
RC24054 (W0609-059) September 18, 2006
Computer Science

IBM Research Report

Implicit Parallelism with Ordered Transactions

Christoph von Praun, Luis Ceze*, Calin Cascaval
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

*Department of Computer Science
University of Illinois at Urbana-Champaign

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Implicit Parallelism with Ordered Transactions

Christoph von Praun† Luis Ceze‡ Călin Caşcaval†

† IBM T.J. Watson Research Center, ‡ Department of Computer Science
{praun, cascaval}@us.ibm.com University of Illinois at Urbana-Champaign

luisceze@cs.uiuc.edu

Abstract
Implicit Parallelism with Ordered Transactions (IPOT) is an ex-
tension of explicitly parallel programming models to support im-
plicit parallelism through speculative execution. The key idea of
this model is to specify opportunities for parallelization within a
sequential thread using annotations similar to transactions. Unlike
explicit parallelism, IPOT annotations do not require the absence
of data or control-dependences, since the parallelization relies on
runtime support for speculative execution. IPOT as a parallel pro-
gramming model is determinate, i.e., program semantics are inde-
pendent of the interleaving of concurrent threads. For optimization,
non-determinism can be introduced selectively.

We describe IPOT as a programming model and an on-line tool
that recommends boundaries of ordered transactions by observing
the sequential execution. On a set of SPECcpu benchmarks and
two large HPC workloads, we demonstrate that our method is
effective in identifying opportunities for fine-grain parallelization
within OpenMP tasks. Using the automated task recommendation
tool, we were able to perform the parallelization of each program
within a few hours.

1. Introduction
The current trend in processor architecture is a move toward multi-
core chips. The reasons are multiple: the number of transistors are
increasing, the power budget for super-scalar processors is limiting
frequency and thus performance [2, 19]. Therefore parallel pro-
gramming is going to become much more prevalent, and involve
users from domains that did not traditionally deal with parallelism.
There are several ways to address this problem. One approach is
automatic parallelization. A compiler analyzes the source code and
extracts the parallel loops. Its main advantage is that users do not
get involved, and, at least theoretically, one can convert legacy se-
quential applications to exploit multi-core parallelism. However,
after 30 years of research, automatic parallelization works for reg-
ular loops in scientific codes. The range of applications for multi-
core spans a very different class of programs, which the auto-
matic parallelization has been traditionally unsuccessful in paral-
lelizing [24].

[copyright notice will appear here]

Another approach is speculative execution, in both forms,
Thread Level Speculation (TLS) and Transactional Memory (TM).
In this case, the system provides support for speculative execution
and extracts independent tasks from an application that can poten-
tially be executed in parallel. The system detects conflicting data
access and ensures that the parallel execution follows correct se-
quential execution semantics. In TLS, as opposed to TM, there is an
extra constrain on ordering. The task extraction can be done by ei-
ther hardware or a compiler. However, because the speculative state
is typically kept in hardware, the size of the parallel tasks is smaller
than the size of parallel tasks in an explicit parallel program. While
this technique allows parallel execution, it does not come for free;
the speculative hardware can be quite complex [20], and specula-
tive tasks are typically more expensive than parallel tasks [10].

A third approach to exploit machine-level parallelism is to ex-
plicitly specify parallel execution in the program. There are two
prevalent parallel programming models, message passing using
MPI [21] and shared memory, such as OpenMP [15]. Since multi-
cores in a chip share the memory, shared memory programming
models are more attractive. However, programmers need to paral-
lelize their codes by hand, and moreover, tune the performance of
the code for the particular chip they are using. In addition to all the
correctness concerns, this could introduce scalability and portabil-
ity problems.

In this paper we present an approach that combines the advan-
tages of programming using a shared memory programming model
and speculative execution to provide an environment in which
programmers can quickly convert sequential applications, and/or
scale explicit parallel programs to take advantage of multi-core ar-
chitectures. This environment consists of: (i) a parallel program-
ming model, called Implicit Parallelism with Ordered Transactions
(IPOT), that can be used either as a standalone model for paral-
lelizing sequential applications or an extension an explicit parallel
programming model for exploiting fine-grain concurrency; (ii) a set
of tools that support the user in finding parallel tasks in an applica-
tion and evaluating the effectiveness of an application parallelized
using IPOT. In addition to these programming tools, we require an
execution environment that provides hardware support for parallel
and speculative execution. We will discuss the support needed, but
this execution environment is not the focus of this paper.

IPOT borrows from transactional memory, since ’units of paral-
lel work’ in the programming model execute under atomicity and
isolation guarantees. In addition, IPOT inherits from TLS ordering
properties from TLS, hence ordered transactions. The key idea is
that ordering enables sequential reasoning for the programmer, but
does not – in the common case – preclude concurrency on a runtime
platform with speculative execution.

To summarize, this paper makes the following contributions:

1 2006/9/18

for (int i=0; i < n; ++i)
<ti>;

Figure 1. Program that executes ordered task sequence serially.

bool ti_done[]; // initially all false
finish foreach (point p[i]: [0:n-1]) {

if (i == 0)
atomic { <ti>; ti_done[i] = true; }

else
when (ti_done[i -1]) { ti; ti_done[i] = true; }

}

Figure 2. Explicitly parallel task sequence that is ordered through
conditional critical sections.

• A parallel programming model, IPOT, that extends sequential
and SPMD programming languages with support for specula-
tive multi-threading and transactional execution;

• A set of constructs that can be used to selectively relax the
determinacy of the IPOT parallel execution model;

• An algorithm that infers task recommendations from the exe-
cution of a sequential program. A task recommendation refers
to a region of code that performs a computation that is ’largely
independent’ from its embedding context;

• A tool to estimate the benefits of a sequential program anno-
tated with IPOT directives.

