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Abstract—Building healthy, long-running SIP application 
servers is more challenging than WEB servers. Since SIP has been 
adopted by telecom industry, SIP servers should meet car-
rier-grade QoS requirement, which is more critical than WEB 
services. SIP messages are well organized into sessions. When a 
server experiences an incoming message burst or a relatively long 
time of overload, many transactions would experience very long 
response time, even resulting in session failures. This is not ac-
ceptable by telecom providers. Unlike http, most SIP messages are 
transmitted by UDP protocol and retransmissions are employed 
to improve the transmission reliability. However, these retrans-
missions would exacerbate the situation when the server is under 
high load. In this paper, we use front-end flow management to 
address these challenges simultaneously. Our method integrates 
concurrency limit, message scheduling, and admission control to 
achieve overload protection and QoS guarantee. We also devise 
some novel techniques such as twin-queue scheduling, retrans-
mission removal, and GC detection to improve the effectiveness of 
the method. Experiments show that the system apparently re-
duces the average response time and improves the response time 
distribution. 
 

Index Terms—SIP, Flow Management, Session, SLA 

I. INTRODUCTION 
Session Initiation Protocol (SIP)  [1] has been widely ac-

cepted as a major signaling protocol to establish and manage 
sessions in IP networks. Here, a session can be a simple tele-
phone call, a collaborative conference, or any other kind of 
multimedia session.  Moreover, it is also adopted in carrier 
grade environments, such as the IP Multimedia Subsystem 
(IMS) of the 3rd Generation Partnership Project (3GPP) in the 
emerging Universal Mobile Telecommunications System 
(UMTS) networks  [2]. Under this circumstance, leading J2EE 
middleware providers also embraces SIP and integrates cor-
responding support (e.g., JSR 116  [10]) into their major 
products, such as IBM WebSphere and BEA WebLogic. 

Compared to web servers, a server running SIP applications 
has some different characters. First, During a SIP session, 
messages compose transactions, the failure of which might 
cause the whole session to fail. A simple call session is shown 
in Fig. 1, in which there are three transactions: the INVITE one, 
the ACK one, and the BYE one.  

Second, SIP is chosen by telecom industry as the signaling 
protocol in 3G network and NGN. Therefore, SIP servers 
should meet more critical QoS requirements than http servers. 
For a simple telephony call, the response time of a ses-
sion-establishing request (an non-retransmitted INVITE) on 
the server end should not exceed 100 milliseconds with a high 
 

  This work was done when Jing is working as intern in IBM research. 

possibility  [3].  Here “response time” is defined as the time 
interval from receiving an INVITE to sending out its first syn-
chronous reply, which means the first non-100 response, if the 
server is a SIP User Agent Server (UAS) or the first corre-
sponding outbound INVITE if the server is a SIP proxy. When 
the SIP server encounters an incoming message burst, or a long 
period of overload, many requests would fail to meet the QoS 
requirement, or even fail to establish the session because of the 
too long response times. Fig. 2 gives a real server running 
profile. In this case, the server ran a simplest SIP UAS as 
shown in Fig. 1 based on a JSR-116-compliant SIP container 
on top of RedHat ES 3 update 3. The node has an Intel 2.4G 
hyper-threaded P4 CPU and 4G RAM. A SIPP [4] on a similar 
configured server in the same network ran as a User Agent 
Client (UAC) and initializes sessions at a rate of 400 calls per 
second (CPS). The running lasted 3641 seconds, during which 
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Fig. 1.  The simplest SIP session. 

Fig. 2.  The server’s response time under 400 CPS 
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152 calls failed and 95634 messages were retransmitted. As 
shown in Fig. 2, once the server experienced overload, not only 
many calls failed, but also the response times of a mass of calls 
were heavily prolonged, exceeding the requirement of the 
service level agreement (SLA).   

Third, because SIP messages are usually transmitted by UDP, 
when the server does not respond timely, the client will re-
transmit the message, maybe for many times. This further ex-
acerbates the overload situation. Moreover, SIP servers em-
bedded in a Java-based middleware have to experience long 
no-service pause times due to the Java garbage collections 
(GC), which is the reason why spikes appear periodically in Fig. 
2.  

