
RC24055 (W0609-064) September 19, 2006
Computer Science

IBM Research Report

Distributed Augmentation-Based Learning:
A Learning Algorithm for Distributed Collaborative

Programming-by-Demonstration

Vittorio Castelli*, Lawrence Bergman**
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218*

P.O. Box 704**
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Distributed Augmentation-Based Learning
A Learning Algorithm for Distributed Collaborative

Programming-by-Demonstration

Vittorio Castelli
IBM T.J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

vittorio@us.ibm.com

Lawrence Bergman
IBM T.J. Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532
bergmanl@us.ibm.cm

ABSTRACT
The learning algorithms used in Programming-by-Demon-
stration (PBD) are either on-line and incremental or off-line
and batch. Neither category is entirely suitable for capturing
know-how from demonstrations in a distributed, collabora-
tive environment, where multiple expert can independently
provide examples to improve the model.

In this paper we describe Distributed Augmentation-Based
Learning (DABL), the first real-time PBD learning algorithm
suited for distributed know-how acquisition. DABL is an in-
cremental learning algorithm that uses a version-control-like
paradigm to combine independently constructed procedure
models. An expert can check out a procedure model from a
repository and modify it by means of new demonstrations
or by manually editing it. The expert then reconciles the
changes with those concurrently made by other experts and
checked into the repository.

DABL automatically merges the two procedures, learns new
decision points based on reconcilable differences, and iden-
tifies conflicts where there are multiple valid ways of com-
bining the changes or where the combination produces an in-
valid model, that is, one that does not lie in the search space
of the learning algorithm.

ACM Classification: I.2.6[Artificial Intelligence]: Learn-
ing - Knowledge Acquisition.

General terms: Algorithms

Keywords: Example-and demonstration-based interfaces,
Programming-By-Demonstration, Artificial Intelligence

Introduction
Programming-by-demonstration (PBD) [8, 4] has been widely
proposed as an attractive approach to improving personal
productivity. A user can automate a task by demonstrating

it to a PBD system, whichgeneralizes the task into an exe-
cutableprocedure model. The early work in PBD learning al-
gorithms focused on a single demonstration of a task—often
the performance of one or more iterations of a repetitive se-
quence of operations.

Collaborative PBD has been more recently proposed as a
way of developing richer procedure models that can address
a wide range of use cases [3]. These uses range from au-
thoring intelligent documentation [2], to creating automa-
tion tools that combine the knowledge of a group of experts
(e.g., technical support professionals [6], system administra-
tors [7], or developers), to building guided application walk-
throughs. Collaborative PDB involves combining multiple
demonstrations to capture the structure of a complex task, for
example, to create decision points that depend on differences
in the task execution environment.

A collaborative approach to PBD offers at least two advan-
tages over alternative approaches to knowledge capture and
dissemination: through the combination of examples pro-
duced by multiple experts, PBD directly captures their col-
lective knowledge; and since procedure models can be incre-
mentally modified by adding new examples, PBD can sim-
plify the program life cycle: the structure of a captured task
can be incrementally learned, refined, and updated.

We note two prior approaches to collaborative learning algo-
rithms for PBD. The first we callparallel collaborative PBD.
This approach involves combining multiple independently
collected recordings of a task (we will use the termtraces
to refer to these individual recordings) to induce a complex
procedure model. SimIOHMM [10] is an example of such
a learning algorithm. SimIOHMM extends the Input-Output
Hidden Markov Model [1] by biasing the learner with a sim-
ilarity function defined on thestates (i.e., representations of
the GUI content prior to each action). A distinctive charac-
teristic of SimIOHMM is its ability to automatically iden-
tify equivalent steps in different traces. This stepalignment
is used to construct action descriptions and to explain the
differences between traces in terms of probabilistic decision
points. We say that SimIOHMM solves thealignment-and-
generalization problem, since action generalization and trace
alignment are performed simultaneously. SimIOHMM suf-
fers from two limitations. First, it produces an opaque model

that is very difficult to present to the end-user in a readable
form. Second, it is a batch algorithm—the user does not see
the real-time effects of her actions on the model.

