLA requirement

are critical to a SIP application. To design a general flow
management system for the SIP server, we must simultaneously
consider the integrity of a session, the response time for a re-
quest within SLA limit, and the server’s throughput. We pro-
pose a Front-end Flow Management system to tackle the chal-
lenges. The SIP server is protected from overload by throttling
the session-establishing requests and retransmission removal.
The new-session requests are scheduled based on the response
time prediction to maximize the fraction of sessions conform-
ing to SLA requirement. A twin-queue is used to get a trade off
between SLA guarantee and the server’s throughput.

From experiment results, we prove the straightforward
methods mentioned above have positive effect on the SIP
server. Our system decreases the response time on the worst
situation, alleviates the impaction of GC, and improves the
response time distribution. However, there are some further
works remained to handle with, as discussion in the future
works.

REFERENCES
[1] J. Rosenberg, H. Schulzrinne “SIP: Session Initiation Protocol,” IETF

RFC 3261, June, 2002
[2] 3rd Generation Partnership Project, “Signaling flows for the IP multime-

dia call control based on SIP and SDP - stage 3 (release 5),” 3GPP TR
24.228 V5.7.0, December 2003.

[3] Communications with IBM customers in telecom industry
[4] SIPP. http://sourceforge.net/projects/sipp/
[5] Abhinav Kamra, Vishal Misra, and Erich M. Nahum "Yaksha: A

self-tuning controller for managing the performance of 3-tiered web sites"
In International workshop on Quality of Service (IWQoS), Jun. 2004, pp.
47-56.

[6] Josep M. Blanquer, Antoni Batchelli, Klaus Schauser, and Rich Wolski
"Quorum: Flexible Quality of Service for Internet Services". In NSDI
2005, May 2005, pp. 159—174

[7] L. Cherkasova and P. Phaal "Session based admission control: a mecha-
nism for improving performance of commercial web sites" Proc.
IEEE/IFIP Seventh International Workshop on Quality of Service
(IWQoS), Jun. 1999

[8] Ana Elisa Goulart, Randal T Abler. “On the interaction of SIP and ad-
mission control : An inter-domain call authorization model for internet
multimedia applications” Proc. IEEE IPOM’05, 0ct. 2005, pp. 9-18

[9] A. A. Kist, R. J. Harris “Using virtual SIP links to enable QoS for sig-
nalling” Proc. IEEE ICON2003, Sept. 2003, pp. 301-306

[10] JSR (Java Specification Requests) 116. http://jcp.org/en/jsr/detail?id=116
[11] Network grade of service parameters and target values for cir-

cuit-switched services in the evolving ISDN. ITU-T Recommendation
E.721.

[12] Network grade of service parameters and target values for cir-
cuit-switched public land mobile services. ITU-T Recommendation
E.771.

[13] Marc Portoles-Comeras, Marc Cardenete-Suriol, Josep Man-
gues-Bafalluy, Manuel Requena-Esteso, and Loïc Hersant. Experimental
Assessment of VoIP Quality in MIPv6 and SIP Mobility Scenarios. ICC
2006.

[14] Matt Welsh and David Culler. Adaptive Overload Control for Busy
Internet Servers. USITS 2003.

[15] JSR (Java Specification Requests) 32. http://jcp.org/en/jsr/detail?id=32.
[16] Telecom service criterion of China.

http://www.gxca.gov.cn/policy/law_mii36ling.htm (in Chinese).