Consequently, to keep a SIP server running smoothly in a 
long term, we should address the following challenges: 

1. A server should be always protected from overload; 
2. A server should keep response times within the limit 

specified by SLA for as many requests as possible; 
3. The session integrity should be honored. Only ses-

sion-establishing requests could be rejected if some 
admission control method is applied. 

4. GC’s affection should be taken into account. 
In this paper, we propose a front-end flow management sys-

tem (FEFM) to do overload protection and QoS improvement 
for SIP servers. FEFM uses concurrency limit to control the 
rate of new session creation on the server, preventing it from 
overload. To adjust the response times to meet the SLA re-
quirement as much as possible, the INVITE messages are 
scheduled according to the prediction of the next request's 
response time. If a request is predicted to be able to have its 
response time meet the SLA, it would be prior to send to the 
server. To eliminate the prediction error caused by GC, a GC 
detector judges whether a request has been affected by GC; if 
so, its response time would not be used in the predictor. FEFM 
also adopts a twin-queue structure to improve the server’s 
throughput, which can also be used to compromise a suitable 
trade-off between the SLA guarantee and the throughput. 
Elaborated experiments are made to evaluate FEFM from many 
sides and show its effectiveness for overload protection and 
response time management. 

The rest of the paper is organized as follow. Section III de-
scribes the system architecture and major algorithms. Section 

IV gives experiment results. Section IV discusses related works. 
Section V concludes the paper. 

II. SYSTEM ARCHITECTURE AND ALGORITHMS 
The Front-end Flow Management system (FEFM) runs as a 

SIP stateless proxy  [1] on a node in front of a SIP server (or a 
set of SIP servers). The client sends SIP messages to the proxy 
who decides which of them are delivered to the server and 
which are rejected. The system’s primary work is to provide 
overload protection for the SIP server. As mentioned in Section 
I, it should also shape the response times to maximize the suc-
cessful rate of sessions that conform to the SLA requirement. 
However, the SLA is not the only target. We could not reject 
too many sessions just in order to ensure a small part of re-
quests’ response times. The system should also maintain the 
SIP server’s throughput as much as possible, while considering 
the SLA constraint. 

The FEFM’s architecture is shown in Fig. 3. When a new 
request comes, FEFM firstly classifies it. If it belongs an on-
going session, it will be directly sent to the server.  Otherwise, it 
will be put into a new-request queue that buffers the ses-
sion-establishing requests. Meanwhile, a selector picks up a 
proper session-establishing request from the header of the 
new-request queue or the header of the old-request queue to 
deliver it to the server when required by the throttle. (The 
scheduling between the two queues will be described in sub-
section C.) The throttle limits the number of the concurrent 
requests that are being executed on the server to guard against 
server overload. The timestamps of any request and its reply 
when they pass through the throttle will be written down by a 
recorder. (The reply of a non-INVITE request is defined as its 
response if the server acts as a SIP UAS or the corresponding 
outbound request if the server acts as a SIP proxy.) The time-
stamps are used to help the selector make its decision. The 
parameters used in FEFM are defined in Table I.  

A. Overload protection 
To control the server load, FEFM limits the number of the 

requests being concurrently executed on the server. By setting a 
threshold N, the throttle can prevent the server from overload. 
The throttle observes the number of the concurrent requests on 
the server at runtime, noted as n. After a request is sent to the 
server, whatever it is a session-establishing request or not, the 
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Fig. 3.  The Frond-end Flow Management System Architecture 
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throttle increases n by 1.  When the reply of a request is re-
ceived, it decreases n by 1. For a request with no response, such 
as ACK, a timer is set to be triggered periodically (in our sys-
tem, it is set to D/2, where D is the response time requirement 
documented in SLA) to decrease n by the number of ACKs that 
are sent to the server in the last period. When a request that 
should have a response but does not get a response for a long 
time (2·D in our system), it expires and n is then decreased by 1.  
Every time when n is decreased, the throttle will check if n<N 
holds. If so, it would notify the selector to select N−n new 
session-establishing requests to send to the server. 

It should be noted here that setting N does not mean that the 
number of concurrent executed requests would be never be-
yond N because all the non-INVITE requests are admitted into 
the server immediately without checking n. However, when n is 
over N, no session-establishing request will be admitted into the 
server any more. Such a situation will persist until some re-
quests get their replies or expire, which cause n to drop under 
N.  