We call the second approachincremental collaborative PBD.
This involves using a previously created model to guide
the user during subsequent recordings; each recording is
used to incrementally add information to an evolving pro-
cedure model. An example, Augmentation-based learning
(ABL) [9], is an incremental learning algorithm that over-
comes the two main limitations of SimIOHMM. By restrict-
ing the search space of the learner to the set of programs
produced by a deterministic grammar, ABL incrementally
induces procedure models in real time that are easily con-
verted into a human-readable, script-like form. ABL is also
the first PBD learning algorithm that allows the user to di-
rectly edit the procedure model. In ABL, editing is treated
as a source of bias to the learning algorithm and, as a conse-
quence, demonstrations and editing operations can be seam-
lessly interweaved.

In this paper, we propose a third class of collaborative PBD
learning algorithms. We call thesedistributed collaborative
PBD. Distributed collaborative algorithms combine the ben-
efits of both prior approaches—providing support both for
learning incrementally from multiple examples and for merg-
ing possibly conflicting recordings or procedure models gen-
erated in parallel by different experts.

We will describe a particular instance of this class, Dis-
tributed Augmentation-Based Learning (DABL), an exten-
sion to ABL that builds procedure models from user demon-
strations, from manual edits, and by combining procedure
models separately modified by different authors. We describe
DABL using a scenario centered around a procedure reposi-
tory that supports version control. Experts can check out pro-
cedure models, independently modify them, and check in the
improved models. DABL’s version control algorithm is re-
sponsible for merging independently updated versions of the
model, for identifying conflicts, and for providing conflict-
resolution facilities.

To support distributed procedural know-how acquisition, the
version control system must satisfy two novel requirements.

First, the combination of independently modified versions of
a procedure model must be alearning operation. This re-
quirement states that, besides ensuring that the merged pro-
cedure is syntactically correct, the merge process must also
enhance the model to account for differences between the
versions being merged, for example, by introducing new de-
cision points.

Second, the merged procedure model must be in a format
compatible with the learning algorithm. This requirement
states that, besides ensuring that the structure of the merged
procedure model belongs to the search space of the learning
algorithm, the data structures used for learning must be up-
dated to be consistent with both versions of the procedure.

The main contributions of this paper are the following:

1. The idea of distributed collaborative PBD, which combines

incremental procedure updates with batch learning.

2. The first PBD learning algorithm for distributed know-how
capture. DABL attains this goal by: i) learning both incre-
mentally in real time and in an off-line mode, and ii) solv-
ing the full alignment-and-generalization problem while
supporting manual edits.

3. The concept and implementation of an intuitive, version-
control-like front-end for a distributed PBD learning algo-
rithm.

4. The concept of version reconciliation as a new learning
paradigm—the learning algorithm can infer novel structure
of the task not present in either of the procedure models
being reconciled; and an algorithm that embodies this con-
cept.

The rest of the paper is organized as follows. We first de-
scribe the Augmentation-Based Learning algorithm extended
by DABL. We then describe the components of DABL: iden-
tifying conflicts in separately modified versions of the same
procedure model, merging portions of the procedures where
no conflict occur, and supporting conflict resolution. We
show examples of the behavior of a DABL implementation
integrated with the DocWizards system [2]. We conclude the
paper with a summary and a discussion of future work.

AUGMENTATION-BASED LEARNING
Augmentation-Based Learning (ABL) [9] is an incremen-
tal PBD learning algorithm that builds procedure models in
real-time from observations of the interactions between a
user and an application. Each observation is summarized
by a state-action pair (SAP). A SAP consists of a repre-
sentation of the content of the UI prior to the action (the
state) and a description of the user action at an appropriate
level of abstraction (theaction). In the ABL implementa-
tion used in the DocWizards system [2], the state is con-
structed by walking the widget tree of the target applica-
tion UI and extracting descriptive attributes from each wid-
get. The abstraction level of the action is the one typi-
cally used in how-to instructions. For example, a typical ac-
tion description has the form:Uncheck “Use default
compiler options”. ABL produces a program speci-
fied by a grammar selected to address the needs of the in-
tended consumers. The learning algorithm can be easily
adapted to any grammar, and is not limited to those used in
the DocWizards system or in the current paper. For sake of
simplicity, in the current paper we use the simplified gram-
mar described in Figure 1. The ABL implementation used in
DocWizards is based on a more complex grammar that com-
poses subtask groups of steps, loops, and branches.