The rest of this paper is organized as follows: in Section 2 we
introduce the IPOT programming model, the language extensions
and discuss its determinacy; in Section 3 we present the parallel
task recommendation algorithm; in Section 4 we discuss our par-
allelism estimation tool; in Section 5 we evaluate how effective
is our environment in identifying and estimating parallelism for
several SPECcpu FP benchmarks and two other large applications
UMT2K [25] and CPMD [5]. Finally, we discuss related work in
Section 6, future work in Section 7, and conclude in Section 8.

2. Programming model
2.1 Example
The goal of IPOT is to simplify the parallelization of sequential
threads of execution. To motivate our approach we use the generic
example of a sequential loop that executes a series if tasks ti. We
consider the case where the ti may have (carried) data dependences,
hence concurrency control must be used to coordinate the execution
of concurrent tasks.

Parallelization with explicit concurrency
We use features from the programming language X10 [4] for il-
lustration and assume that transactional memory is the underlying
mechanism of concurrency control. The parallelization of the task
sequence shown in Figure 2 is non-trivial, since conditional critical
sections have to be used enforce the commit order of transactions
in concurrent threads:

In this program, the finish foreach construct achieves a fork-
join parallelization where all loop iterations are executed concur-
rently. The original body of the loop is enclosed in a transaction
(atomic block). Commit ordering of these transactions is enforced
indirectly: The control dependence (sequential order) in the origi-
nal sequential program is converted into a data dependence, namely
a true data dependence on array ti done[]. A similar example is
given in [3, Figure 7]. Notice that most common implementations

for (private int i=0; i < n; ++i)

tryasync {
<ti>;

}

Figure 3. Ordered task sequence with IPOT.

of conditional atomic blocks would serialize the computation and
not overlap the execution of subsequent iterations.

This example demonstrates that the loss of task-ordering infor-
mation due to explicit parallelization is recovered through complex
synchronization at the level of the software and runtime system.
Apart from the code complexity, this high level synchronization
can also negatively affect performance.

Parallelization with implicit concurrency
The parallelization of the sequential loop with IPOT is shown in
Figure 3.

The IPOT execution model demands that the semantics of this
program are equivalent to serial execution semantics – regardless
of the existence of data dependences among ti. This program can
execute also efficiently (given the mechanisms described in this
paper), i.e., execution is parallel if there are no dependences, and
serial if there are dependences.

IPOT enables that ordering constraints are tracked by the run-
time platform (e.g the architecture) and thus facilitates highly ef-
ficient synchronization among tasks. Beyond ordering, Section 2.2
illustrates how IPOT can be used to explicitly avoid and resolve
conflicts among concurrent tasks that access shared data.

2.2 Language extensions
IPOT can be embedded in a sequential programming language
through several language extensions that are described below. All
extensions resemble optional annotations, i.e., they support the
compiler and runtime in achieving a good parallelization and suc-
cessful speculation. Any single annotation may be left out without
hampering the correctness of a program; except for the async an-
notation, introducing IPOT annotations does not change the serial
program semantics. We believe that this property makes IPOT at-
tractive and simple to use in practice.

Transaction boundaries
A mechanism to declare transaction boundaries. We use tryasync
{ stmts } to denote a block of code that should execute with
ordered transaction semantics. A permissible implementation of
a tryasync statement is to flatten it, i.e., to replace it with its
statement block. tryasync blocks can be nested.

Conflict avoidance
The following declarators specify versioning and conflict resolu-
tion on local variables that are ’shared’ among a declaration scope
and its ordered transactions. The annotations declare how data is in-
tended to be used by the speculative task, its parent, and successor.
The annotations facilitate data privatization.

final variables: local variables that are defined in the invocation
context and read inside a transaction. Languages with built-
in explicit concurrency follow this model already: e.g., Java
prevents a child thread to access the stack of its parent thread;
X10 limits access of a child activity to final variables in its
parent’s stack.

private variables: local variables that are defined in the context
and privatized in each transaction. These variables may be read

2 2006/9/18

double x[N,N];

double private r=0.0, private oldval=0.0;

double reduction sigma = 0.0;

for (private int i=1; i < N-1; i++) {
tryasync {

for (private int j=1; j < N-1; j++) {
oldval = x[i,j];

x[i,j] = (4.0 * x[i,j] +

x[i+1,j] + x[i,j+1] + // old

(flow x[i,j-1] + (flow x[i-1,j]) // new

/ 8.0;

r = oldval - x[i,j];

sigma += r*r;

}
}

}

Figure 4. Wavefront computation implemented with IPOT.

and updated inside the transaction; updates are not visible out-
side the transaction. The copy is initialized with the value of the
parent thread (copyin semantics).

lastprivate: as private but the update of the last transaction
in the sequential order is propagated to the invocation context
of the transaction (copyout semantics).

Conflict resolution
The conflict resolution annotations provide hints on guaranteed
dependences. This helps the system decide to track or not a specific
address for conflict detection.

flow: This is an annotation of a read operation; a flow read blocks
until the immediate predecessor of a transaction updates the
variable, or the reading transaction becomes non-speculative.

race: A race variable is exempted from conflict detection, i.e.,
concurrent conflicting access does not lead to an transaction
rollback. Only scalar variables where read and write operations
are atomic may be declared as race variables. Race variables
can be useful in algorithms where tasks terminate or abort on
a global condition that can be read and set independent of the
task ordering, e.g., global cutoff boundary in branch and bound
algorithms such as the Traveling Salesman Problem.

reduction: similar to a race variable, except that the operations
available on such variables inside a transactions are limited to
associative operations (e.g. +=, -=, max=, min=, ...). Read and
update occur atomically, the serialization order of such opera-
tions in different tasks is not specified. Reduction variables do
not affect the determinacy of an IPOT program.

Using the aforementioned mechanisms for conflict avoidance
and detection, a programmer with perfect knowledge about data
dependence can rule out mis-speculation entirely as illustrated in
the following example.