B. Retransmission removal 
As mentioned above, a SIP client would retransmit a mes-

sage if it does not receive any expected response in time. The 
retransmission interval commonly starts at 500ms and doubles 
after every retransmission. By default, a message will not be 
retransmitted more than 7 times. However, the retransmissions 
that originally designed to improve the message reliability will 
hurt the performance, especially when the load is already high. 

As listed in section I, during one-hour running, the UAC 
retransmitted 95634 messages. Unfortunately, most of the 
retransmissions occurred when the server was under high load 
(after GC), which further exacerbated the situation: the load 
imposed on the server gets even higher, the request queue on 
the server gets even longer, and consequently the response 
times gets even larger (more than 8 seconds at the most). As a 
matter of course, if we eliminate unnecessary retransmissions 
that are sent to the server, the server’s load will be alleviated, 
especially during the high-load or overload period.  

The retransmission removal is implemented as follows. If a 
request has already been sent to the server but has neither got its 

reply nor expired, it will be recorded in the recorder. The 
INVITE requests that have not been sent to the server will be 
buffered in the new-request queue or the old-request queue. 
When FEFM receives a new request, it first checks if it has 
already been in the recorder, the new-request queue, or the 
old-request queue. If so, it will be judged as a retransmission 
and discarded immediately. If a request gets its reply from the 
server or expires, it will be removed from the recorder. After 
that, its retransmission will be treated as a non-retransmitted 
request and not be removed. Therefore, the retransmission 
removal mechanism of FEFM will not hurt the message reli-
ability. 

C. Response time management 
Generally, a SLA imposes response time requirements on 

many kinds of requests. In FEFM, we focus our response time 
management on session-establishing requests. Other requests 
are admitted into the server as soon as possible without being 
queued, so they must have better response times than ses-
sion-establishing requests. Such a design is because 1) the 
response time of session-establishing request is a part of the 
end-to-end “post-dialing delay” (a.k.a., “post-selection delay”), 
which is a highly important QoS metric in telecom standards 
 [11] [12]; and 2) queuing or even rejecting other requests takes 
the risk of cutting off an existing session, which means call 
failure and should be intensively avoided in telecom services. 

When the server load is high, admitting all sessions implies 
long response times that might be far beyond the SLA re-
quirement. Therefore, FEFM would rather only admit those 
session-establishing requests that could meet the SLA re-
quirement and reject others. To achieve this, FEFM needs to 
estimate each session-establishing request’s response time, 
which is composed by Tw (the time that a session-establishing 
request has been waiting in the queues before it is sent to the 
server) and Tm (its execution time on the server). Tw is measured 
by the recorder (according to the time when the request is re-
ceived by the proxy and when it is about to admitted into the 
server). Tm is estimated by an exponentially moving average: 

Tm  = α · Te + (1−α) · Tm     (1) 
Every time a session-establishing request gets its reply, Tm is 

updated using the equation (1), in which Te is the request’s 
execution time measured by the recorder and α is a weight. α is 
larger, Tm is more responsive. When the load is light, α should 
be set relatively small to prevent temporarily fluctuation of the 
response time from causing the estimated Tm deviating from the 
stable value too much. On the contrary, when the load is high, α 
should be set larger to reflect the current runtime status rapidly.  

The selector checks the header of the new-request queue 
whenever it is asked by the throttle to admit a new ses-
sion-establishing request. It predicts the request’s response 
time as (Tw.+ Tm ). If it is less than D1, a preset threshold, the 
request will be admitted into the server immediately. Otherwise 
it will be moved to the old-request queue and the selector will 
turn back to check the new header of the new-request queue.  
Such a process continues until the selector admits a request 
from the new-request queue or the new-request queue turns 

TABLE I 
THE PARAMETERS DEFINITION 

Parameter Definition 

N Max number of concurrent requests on a server 

n Number of  current requests running on a server 

D Response time required by SLA 

D1 The threshold for the new-request queue 

D2 The threshold for the old-request queue 

Te Last request’s real execution time 

Tw Waiting time of a request in the new-request queue

Tm The predicted execution time of the mth request 

α Weight of the exponentially moving average 
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empty. If the latter happens, the selector will then turn to check 
the header of the old-request queue. If its predicted response 
time is less than D2, another preset threshold, it will be admitted 
into the server immediately. Otherwise, it will be rejected (by 
sending back a “503 Service Unavailable” response) and the 
selector will turn back to check the new header of the 
old-request queue. Such a process continues until a request is 
admitted into the server from the old-request queue or the 
old-request queue turns empty. If the latter happens, this round 
of selection terminates. When the selector is asked by the 
throttle to admit N−n new session-establishing requests, it runs 
N−n rounds of selection. 