The atomic learning step of ABL consists of extending a pos-
sibly empty procedure model with a new SAP as input, and
can be described as follows. ABL maintains a “current ac-
tion step” cursorC; this cursor is initialized to the beginning
of the procedure or points to an action step specified by the
user. An action step is a step in the procedure that represents
the generalization of an action; other types of steps are con-
trol steps, such as decision points and loop steps, and struc-
tural steps, such as subtask groups. When it receives a new

Procedure Representation Grammar

<model> := <step>+
<step> := <actionStep> | <branch>
<branch> := Decision Point <pathExpr>+
<pathExpr> := if <predicate> then <step>+

Figure 1: The procedure representation grammar used
in this paper. A predicate <predicate> is a boolean
expression on values of UI widget attributes. An action
step <actionStep> is a human-readable description of
a specific action.

SAP as input, ABL finds the collectionC of action steps in
the model that are consistent with this input. An action step
is consistent with a SAP if the step is a generalization (ab-
straction) of the action in the SAP. For each consistent step,
say s, ABL checks whether the model can be modified to
contain a direct path fromC to s. By direct path we mean a
path without intervening action steps.

ABL is only allowed to modify an existing model via trans-
formations calledaugmentations. An augmentation is a
transformation that preserves all existing steps and control
structures and all existing direct paths between action steps.
An augmentation can therefore only add new action steps and
new direct paths between action steps (by inserting control
steps , such as branches or loops). An augmentation isvalid
if it produces a new model consistent with the grammar. Note
that, if the grammar allowed the “go to” statement, a valid
augmentation would always exist from any action step to any
other action steps. In general, however, it is not always pos-
sible to find valid augmentations fromC to a step inC . If
no valid augmentation exists fromC to any step inC , ABL
modifies the model by adding to it a new action stepŝ and
inserting a decision point right afterC that introduces a di-
rect path fromC to ŝ. If ABL finds a valid augmentation to
a step inC , ABL produces a new augmented model. If more
than one model is produced, the simplest one is selected for
display. As new SAPs are observed, ABL augments these
models in parallel. Several heuristics are used to prune the
collection of parallel models. Finally, ABL generalizes the
action steps and automatically infers the decision point pred-
icates and loop conditions that might be affected by the new
observation. After augmenting a model, ABL advances the
cursorC to s.

Note that, during the described learning step, ABL automati-
cally aligns the SAPs to the procedure model. The alignment
information is maintained in an appropriate alignment data
structure, consisting of: a map where the keys are the action
steps and the values are the list of SAPs aligned with the step
used as key; a map from SAPs to the aligned procedure step;
and a collection of correspondences between SAPs and steps
maintained dynamically while learning from demonstrations
(this collection is indexed using the models augmented in
parallel as keys). The third data structure is temporary, and
its content is used to selectively update the first two at the
end of a demonstration. The first two data structures are per-

sistent and are stored with the procedure model.

Note also that ABL generalizes the procedure model using
the aligned data. Therefore, unlike most learning algorithms
used in PBD, ABL solves the alignment-and-generalization
problem for general grammars.

ABL allows the user to provide partial demonstrations start-
ing from a user-specified place in the procedure model, and
to insert new action steps in the procedure by demonstrating
the corresponding actions. The latter function will be usedin
the examples section.

Finally, ABL allows the user to edit the procedure model
and supports free interweaving of demonstrations and man-
ual edits. ABL treats editing as a source of constraints for
the induction process. In particular, ABL ensures that data
observed before the edit is not used to “undo” the effects of
editing. Additionally, ABL incorporates algorithms for care-
fully disregarding data that is inconsistent with the manual
edits, as discussed in [9]; this is particularly relevant while
inducing control structures. Previous PBD systems, such as
Chimera [4, Chapter12], support editing of the program rep-
resentation as a post-processing step, not as part of the in-
duction process: users cannot edit in the midst of a demon-
stration and the learning algorithm cannot refine a manually
edited model.