2.3 Example
Figure 4 shows a finite difference stencil computation following the
Gauss-Seidel method. Apart from the IPOT directives (highlighted
in the example), the structure of the computation corresponds to the
sequential version of the algorithm.

The parallelization strategy chosen here considers the update
of each row of x as a separate task (wavefront). This is denoted
by the tryasync annotation before the inner loop. Given only
this annotation, the speculative execution will likely not be suc-

cessful due to data dependences across transactions. Additional an-
notations weed out misspeculation through data privatization, and
control the scheduling of speculative tasks: Variables r, oldval,
i, j are private, i.e., each task has its own copy of the variable
which is initialized with the value provided by the parent thread
(copyin). Data dependences on sigma are resolved through the
reduction declaration, i.e., read and update occur atomically in
any order among transactions. Read access to variables with flow
dependences are explicitly declared and may delay a transaction
if necessary to enforce the dependence with a predecessor in the
serialization order.

In the example, the IPOT annotations capture all cross-task
data dependences that are potential sources of mis-speculation and
hence it is guaranteed that no conflicts will ever occur at runtime.
This means that IPOT is capable to support well-known paralleliza-
tion schemes that do not require speculation (in this case wavefront)
in an efficient way.

The example illustrates that parallelization with IPOT preserves
the algorithmic structure and achieves to separate it from the paral-
lelization aspect. Compared to explicitly parallel versions of stencil
computations that follow wavefront or red-black strategies, IPOT
compares favorably in code complexity and avoids extra code due
to data decomposition and synchronization.

2.4 Determinacy
A parallel program is externally determinate [6] (determinate for
short) if its output depends only the input, not on the scheduling
(interleaving) of concurrent threads.

One of the strengths of the IPOT programming model is that
determinacy is preserved when evolving from a sequential to a par-
allel version of a program. The reason for determinacy is that data
races [14] that may occur due to the parallelization are automat-
ically detected and resolved by the system: Whenever two tasks
participate in a data race, the more speculative task (and its succes-
sors) are restarted. This behavior makes the system determinate.

The declarations for conflict avoidance presented in Section 2.2
do not affect determinacy, they merely help to reduce the frequency
of conflicts and situation where conflicts need to be corrected.
The wrongful use of such declarations can however alter program
semantics.

There are two constructs for conflict resolution that permit to se-
lectively introduce internal non-determinacy [6]: reduction and
race. Internal non-determinacy means that intermediate states en-
countered during program execution may be different in different
program runs, (depending on the thread interleaving), the final out-
put of a parallelized construct will however be the same as in a se-
quential computation. Internal non-determinacy enhances the flex-
ibility in scheduling operations and hence this can be regarded as
an optimization.

A reduction declaration preserves external determinacy, as
tasks are only permitted to perform associative update operations
on such variables (see associative non-determinacy [6]). A race
variable is different: it is the programmer’s responsibility to access
the variable in a manner that preserves determinacy. Race vari-
ables are the only possible source of external non-determinism in
the IPOT programming model.

Given that IPOT programs are principally determinate, many
issues that complicate the semantics of explicitly concurrent pro-
gramming languages doe not arise, such as shared memory consis-
tency [18], semantics of inlining threads [13], and exception han-
dling in concurrent programs [4].

2.5 Handling of overflow, I/O, and system-calls
IPOT lends itself nicely to handle overflow of speculative buffers
or to execute operations with permanent side effect through serial-

3 2006/9/18

int i;

#pragma omp parallel for private (i)

for (i=0; i < N, ++i)

<body>

finish {
for (private int i=0; i < N, ++i)

async <body>

}

Figure 5. Doall parallelism with OpenMP and IPOT extensions.

ization: A task waits to become the least speculative, then validates
itself, becomes non-speculative, and continues the remainder of its
computation in a non-speculative manner.

2.6 Software development process
IPOT facilitates a software development process that separates the
aspects of algorithm development and performance engineering: A
domain expert specifies an algorithm and possibly ’units of inde-
pendent work’ in a sequential logic. Subsequently, a performance
expert annotates (with the help of the task finder tool presented in
Section 3) and restructures the programs using the mechanisms for
conflict detection and resolution to achieve an efficient parallel ver-
sion of the code.

2.7 Extension for explicit parallelism
A natural extension of IPOT is to permit explicitly parallel tasks
that are not subject to the rigorous conflict detection and the prede-
fined serialization order of speculative tasks. We describe an exten-
sion that relaxes the total serialization order of speculative tasks to a
partial commit order. Not surprisingly, this extension is a potential
source of non-determinism.

The key idea is to designate blocks of code that should execute
concurrently with their continuation. We use async { ... } to
denote such blocks. Unlike tryasync the execution of the body of
such block is not transactional. A barrier, similar to X10’s finish
guarantees termination of all scoped async blocks. Figure 5 illus-
trates these constructs and contrast them to an OpenMP for loop.

Transactions in the dynamic scope of the same async commit
according to a sequential model, while transactions in the scope of
different asyncs proceed concurrently, i.e., their serialization order
is unspecified.

async blocks may also be nested inside tryasync blocks, for
example as hints to facilitate vectorization by a compiler. Note that
the role of async blocks in IPOT is to support the parallelization of
sequential codes: Similar to tryasync, a permissible implementa-
tion of an async statement is to replace it with its statement body
(task inlining). Such transformation is not applicable in environ-
ments with more general uses of multithreading and concurrency
control.

A key challenge when integrating speculative execution with
explicit parallelism is that misspeculation is not ’for free’; in
fact misspeculation utilizes resources that other, non-speculative
threads may exploit to perform useful work. IPOT provides sev-
eral language features to control and tame misspeculation – which
overall facilitates the inter-operation between speculative and ex-
plicit multi-threading.