D. The twin-queue scheduling 
The above twin-queue scheduling is illustrated in Fig. 4. 

FEFM chooses this strategy, other than a simple FIFO queue, in 
order to improve the server’s throughput, while simultaneously 
considering the SLA requirement. Any request not being able 
to meet the response time requirement with a high possibility is 
not directly rejected, but is put into the old-request queue, 
which gives it another opportunity to be admitted. When the 
incoming rate of session-establishing requests declines, the 
new-request queue would be empty in some time. If FEFM has 
no request hold in the old-request queue, the server will be idle, 
which would cause the server‘s throughput to decrease. In this 
situation, the requests in the old-request queue will be valuable 
to maintain the server’s throughput, even though they do not 
conform to the SLA requirement. Moreover, since the requests 
do not come evenly, (it is more reasonable to assume that the 
incoming rate of session-establishing requests conforms to a 
Poisson distribution), the requests accumulated in the 
old-request queue during a peak will be processed at the 
off-peak time. Therefore, it not only maintains the server’s 
stable throughput, but also decreases the rejection rate of the 
session. Regarding the parameters of the twin-queue schedul-
ing, D1 maximizes the rate of admitted sessions that success-
fully conforms to the SLA requirement, while D2 minimizes the 
rejection rate of the sessions.  

Carefully selecting D1 and D2 could balance the SLA guar-
antee and the server’s throughput. Commonly, we can set D1 as 
the SLA-specified response time requirement. However, in 
practice, we recommend setting it a litter smaller than the re-
quirement. This is because the response time prediction could 
have some error, overestimation or underestimation. Setting D1 
as SLA requirement would move some requests into 
old-request queue by mistake due to overestimation. Lowering 
D1 can help reduce the possibility of this mistake. However, it 

would increase the possibility of another mistake that is due to 
underestimation: admitting some requests that eventually fail to 
meet the SLA requirement. This is not a big problem because 
we have some room to tolerate it. Most SLAs do not impose a 
strict requirement upon all the requests. They commonly pro-
vide a percentile requirement, e.g., a 95 percentile value. 

D2 should be larger than the SLA requirement. But we don’t 
recommend a very large D2. Large D2 indicates long 
post-dialing delay, which is a bad experience for users. The 
area of D1 and D2 is depicted in Fig. 4, in which the SLA re-
quirement is noted as D. 

E. GC detection 
For a SIP server implemented in Java, garbage collection 

(GC) is inevitable in a long run.  GC will heavily prolong the 
execution time, which will hurt the accuracy of the response 
time prediction. If an execution time during GC period is used 
in equation (1), Tm will deviate too much from the real value. If 
it is an overestimation, it will cause all the succeeding ses-
sion-establishing requests to be pushed into the old-request 
queue for a long time, which therefore impairs the ability of the 
system to meet the SLA requirement. FEFM develops a tech-
nique to avoid such an overestimation.  

The recorder continuously monitors the time interval of two 
consecutive replies received from the server. Assume at time t, 
this value suddenly increases and exceeds a threshold (100ms is 
good enough based on our experiments). Then FEFM presumes 
that a GC just completed on the server. From then on, all the 
response times whose related requests are admitted into the 
server before t will not be used for the response time prediction, 
more specifically, the estimation of Tm by equation (1).  