There are several reasons to support manual edits of proce-
dure models. First, manual edits can substantially reduce the
number of demonstrations required to produce a desired pro-
cedure model. An example is given in [9]. Second, editing
is a powerful mechanism for maintaining procedure models:
(1) as the life cycle of the procedure unfolds, parts of the
model can become obsolete due to changes in the applica-
tion GUI or in the process being captured; (2) the order in
which subtasks are executed could change to reflect changes
in the underlying process; (3) mistakes can be introduced
in the model via erroneous task demonstration. In all three
cases, direct editing is the most natural way of correcting
these problems.

The DocWizards implementation of ABL supports a rich set
of editing operations. In the interest of clarity and simplicity,
in this paper we will only consider two editing operations:
deleting steps and moving steps (cut-and-paste). These oper-
ations are by far the most common, and are of fundamental
importance when multiple authors contribute to a procedure
model over an extended period of time. DABL uses ABL as
the core learning algorithm; it extends ABL by adding the
ability to learn by combining independently modified proce-
dure models.

THE DABL ALGORITHM
Motivating Scenario
Alice and Bob independently check out a procedure model
m

O from the repository. Alice enhances the model with new
recordings and manually edits it; she then commits the re-
sult to the repository. The repository now contains a new
modelmR. Bob also enhances the model with new record-
ings and edits, and produces a local version of the procedure,
m

L. Before being allowed to commit his changes, Bob now

INITIALIZE
Initialize the conflict set C to empty

Preprocess the repository version
Identify T

R, the unique traces of m
R

Determine D
R, the deleted steps in m

R

Determine M
R, the moved steps in m

R

Determine N
R, the new steps in m

R

Preprocess the local version
Identify T

L, the unique traces of m
L

Determine D
L, the deleted steps in m

L

Determine M
L, the moved steps in m

L

Determine N
L, the new steps in m

L

DETERMINE CONFLICTS
Add to C the steps in D

R
T

M
L

Add to C the steps in M
R

T

D
L

Add to C the steps in M
R

T

M
L

with different destinations
in m

L and m
R

Add to C the steps in N
L having context

that intersects M
R

S

D
R

Add to C the steps in N
R having context

that intersects M
L

S

D
L

Add to C the decision points in N
R

and N
L that cannot be reconciled

MERGE PROCEDURES
In the order in which they appear in T

L,
Incorporate steps from N

L into m
R

Align the unique traces of m
L

with the updated m
R

Apply edits from T
L to m

R

Manually reconcile conflicts in C

Figure 2: The procedure reconciliation algorithm.

needs to reconcilemL andm
R. The DABL algorithm ex-

tends ABL by providing support for reconciliation. When
asked to combinemR andm

L, DABL identifies and appro-
priately merges differences that can be reconciled, and also
detects possible conflicts. Each conflict is presented to Bob,
who has the option to discard his local changes, to override
the changes in the repository procedure, or, if appropriate, to
specify a merge of the two versions. Once all conflicts are re-
solved, Bob commits the procedure model to the repository.

Bob is presented with a familiar user interface, function-
ally equivalent to the front-end to CVS [11] provided by
the Eclipse platform [5]. The similarity with CVS, however,
ends here. The merge process in DABL is not based sim-
ply on a lexical comparison between the procedures, but is
actually a new form of learning. To support the scenario
described: (1) DABL must ensure that automatic merges
and conflict resolutions produce a model consistent with the
grammar used for learning from demonstrations. (2) DABL
must also use the differences between the models being rec-
onciled to learn structural information that is not available
from either model alone. (3) DABL must ensure that the
new data produced by both Alice and Bob is properly aligned

m
R

m
L Outcome

s is unchanged s is unchanged s is unchanged
s is unchanged s is moved (∗) s is moved
s is unchanged s is deleted (∗) s is deleted
s is moved s is deleted (∗) conflict
s is moved s is moved possible conflict
s is deleted s is deleted s is deleted
s is a new step context unchanged (∗) s is added
b is a new branch context is moved (∗) conflict
b is a new branch context is deleted (∗) conflict
b is a new branch newb

′

overlapsb possible conflict

Table 1: Differences between two independently mod-
ified procedure models, m

R and m
L and correspond-

ing implications for the reconciliation algorithm. The
six cases that are symmetric to those marked with a
star are omitted.

with the merged procedure model. This last requirement, to-
gether with requirement (1), must be satisfied to ensure that
DABL can correctly augment the merged procedure model
when new demonstrations are provided.