The async feature is a potential source of non-determinism if
concurrent async tasks access shared memory in a conflicting man-
ner, similar to OpenMP parallel annotations. Since async tasks ex-
ecute outside the safety harness of speculative execution, conflict-
ing access may not be detected.

This explicitly parallel extension of the IPOT programming
model is compatible with locks: Similar to the handling of I/O and

system calls (Section 2.5), the non-speculative serial execution or-
der always provides a ’safe’ fall-back execution model that can han-
dle blocking synchronization constructs such as locks. Moreover,
since IPOT’s model of concurrency control is based on transactions
not locks, IPOT programs are deadlock free; extending existing par-
allel programs that use locks with IPOT features will not introduce
deadlock.

3. Task recommendation
In the previous section we introduced language annotations that can
be used to identify independent units of work in existing sequential
or parallel programs. But, while providing support for speculative
execution with the IPOT model is a nice feature, we also want to
help the programmer focus on the important parts of the program
that can benefit from speculative parallelization.

Task recommendation identifies sections of code that are attrac-
tive candidates for units of speculative work. Two aspects deter-
mine the potential of a task to contribute to speedup a parallel pro-
gram: The fraction of the sequential execution spent in this section
(size) and the potential of overlap with preceding parts of the pro-
gram (hoist).

In the execution model underlying the task finder algorithm, a
task is characterized by a single program counter, called taskhead:
In a program execution, a dynamic task extends from one occur-
rence of the taskhead to the next. A task is the basic unit of spec-
ulative work. The result of the taskfinder algorithm is a set of
taskheads. The algorithm computes for each taskhead a number
of characteristics that provide guidance on selecting the taskhead
for parallelization. These characteristics are: the average size of the
task, the average distance of the closest data dependence, and the
potential speedup of the overall program.

The algorithm operates on a dynamic execution trace of a pro-
gram. In our implementation, this trace is collected in bursts of dy-
namic basic blocks obtained through dynamic binary instrumenta-
tion [12]. Figure 6 illustrates such a sequences of dynamic basic
blocks with dependence edges. The taskfinder algorithm is shown
in Figure 7 and proceeds in two steps: First, information from the
dynamic execution stream is recorded in the corresponding static
basic blocks (sample in Figure 8). Then, the the speedup estimates
for alleged taskheads at the start of each static basic block are com-
puted (Figure 9).

b2

b3

b4

b4

b5

b5d4

d1

d2

d3
s3

s4

s5

s6

s7

b1

data dependences

addr1

addr2

addr3

addr5

addr4

s2

s1
(1) sampling (2) rankingdynamic basic blocks

(RAW)

Figure 6. Illustration of the taskfinder algorithm.

4 2006/9/18

taskFinder ()
total_inst = 0

/* (1) sampling */
for dbb_list in <traces recorded by the pintool>

Set dep_edges = \emptySet
for dyn_bb in dbb_list

total_inst += dyn_bb.ninstr
sample(dyn_bb, dep_edges)

/* (2) estimate speedup */
for static_bb in <list of static basic blocks>

estimate_speedup(static_bb, total_instr)

Figure 7. Task-finder algorithm.

sample (DynamicBasicBlock bb, Set dep_edges)
if dep_edges != \empytyset

e = <edge with minumum length in dep_edges>
sbb = staticBB(bb)
sbb.depDist.sample(e.len)
sbb.selfLen.sample(bb.pc - sbb.lastpc)
sbb.lastpc = bb.pc
sbb.count++;
/* remove incoming edges */
for e in bb.incomingDepEdges

dep_edges.remove(e)

/* add outgoing edges */
for e in bb.outgoingEdges

dep_edges.add(e)

Figure 8. Sampling of dynamic to static basic blocks.

Sampling
The sampling sweeps over the sequence of dynamic basic blocks
as illustrated in Figure 6. Given the program counter, the static
basic block corresponding to a dynamic instance is determined.
Two values are sampled into histograms that are associated with the
static basic block: The self length, i.e., the number of instructions
that have executed since the last encounter of the same program
counter. In Figure 6, the self length sampled in set s6 for basic
block b4 is the number of instructions in b4 and b5. The self length
value is an indication of the task size.

The dependence length is the closest data dependence that the
current or a subsequent dynamic basic blocks have to a definition
in some preceding basic block. The dependence length is an indica-
tion of the hoisting potential and is determined from the set of edges
that ’cross’ the current program counter. The length is reported in
number of instructions. In Figure 6, step s5, the closest data depen-
dence is d4. We consider only true dependences on heap-allocated
data. Our model assumes that writes are effected at the end and
reads occur at the beginning of a dynamic basic block.

Speedup estimation
For every static basic block in a program, a speedup estimation is
computed indicating the effect of parallelization achieved by plac-
ing a taskhead at the beginning of that basic block. The estimation
is computed from the average of the 90-percentile of samples of
the self length and dependence distance. The 90-percentile serves
to exclude outliers in the sampling that are, e.g., due to the first
and last iteration of a loop. The maximum degree of parallelism
(max par) that can be achieved is limited by the number of pro-
cessors and the number of times a certain taskhead is encountered.
Doall and doacross parallelism are distinguished, where the former
is assumed if the dependence is farther apart than the task accord-
ing to the maximum degree of parallelism. The estimation of the
speedup is computed according to Amdahl’s Law. In the case of

estimate_speedup (StaticBasicBlock bb, int total_instr)
if bb.count > 0

self_len = average(percentile(90, sbb.selfLen))
dep_dist = average(percentile(90, sbb.depDist))
exe_frac = self_len * bb.count / total_instr
max_par = min(NPROCS, bb.count)

if dep_dist < self_len * max_par
/* doall task */
shorten_factor = max_par

else
/* doacross task */
shorten_factor = min(max_par,

(dep_dist / self_len) + 1);
bb.speedup = 1.0 / (1.0 - exe_frac +

(exec_frac / shorten_factor))

Figure 9. Computation of speedup potential for taskheads

1 #define N 10000
2 int global[N]
3
4 void delay (long l) {
5 int i;
6 for (i = 0; i < l; ++i) ;
7 }
8
9 int main (void) {

10 int i, tmp;
11 for (i = 0; i < N ; i++) {
12 global[i] = 123;
13 delay (50);
14 }
15 for (i = 0; i < N ; i++) {
16 global[i % N] = 1 + global[(i-1) % N];
17 delay(100);
18 }
19 }

Figure 10. Example program for task recommendation (hoist.c).

doacross parallelism, we assume that the execution of subsequent
tasks is overlapped as tightly as permitted by closest data depen-
dence.