III. EXPERIMENT RESULTS AND DISCUSSIONS 
We used a lot of experiments to evaluate the FEFM system. 
The test bed includes three nodes, running SIP server, FEFM, 

and client respectively, connected by 1G Ethernet. The servers 
have the same configuration: 1* 2.4 G HyperThread Pentium 4 
CPU, 4G RAM, Redhat ES 3 update 3, and Linux 2.4.3-smp. 
The SIP server runs a simple UAS (as illustrated in Fig. 1.) on 
top of the SIP container within IBM WebSphere 6.1, which is 
compliant with JSR 116  [10]. FEFM is implemented in Java 
and runs on a SIP stack compliant with JSR 32  [15]. Both the 
server and the FEFM use IBM JVM 1.5. The client runs SIPP 
1.1  [4] as a UAC. The parameters of SIP server and FEFM are 
shown in Table II. We don’t need more than one SIPP client to 
generate SIP traffic because SIPP is written in C and can gen-
erate enough loads for the SIP server which is Java-based*.  

A. Response time prediction 
The system heavily depends on the execution time prediction. 

Fig. 5 shows predicted execution times vs. real execution times 
(from recorder). The statistics are presented in Table III. The 
predicted execution times match the real values well. There are 
 

* It is certain that C-based server could provide higher performance than Java. 
However, Java middleware is more attractive in the market for building appli-
cation servers because of its ease-to-use. 
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some underestimations, especially during GC periods, but 
almost no overestimations are observed. This is because FEFM 
only detects GCs after they occur, but does not predict GCs 
before they occur. Therefore, it is possible for a quest admitted 
into the server whose execution time has been predicted as 
common finally encounters a GC when being executed on the 
server. As discussed above, underestimations have no signifi-
cant impact on the performance management, whilst overes-
timations have, which are eliminated by our GC detection 
technique. 

B. GC policy selection 
As shown above, GC has ill impact on response times.  We 

have tested difference kinds of GCs and tried to choose the one 
with the least impact. IBM JVM has three kinds of GCs: 
Optthrughput, Optavgpause, and Gencon (SUM JVM has some 

similar ones). Optthrughput tries to maximize the server's 
throughput. Optavgpause is optimized towards the average 
response time. Gencon is a generational plus concurrent GC 
policy. When JVM are specified to use Gencon, the Java heap 
is split into two areas, a new area (say “nursery”) and an old 
area (say “tenured”). A Java object is first created in the nursery 
area, and then moved to the tenured area if it lives a long time. 
JVM only do GC in the nursery area. Only when the available 
space in the nursery area is not enough for a new object, it will 
perform a global GC that covers the old area. Since the nursery 
area is often set rather small, most GCs can be completed very 
quickly while global GCs happen periodically with long in-
tervals. We compare the three kinds of GCs using 4-minute 
experiments win which the load is light (300 CPS). Fig. 6 
shows the result. We can see that Gencon increases the re-
sponse times slightly in ordinary running time, but 
Optthrughput and Optavgpause often perform GC and heavily 
increase the response times during the GC period. Gencon’s 
global GC also produces response time spikes, but they show 
up much less frequently than the other two. Therefore, for the 
time-critical SIP applications, we should choose Gencon. 

TABLE II 
THE SERVER’S CONFIGURATION 

FEFM Parameter Value  Server Parameter Value 
D 200 ms Min Heap Size 2G 
N 150 Max Heap Size 2G 
D1 D GC policy gencon 
D2 8 s   
α 0.5   

The FEFM has the same JVM configuration with SIP server 

TABLE III 
THE PREDICTON AND REAL MEASUREMENT STATISTICS 

Statistic Prediction Real Measurement 

Mean (ms) 5.6806 6.87468 

Standard Deviation 13.59279 22.30121 

Standard Error 0.06079 0.09973 

Min (ms) 0.61918 0 

Max (ms) 487.37405 567 

Median 3.12883 3 

25% (ms) 2.60938 3 

75% (ms) 4.09382 4 

95% (ms) 19.59743 21 

TABLE IV 
THE RESPONSE TIME STATISTICS 

300 cps 400 cps 500 cps 
Statistic with 

FEFM 
no 

FEFM 
with 

FEFM
no 

FEFM 
with 

FEFM 
no 

FEFM
Mean (ms) 12.04 26.42 12.37 26.35 22.05 84.39
Standard 

Error 0.186 0.676 0.094 0.466 0.170 1.520

Min (ms) 1 1 1 1 1 1 

Max (ms) 1699 9199 1655 9842 2184 19883

95% (ms) 20 23 65 83 119 124 

< 150 ms 98.87% 98.50% 98.39% 97.64% 96.82% 96.28%

Total calls 180000 180000 240000 240000 300000 300000

Retrans 4507 7225 12439 13340 41911 46919

Timeout 0 0 0 0 333 796 

Fig. 5.  Predicted execution times vs. real execution times (300CPS) 