In the rest of this section we describe how DABL identifies
the differences betweenmR andm

L, how it detects conflicts,
how differences that do not result in conflicts are merged, and
how the user reconciles conflicts.

DABL Overview
The repository modelmR and the local modelmL share the
collection of tracesTO used to produce the common ancestor
m

O. Additionally, the repository version contains the collec-
tion of tracesTR recorded and checked in by others since
the current user checked outm

O. Similarly, the local version
has a collection of tracesTL recorded by the user since the
check-out ofmO. Together,mR, TR andT

L contain all the
information needed to describe the differences betweenm

R

andm
L: in ABL and DABL, the traces contain both demon-

strations and editing operations.

Figure 2 describes the DABL reconciliation algorithm, which
is divided into three parts: initialization, conflict determi-
nation, and merge. The initialization consists of extracting
the information needed to determine the conflicts fromT

R

andT
L, and to perform the merge. Conflict determination

consists of identifying changes that cannot be merged auto-
matically. The procedure merge phase consists of merging
automatically the portions of the procedure that do not con-
tain conflicts, reconciling conflicts under the direction ofthe
user, and updating the data structures used for subsequent
learning.

Detecting differences and conflicts
The grammar and the editing operations described earlier
constrain the differences betweenm

O and one of the derived
models, saymL, to fall into one of three categories:

1. m
L contains a new action steps not inm

O: this action step
must correspond to a recorded action inT

L. Additionally,
m

L can contain a new decision point or a new branch of
an existing decision point that containss.

m
R

m
L

step 1 step 1
if condition1 step 2

step 2 if condition2
step 3 step 3

else step 4
newStep 1 else

end newStep 2
step 4 end

Figure 3: Example of interlocking decision points in in-
dependently modified procedures that cannot be rec-
onciled automatically to produce a program consistent
with the grammar of Figure 1.

2. m
L andm

O both contain an action steps, ands has been
manually moved inmL.

3. m
O contains an action steps that has been deleted inmL.

These departures ofm
R andm

L from m
O might give rise to

conflicts. More specifically, a change inmL and a change in
m

R can result in either of two types of conflicts:

Type 1. It is not possible to create a new model consistent
with the grammar that contains both changes;

Type 2. The changes could be reconciled in at least two dif-
ferent ways.

Table 1 summarizes the 16 cases that can be encountered
when analyzing a specific step during procedure reconcilia-
tion (note that symmetric situations are implicit in the figure):
eight of these can be reconciled automatically, six always re-
sult in a conflict, two can give rise to a conflict under specific
circumstances, described in detail below.

When a step is affected by a change in one model but not in
the other, the merged model contains the change. A conflict
is always declared when a step is moved in one of the models
and deleted in the other. When a step is moved in bothm

R

andm
L, a conflict is declared only if the step is moved to two

different places within the procedure. The conflicts described
so far are statically identified by analyzingTL andT

R as a
preprocessing step.

Conflicts can also be introduced when creating new branches.
The following example illustrates this case: a user enhances
m

O by demonstrating a new step,newStep 1. The learn-
ing algorithm constructs a decision point as a result. The user
checks in the changes. Another user independently modifies
m

O by demonstratingnewStep 2. The learning algorithm
constructs another decision point. The resulting models are
shown in Figure 3. In this case, the learning algorithm can-
not reconcile the interlocking branches, and consequentlyde-
clares a conflict. The example illustrates the following gen-
eral principle: when new steps are introduced in one of the
modified models and the neighborhood of these steps is per-
turbed in the other model, a conflict is declared. Perturbation
can be caused by manual editing or by new demonstrations.
While the conflicts discussed so far are of type 1, violations
of this general principle can produce conflicts of type 2. For

example, if a decision point is introduced in one of the mod-
els, and the steps surrounding the decision point are moved in
the other, then the models can be reconciled in four possible
ways: the decision point is left in place and the surrounding
steps are moved; the decision point is moved together with
the surrounding steps; the decision point is left in place and
the move is discarded; the decision point is discarded and
the steps are moved. In the first two cases, both changes can
be applied to the merged procedure without producing an in-
valid procedure, but DABL cannot determine which of the
two alternatives is the desired one.