Notice that the algorithm considers each task in isolation. In the
execution model (Section 4), tasks may not be independent. This
assumption of task independence and the sampling and averaging
over the data dependence and task lengths are the main factors
of inaccuracy in the taskfinder. In practice, we observed that the
recommendations are a conservative estimate of the real potential
for parallelism.

Example
The program in Figure 10 illustrates how the taskfinder determines
loop level and, more generally, method and block-level parallelism.
The first loop in the main program initializes an array, the second
loop performs some computation with a carried loop dependence
through variables in the global array. The computation in both loops
is ’simulated’ through method delay.

The output of the taskfinder algorithm is shown in Figure 11;
the last column is not reported by the taskfinder but was added
to show the actual speedups obtained through simulated execution
(Section 4).

The reports concern three constructs in the example program:
Reports for lines 11 and 12 correspond to the initialization loop
which is fully vectorizable (doall), the distance of the closest de-
pendence is reported as zero, meaning there is no dependence. The
predicted speedup matches almost exactly the speedup reported by
the simulation.

5 2006/9/18

address frac spdup size count mindep kind info real spdup
--
0x08048319 97.0 2.23 416 6098 550 doacross hoist.c:4 1.48
0x08048335 97.0 2.23 416 6098 550 doacross hoist.c:7 14.97
0x08048408 67.4 1.51 550 3202 550 doacross hoist.c:15 2.95
0x0804838e 67.4 1.51 550 3202 550 doacross hoist.c:16 2.96
0x08048377 29.7 1.40 268 2893 0 doall hoist.c:11 1.48
0x0804835d 29.7 1.40 268 2896 0 doall hoist.c:12 1.48

Figure 11. Task recommendation for program in Figure 10.

Reports for line 15 and 16 refer to the second loop in the
main program with the carried dependence. The code is correctly
classified as doacross parallel, the size of the dependence equal to
one loop iteration. Notice that although the loop covers a larger
fraction of the overall execution time than the initialization loop,
the predicted speedup is only slightly higher. The speedup obtained
by the simulator is significantly higher, due aggressively hoisting
and overlapping the second loop with the initialization loop (as
would be done by loop-fusion in a compiler).

The taskheads corresponding to reports for line 15 and 11 are
synergistic: Placing both taskheads in the code results in a simu-
lated speedup of 14.97, which is higher than the sum of the individ-
ual speedups. The reason for this synergy is that tasks 5 can meet
their data dependence on the initialization earlier, since the initial-
ization itself is parallelized.

The reports for lines 4 and 7 refer to method delay. Due to the
context-insensitive nature of the sampling, the length and depen-
dence distance data associated with the basic blocks are blended
averages from the call sites of that method within the two loops in
the main program, and hence the speedup prediction has only lim-
ited significance. Interestingly though that the simulated speedups
achieved with taskheads before and after the delay loop differ sig-
nificantly. Taskhead in line 7 is execution equivalent to the syner-
gistic combination of taskheads in lines 11 and 15.

Taskhead recommendation for line 4 is different and would
correspond in the execution to taskheads placed after the data
accesses in both loops (recommendations corresponding to lines
16 and 12). This combination of taskheads is antagonistic, since
the the resulting performance corresponds to the minimum speedup
achieved by both taskheads individually.

Intuitively, the the capability of a task to achieve a good speedup
in combination with other tasks depends on when as task meets in-
coming and fulfills outgoing dependences. A task should fulfill its
shortest outgoing dependences as early as possible to allow con-
sumer tasks to overlap with itself; a task should meet its closest
incoming dependences as a late as possible to foster its own hoist-
ing potential. Hence, the effectiveness of a task in achieving the
parallelization of a program should ultimately be judged in consid-
eration with other tasks, not in isolation. The task recommendation
algorithm presented here leaves this aspect to the programmer.

4. Execution Model
Executing an IPOT program requires runtime support for specula-
tive multithreading [22, 8, 20, 23]. Specifically, the requirements
are as follows:

spawn/commit/squash: Support for creating, committing and
squashing speculative threads. This includes maintaining the
correct ordering of speculative threads that map to the original
sequential order.

conflict detection: Support for the detection of dependence viola-
tions across threads. Conflict detection relies on the ordering
information and the memory access history of the threads to
determine if there is a violation and what threads need to be

squashed. If a speculative thread read a location that was later
written by a less speculative thread, a conflict is flagged and the
more speculative thread is squashed. This enforce dependences
to guarantees the original sequential semantics of the program.

data versioning: Support for buffering speculative data until com-
mit time. Writes performed speculatively can not be made visi-
ble until the thread commits. Also related to data versioning is
forwarding of speculative data. Our execution model assumes
that speculative versions of data can be provided to more spec-
ulative threads.

The speculative execution model in this paper uses an in-order
spawn policy, shown in Figure 12. This implies that each specula-
tive thread during its lifetime can spawn a single successor thread.
Also, if a speculative thread commits without spawning any suc-
cessor, the corresponding program thread (in other words, the safe
thread) terminates. The reason for in-order spawn is the simplic-
ity of order management, since the order of thread creation is the
same order as commit. This directly translates to lower hardware
complexity as discussed below.