Fig. 6.  The comparison of three GC policies  
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C. FEFM running results 
Fig. 7 shows the response times of the session-establishing 

request using FEFM vs. not using FEFM. The loads are 300 
CPS (light), 400 CPS (moderate), and 500 CPS (high), respec-
tively. Some other statistics are given in Table IV. When not 
using FEFM, with 300 CPS, the server’s average CPU utiliza-
tion is 37% and no session fails. With 400 CPS, the server’s 
average utilization is 53% and still no session failures. With 
500 CPS the server’s average utilization is 66% and 0.27% of 
the total sessions fail. Though some previous flow management 
works (for WEB servers) tried to fully utilize the server, with 
server’s CPU utilization almost approaching 100%  [7] [6], it is 
not preferred in real cases. Commonly, service providers will 
not have their servers running at CPU utilization larger than 
60%. Or else, they would add more resources  [3]. Moreover, 
the session failure rate of 0.27% is much higher than the tele-
com service criterion, which is no more than 0.02%  [16]. 

Under light load, the server runs well commonly. However, 
when global GC occurs, the requests are suspended and cu-
mulated on the server, causing a huge spike, as shown in the Fig. 
7 (A). When using FEFM, the spike is cut down greatly. The 
maximum response time drops nearly 8s. The standard error of 
all the response times is also reduced from 0.676 to 0.186, 
which means that the response times are more unified. When 
the server is under moderate load, FEFM also improves the 

response time’s distribution. More requests’ response times 
decreased than those without FEFM, as shown in Fig. 7 (D). 
Under high load, the server starts to reject the requests during 
global GC, which lasts longer than that of light or moderate 
load. There are 796 session failures. After using FEFM, the 
global GC’s impact is alleviated. Both the session failures and 
the maximum response time decrease obviously. 

IV. RELATED WORKS 
There is no too much research work on SIP QoS manage-

ment.  [13] assesses the QoS of SIP-based mobile service, but 
does provide any method for improvement. In  [8], an admission 
controller is built based on application specific policy infor-
mation and call authorization status. However, it focuses on the 
interaction of SIP authorization process and admission con-
troller, rather than how to use admission control to improve 
QoS.  [9] uses virtual SIP links (VSL) to build an overlay, upon 
which QoS is described and guaranteed for SIP applications. 
This method demand the application should be developed 
compliant with the VSL specification.  

Our work is more inspired by some techniques in web flow 
management.  [7] first uses session-based admission control to 
achieve overload protection for web servers. However, it does 
not manage the response time. The response time prediction 
method has also been adopted by some previous work  [6]. 
FEFM integrates these techniques together with some other 

                                
A)  Response Time under 300CPS                  B) Response Time under 400 CPS 

                                    
C) Response Time under 500 CPS                   D) CDF 

Fig.7.  The response time under various load and the cumulative distribution function graph 
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novel techniques such as retransmission removal, twin-queue 
scheduling, and GC detection, building a well-performing SIP 
flow management system. There are also some systems man-
aging response time based on runtime feedback  [5] [14]. We 
don’t choose that because it is hard to be used for session-based 
flows in which a session-establishing request indicates a 
number of other requests in the next minutes or even hours. 

V. CONCLUSION 
The session-based message flow and strict SLA requirement 

are critical to a SIP application. To design a general flow 
management system for the SIP server, we must simultaneously 
consider the integrity of a session, the response time for a re-
quest within SLA limit, and the server’s throughput. We pro-
pose a Front-end Flow Management system to tackle the chal-
lenges. The SIP server is protected from overload by throttling 
the session-establishing requests and retransmission removal. 
The new-session requests are scheduled based on the response 
time prediction to maximize the fraction of sessions conform-
ing to SLA requirement. A twin-queue is used to get a trade off 
between SLA guarantee and the server’s throughput.  

From experiment results, we prove the straightforward 
methods mentioned above have positive effect on the SIP 
server. Our system decreases the response time on the worst 
situation, alleviates the impaction of GC, and improves the 
response time distribution. However, there are some further 
works remained to handle with, as discussion in the future 
works. 
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