Merging the procedures
In general, a PBD procedure model consists of two main
components: the program presented to the user and executed
during playback, and the alignment of the traces to the pro-
gram used by the learning algorithm. DABL simultaneously
reconciles both components by updating the repository pro-
cedurem

R with information from the local copy. DABL
guarantees that the alignment of the tracesT

O used to con-
struct the original model is preserved in bothm

R andm
L.

Therefore, the alignment ofmR only needs to be updated
with information from the tracesTL unique tomL.

To reconcile the programs, DABL identifiesNL, the set of
steps that are unique tomL. In the DocWizards implementa-
tion, this is accomplished by inspecting the step labels; when
a procedure model is checked out from a repository, the lo-
cal copy is given a unique identifier used to prefix the label
of each new step. Steps inNL that have not been identified
during preprocessing as being part of a conflict are grouped
into contiguous, non-adjacent groups. Each such groupG

L

is analyzed as follows:

• DABL determines whethermL contains changes equiva-
lent to those inmR. To accomplish this, the DocWiz-
ards’s implementation of DABL identifies the subtraces
T

G
L

of T
L aligned withG

L using the existing alignment
data structure. DABL then iterates on each elementt

L of
T

G
L

; it invokes the learning algorithm, initializes the cur-
rent step cursor to the last action step that occurs before
G

L and that exists in bothmL andm
R, and provides the

SAPs of the subtracetL as input to the learning algorithm.
If the learning algorithm can align all the subtraces with
m

R without introducing new steps, then the reconciliation
algorithm declares that the changes are equivalent.

• If the changes are not equivalent, DABL identifies the lo-
cation inm

L where the new steps should be added. If the
steps preceding or following that location have been moved
in m

R, or if the location cannot be determined because of a
delete operation inmR, DABL declares a conflict (further
details are given below). Otherwise, DABL invokes the
learning algorithm withTG

L

as input and tries to augment
m

R. If there is no valid augmentation, DABL declares a
conflict. An example that leads to such a failure is shown
in Figure 3. If reconciliation succeeds, no conflict is de-
clared, and DABL analyzes the next group of new steps.

Similarly, DABL identifiesNR, the collection of steps that
are present in the repository model and not in the local model.
Steps inNR that have not been identified during preprocess-
ing as being part of a conflict are grouped into contiguous,

non-adjacent groups. Each such groupG
R is analyzed as

follows:

• The traces inTL are scanned to find subtraces of length
two with successive SAPsσ1 and σ2, such thatσ1 is
aligned with the action step immediately precedingG

R,
andσ2 is aligned with the action step immediately follow-
ing G

R. Call TG
R

the set of such subtraces.
• If the scan is successful, DABL usesTG

R

to infer a de-
cision point that explains the conditions under which the
steps inGR should be executed or ignored.

During this part of the reconciliation process, DABL extracts
information on the structure of the task that is not available
from either model being analyzed alone. Thus, procedure
reconciliation is a newlearning mode that sets DABL apart
from all other PBD learning algorithms. Example 1 in the
examples section shows this process in action.

When all new steps inmL have been analyzed, DABL is left
with the tasks of reconciling the conflicts and updating the
alignment. These are described in the following paragraphs.

DocWizards provides a user interface integrated with DABL
to help the user reconcile conflicts. The reconciliation UI is
depicted later in Figure 11. Each conflict is depicted as a tree
with two children. The first child is labeled with the opera-
tion on the local copy of the procedure model that causes the
conflict, and contains a subtree consisting of those steps and
the surrounding context. The second child is the correspond-
ing labeled subtree for the repository copy. In the figures of
this paper, the context consists of the preceding step and the
following step (if they exist); deleted steps are shown without
a context.