In-order spawn can also limit performance, since it imposes a
limit of how far tasks can he hoisted — tasks can not be hoisted
earlier than the previous task (following sequential order) starts to
execute. However, we believe this limitation can be tolerated, given
the simplification benefits it brings to the architecture and runtime
system.

Spawn hoisting is the distance between a parent thread’s commit
point and the spawn of its successor thread. This distance directly
translates into overlap between parent and speculative thread. In the
execution model we assumed that a successor thread can potentially
be spawned as soon as its parent starts executing.

1

2

3

1
2

3

Sequential Execution

taskhead Ataskhead A

taskhead B

taskhead C

taskhead B

spawn

taskhead C

Speculative Execution

Figure 12. Spawn ordering and hoisting in our execution
model.

The architecture support needed by IPOT is a fairly stan-
dard speculative multithreading substrate. The architecture sup-
ports conflict detection and data-versioning directly in hardware.
Conflict detection is implemented by leveraging the coherence pro-
tocol [23]. Data-versioning is supported in hardware by buffering
speculative writes, typically in the L1 or L2 cache [7]. When the
cache overflows with speculative data and needs to displace spec-
ulative data, the thread that owns the data needs to be squashed.
That imposes a limit on the size of speculative threads, which
indirectly affects how programmers should use the programming

6 2006/9/18

model. However, since we believe programmers will use ordered
transaction at a fine grain, we believe this limit will not be a prob-
lem.

One extra feature the architecture needs to support for IPOT is
conflict avoidance and resolution, described in Section 2.2. We en-
vision conflict detection to be a property of a page. This way, mem-
ory accesses to pages where conflict detection is turned off will not
be subject to conflict detection. We believe that this is a straightfor-
ward extension to memory management units in modern proces-
sors, which already support page-level attributes like cached/un-
cached.

5. Evaluation
To evaluate the effectiveness of our programming environment
without fully implementing the new language extensions in a com-
piler, the entire code generation for a new architecture, and a simu-
lator that support all the necessary TLS extensions, and then ending
up being able to run only very small and short kernels, we decided
to implement an emulator, based on binary instrumentation [12]
that can estimate the parallel overlap the simple annotations de-
scribed below.

5.1 Methodology
We evaluated IPOT programs using an emulator that supports the
speculative execution model. The emulator was implemented using
dynamic binary instrumentation [12]. The program runs sequen-
tially and all memory operations and annotations are instrumented.
Memory operations are instrumented in order to build a map of
memory-based data dependences. By observing the program an-
notations (e.g. taskhead()), the emulator identifies where tasks
start and complete in the dynamic instruction stream. Using the
dependence map and task information, the emulator computes the
overlap of speculative threads by enforcing data dependences and
resource constrains are enforced. The only resource constrain cur-
rently considered is number of processors. Costs are also taken into
account: the spawn cost, which is how long it takes from spawn
to execution of a speculative thread; and reuse cost, which repre-
sents how long a processor takes to get ready to execute something
following a previous task commit.

The emulator collects a multitude of information that helps
characterize the dynamic behavior of tasks. Figure 13 shows the
information collected: # deps tells how many times a speculative
is restarted until it is finally executed to completion; dependence
delay corresponds to how long a task speculates unsuccessfully;
hoisting distance shows how much of a task is overlapped with its
parent task.

For benchmarks, we chose two HPC workloads, namely
UMT2K [25] and CPMD [5], and a few selected SPECcpu FP
benchmarks: ammp, art, equake, and gafort. The latter, are cho-
sen because they have also been studied in prior work on specula-
tive parallelization with TLS and parallelization with OpenMP [1,
16, 17].

5.2 Experimental Evaluation
We evaluate several aspects: first, we report how effective is the
IPOT runtime model in exploiting the parallelism and compare our
speedups with prior results on parallelization with TLS [16, 17].
The IPOT tasks were determined using our task recommendation
tool and instrumented by hand. Second, we validate our emulator
by defining as tasks only the OpenMP loops that were declared
parallel in the SPEComp2001 version of the benchmarks. And
finally, we augment the OpenMP defined tasks with annotations
recommended by our tool.

spawn

deps

hoisting
distance

task
length

spawn cost

dependence
delay

reuse cost

Figure 13. Dynamic task information collected by the em-
ulator.

Bmrk No. of tasks Manual TLS speedup IPOT
instrumented Basic Cumulative speedup

ammp 10 1.62 1.76 1.55
art 7 1.0 2.94 1.80
equake 23 2.95 3.00 2.28
gafort 4 n/a n/a 2.20
umt2k 44 n/a n/a 2.76
cpmd 10 n/a n/a 1.30

Table 1. Speedup comparison to manual TLS parallelization. The
data points refer to the ’Basic’ numbers and the total cumulative
speedup for no overhead for speculation [17]. Results are for 4
threads.

In Table 1 we compare the speedups obtained using the task
recommendation with the manual TLS parallelization results pre-
sented by Prabhu and Olukotun in [17].

We determine the speedups for entire application runs; for the
SPECcpu programs, we use the train input set. We chose this pro-
cedure for two reasons: first, we observe that the potential of par-
allelization can vary significantly over different phases of the ap-
plication and that the potential speedup strongly depends on the
choice of input and run parameters. Second, this procedure facili-
tates experiment repeatability by other groups. Our methodology is
hence different from [17] and most other TLS work that limited the
study to ’representative samples’ of the execution with the ref input
set, which makes the results difficult to compare and repeat.

The results in Table 1 were collected using a 4 processor con-
figuration. Unlike [17] we do not perform any of the following op-
timizations: loop chunking and slicing, speculative pipelining or
complex value prediction. We do mark parallel reductions, as they
are supported by the IPOT programming model.

There are two conclusions that we can draw from these results:
i) the parallelism estimator implemented the task finder and the one
in the emulator give a very realistic picture of the actual parallelism;
and ii) parallelizing these benchmarks based on the task finder
recommendations, while not trivial, it is certainly easy — we took
only about 2.5 hours to parallelize umt2k which has about 45 K
lines of C and Fortran code, and about 2 hours for cpmd which
contains about 250 K lines of Fortran code. The number of tasks
for cpmd is one fourth of the tasks in umt2k.

The next comparison point is the OpenMP parallelization. In
this experiment we want to demonstrate that our parallelism esti-
mator is reasonably close to native execution using OpenMP. For
this experiment, we instrument the parallel OpenMP loops with

7 2006/9/18

Bmrk No. of tasks OMP +IPOT4 OMP +IPOT8
ammp 10 2.82 3.72
art 5 2.77 3.71
gafort 9 2.93 3.44

Table 3. Speedup comparison when IPOT is used as an extension
to OpenMP.

our taskhead markers and we ignore dependences on all OpenMP
private variables. The results for 4 and 8 processors are shown in
Table 2.

Notice that, for the SPEC programs, we used the SPECcpu train
input sets and command line arguments to relate the numbers. Since
the SPEComp input parameters are different (apparently they are
tuned to emphasize the parallelized sections in the execution), the
number reported here are not comparable to the speedups reported
in [1].

The speedups obtained by IPOT are similar to those obtained by
the native OpenMP versions of the benchmarks. Notice that for the
SPECcpu train input set, the regions parallelized in the program
may not cover the entire executions. Hence following Amdahl’s
Law, if only about 50% of the serial execution time is parallelized,
as, e.g., in art, the speedup is limited o 1.6 on 4 processors and 1.8
on 8 processors. The parallelization achieved by IPOT can hence
be regarded as ideal for this configuration of art. For ammp, only
75% of the serial execution time are covered by the parallelization,
hence also for this benchmark, the speedup achieved by IPOT is
fairly high. The reason why this program does not achieve ideal
speedup is that the conflicts may occur in the speculative executions
of some of the very large loops in the program (we run the program
without OpenMP and hence without locks). OpenMP uses locks
to guard against interference, while in IPOT, we assume that the
whole task can be started only after this conflict is fulfilled (see
Section 4). Hence the choice of tasks suggested by the OpenMP
parallelization is too large for IPOT. We will see that additional
taskheads at the OpenMP lock and OpenMP unlock boundaries act
as ’intermediate checkpoints’ and allow for a significant speedup
(see Table 3); interestingly, these taskheads were also included in
the task recommendations for this program. For equake and gafort
the parallel loops are spread throughout the routines and it is not
straight forward to compute the fraction of serial execution time
taken by these loops without outlining them.

We also compare the speedup that can be obtained by using
IPOT as an extension to OpenMP, such that we take advantage
of both the coarse-grain parallelism defined using an explicit pro-
gramming model, and the speculation support provided by IPOT.
In this case, we instrumented tasks recommendations in addition to
the OpenMP instrumented tasks. The results are presented in Ta-
ble 3.

As we can see, there is potential for speculative parallelism in
the coarse grain tasks defined in OpenMP. We are still working on
instrumenting the OpenMP versions of equake, umt2k, and cpmd
with IPOT tasks recommended by our task finder tool. We shall
report these numbers in the final version of the paper.

6. Related work
Thread-level speculation
Previous research on TLS has focused on either architectural sup-
port (e.g. [22, 8, 20, 23]) or automatic task decomposition for these
architectures (e.g. [9, 11]). Past work typically not make that step
to include the programming model in the picture. So with IPOT,
the programmer is given a simple and ’safe’ abstraction to facilitate
fine-grained parallelism namely atomic blocks.

Approaches for automatic task selection typically fall into either
program structure-based or an arbitrary collection of basic-blocks.
For instance, POSH [11] describes a profile-directed framework
for task selection that consider procedures and loops as units for
speculation. Min-cut [9] presents a task selection mechanism where
task boundaries are placed in point in the program where there
is a minimum number of crossing dependences, not necessarily
following program-structure boundaries.

Prabhu and Olukotun in [16, 17] also use TLS to simplify man-
ual parallelization. However, the proposal does not include an ac-
tual programming model, but a set of rules and patterns for man-
ually exploiting speculative parallelism. IPOT is a comprehensive
and general programming model and our tool directs the program-
mer on where to spend effort profitably.

OpenMP
The programming model of IPOT resembles OpenMP, where the
parallelization strategy is communicated through program anno-
tations. The main difference between OpenMP and IPOT is that
OpenMP *requires* that data dependence is correctly identified by
the programmer to ensure correct execution. IPOT does not have
this requirement.

Implicitly parallel programming languages
Jade [4] is an extension of the C language that facilitates the au-
tomatic parallelization of programs according to programmer an-
notations. As in IPOT, the key idea of Jade is to preserve serial
semantics while not constraining the execution to occur serially.
A programmer decomposes the program execution into tasks, us-
ing Jade’s withonly-do construct; synchronization occurs at task
boundaries. Unlike IPOT’s atomic construct, each task contains
an initial access specification (withonly, with) that guides the
compiler or runtime system when extracting concurrency. In IPOT,
no such access specification is necessary: It is the architecture and
runtime system that dynamically infer form the data access stream
when tasks may execute in parallel and take corrective action in
case overly aggressive parallelization.

Moreover, the correctness of a Jade program depends on the
correctness of the access specification (which can to some extent be
done by static program analysis). Not so for IPOT, where execution
semantics always follows serial semantics.

7. Future work
The task finder algorithm presented in Section 3 determines the
quality of each task in isolation. As demonstrated, this can lead to
inaccuracy in the reporting and leave the programmer without in-
formation about the synergistic and antagonistic effects of multiple
tasks. We would like to extend the recommendation procedure to
take the effect of task combination into account.

Finally, a more thorough study on the language integration of
tryasync and its integration with exception handling is necessary.
A fairly general language mechanism for speculative execution
could be used for applications other than ordered speculative multi-
threading, e.g., for the implementation of speculative program op-
timization and checked computations where the validity of an op-
eration is judged upon in hindsight, i.e., after it left its effects in
speculative storage.

8. Concluding remarks
Trends in the development of microprocessors predict that large
scale multi-core architectures are becoming mainstream. IPOT is
targeted to facilitate the transformation of sequential threads of
execution to harness thread-level parallelism on these platforms.

8 2006/9/18

4-proc 8-proc
Bmrk No. IDEAL IPOT OMP IDEAL IPOT OMP

of tasks
ammp 7 2.20 1.76 2.16 2.90 1.81 2.62
art 1 1.60 1.63 1.19 1.77 1.75 1.16
equake 11 n/a 1.97 2.76 n/a 1.97 4.02
gafort 5 n/a 1.40 1.40 n/a 1.45 1.42

Table 2. Speedup comparison to native OpenMP.

There are two extreme design points in the landscape of paral-
lel programming: On the one end, there is explicitly parallel pro-
gramming, where thread coordination and concurrency control are
a potential source of error and significantly contribute to complex-
ity and cost of program development. On the other end, there are
approaches to fully automated parallelization of sequential codes
with and without speculation support. Research on speculative mul-
tithreading focused at the architectural level and way-ahead com-
piler technology. Analysis and code transformations at these levels
are frequently not effective in cracking up dense data and control
dependences in sequential codes, and hence these fully automated
approaches have not been (widely) deployed in practice.

IPOT is positioned in the middle ground and exposes multi-
threading to the programmer while at the same time preserving the
safe and determinate semantic foundation of a sequential language.
IPOT assist the programmer with tools in identifying opportunities
for parallelization and offers features that guide the programmer
in declaring the ’intent’ of variables and support the runtime in
achieving an effective parallelization.

While many challenges remain on the way to an efficient exe-
cution platform for IPOT programs, we believe that the simplicity
and determinism of the programming model combined with the at-
tractive execution performance are well worthwhile the additional
cost and complexity required for the architectural and runtime im-
plementation.

Acknowledgments
We thank Vijay Saraswat for his insightful feedback.

References
[1] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones, and

B. Parady. SPEComp: A new benchmark suite for measuring parallel
computer performance. volume 2104, 2001.

[2] S. Borkar. Micro keynote talk, 2004.

[3] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh,
C. Kozyrakis, and K. Olukotun. The atomos transactional pro-
gramming language. In Proceedings of the ACM SIGPLAN 2006
Conference on Programming Language Design and Implementation,
June 2006.

[4] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von
Praun, V. Saraswat, and V. Sarkar. X10: An object-oriented approach
to non-uniform cluster computing. In Object-Oriented Programming,
Systems, Languages, and Applications, Mar 2005.

[5] Car-parrinello molecular dynamics (cpmd).

[6] P. A. Emrath and D. A. Padua. Automatic detection of nondetermi-
nacy in parallel programs. In Proceedings of the ACM Workshop on
Parallel and Distributed Debugging, pages 89–99, Jan. 1989.

[7] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative
versioning cache. In Proceedings of the 4th International Symposium
on High-Performance Computer Architecture, February 1998.

[8] L. Hammond, M. Willey, and K. Olukotun. Data speculation support
for a chip multiprocessor. In Proceedings of the Eighth International
Conference on Architectural Support for Programming Languages
and Operating Systems, October 1998.

[9] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Min-cut
program decomposition for thread-level speculation. In Proceedings
of the ACM SIGPLAN 2004 Conference on Programming Languages
Design and Implementation, June 2004.

[10] A. Kejariwal, X. Tian, W. Li, M. Girkar, S. Kozhukhov, and H. Saito.
On the performance potential of different types of speculative thread-
level parallelism. In Proceedings of the 20th Annual International
conference on Supercomputing, June 2006.

[11] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and
J. Torrellas. Posh: A tls compiler that exploits program structure.
In Proceedings of the Eleventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, March 2006.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, June 2005.

[13] J. Manson, W. Pugh, and S. Adve. The java memory model.
In Proceedings of the Symposium on Principles of Programming
Languages (POPL’05), pages 378–391, 2005.

[14] R. Netzer and B. Miller. What are race conditions? Some issues
and formalizations. ACM Letters on Programming Languages and
Systems, 1(1):74–88, Mar. 1992.

[15] OpenMP. OpenMP application program interface, 2005.

[16] M. K. Prabhu and K. Olukotun. Using thread-level speculation
to simplify manual parallelization. In Proceedings of the Ninth
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, June 2003.

[17] M. K. Prabhu and K. Olukotun. Exposing speculative thread
parallelism in spec2000. In Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming, June
2005.

[18] W. Pugh. The Java memory model is fatally flawed. Concurrency:
Practice and Experience, 12(6):445–455, 2000.

[19] J. Rattner. Pact keynote talk, 2005.

[20] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas.
Tasking with out-of-order spawn in tls chip multiprocessors:
Microarchitecture and compilation. In Proceedings of the 19th
Annual International conference on Supercomputing, June 2005.

[21] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra.
MPI: The Complete Reference. The MIT Press, 1998.

[22] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, June 1995.

[23] J. Steffan, C. Colohan, A. Zhai, and T. Mowry. A scalable approach
to thread-level speculation. In Proceedings of the 27th International
Symposium on Computer Architecture, Jun 2000.

[24] J. G. Steffan and T. C. Mowry. The potential for using thread-level
data speculation to facilitate automatic parallelization. In HPCA,
1998.

[25] The UMT benchmark code. http://www.llnl.gov/asci/purple/-
benchmarks/limited/umt.

9 2006/9/18