The user controls the reconciliation process by means of
three buttons, labeled “Use Local”, “Use Repository”, and
“Use Both”, respectively. The “Use Local” button instructs
DABL to override the changes in the repository with those in
the local procedure. Conversely, the “Use Repository” but-
ton instructs DABL to discard the local changes and resolve
the conflict in favor of the version in the repository. The
“Use Both” button is always inactive for conflicts of type
1. It is active for conflicts of type 2 (where there are mul-
tiple ways of reconciling the changes) when applying both
changes leads to a valid procedure model. An example of
this situation is the case of a move operation and a conflict-
ing delete operation in which a proper subsetG̃ of the moved
stepsG are deleted: here, the “Use Both” reconciliation op-
eration deletes the steps iñG and moves the undeleted steps
in G to the location specified in the move operation. A sec-
ond example consists of a conflict between a move and the
introduction of a new branch overlapping the moved steps.
Here, “Use Both” results in moving the new branch together
with the other steps.

Once all conflicts are resolved, the user can complete the
check-in, which consists of updating the alignment data struc-
tures (as described below), saving the reconciled procedure
model into the repository, and replacing the local version
with a copy of the reconciled procedure model. The user
can also abort the reconciliation process, in which case both

local and repository version are unchanged.

Updating the alignment consists of the following operations:

1. The tracesTL are added to the repository model.

2. The alignment data structure for each new step that is cre-
ated during the merge process is updated automatically by
the learning algorithm.

3. The alignment data structure for each step of the common
ancestor modelmO is updated by adding to it the SAPs in
T

L that are aligned with that step.

4. The alignment data structure for each step involved in a
conflict are updated as in 3, with the exception of the align-
ments of steps that appear only inmL and that are dis-
carded during the merge.

When all the reconciliation steps are completed, the learn-
ing algorithm is invoked again to generalize the action steps
using the combined data, and to update the predicates of the
decision points. This is a second main difference between the
reconciliation process of traditional version control systems
and that of DABL. In particular, DABL can combine data
from the two procedure models and produce predicates that
could not be inferred from either local or repository model
alone. Note that through the reconciliation process, DABL
can refine predicates even without producing structural mod-
ifications to the procedure model.

Remarks on the merge algorithm
Before presenting and discussing examples that describe the
behavior of DABL, we comment further on specific aspects
of the reconciliation process.

To focus the discussion of this paper, we have chosen a re-
stricted grammar and a selected subset of editing operations
that illustrate all the main features of DABL and highlight the
main difficulties of the reconciliation process. No additional
conceptual difficulties arise in implementing DABL for the
full grammar and full set of editing operations used in the
DocWizards system.

The reconciliation process treats the repository version and
the local version differently. The clearest example is the
management of discarded steps. Steps that are present in the
local version of the procedure model and that are discarded
by the reconciliation process are entirely forgotten. In con-
trast, DABL maintains all relevant information on steps be-
longing to the repository model that are discarded during rec-
onciliation. The reason is that rejected changes in the repos-
itory procedure might later be restored by other users as part
of subsequent reconciliations.

Finally, DABL’s support for edits eliminates the need for a
complex and cumbersome reconciliation process. In partic-
ular, the current implementation of DABL provides the user
with three alternative choices for reconciliation, even when
there are numerous other possibilities. The three options of-
fered to the user are the most intuitive ones. In those rare

Figure 4: Ex. 1. Original repository procedure.

occasions in which another alternative would be more de-
sirable, the user can accept the model closest to the desired
result and then manually edit it.

Implementation
DABL is implemented in Java 1.4, using SWT for the UI.
DABL has been incorporated into DocWizards, a PBD sys-
tem for capturing tasks on Eclipse-based applications. DABL
procedures and traces are stored in XML. The procedure and
trace files are compressed together in a ZIP file that simpli-
fies their transmission and distribution. An HTML version of
the procedure is also available for quick inspection.

EXAMPLES
A set of related examples will show different aspects of the
merge algorithm, the effects of user-in-the-loop reconcilia-
tion, and the ability of the algorithm to continue learning af-
ter repository merge.

The examples are based on a simple set of configuration op-
erations on the Eclipse IDE. The common scenario involves
setting compiler options as part of a project build. In or-
der to ensure a correct build, two prerequisites must be en-
sured. First the compiler compliance level must be set ap-
propriately; if the wrong level is used for generated “.class”
file or source compatibility, code may not compile properly.
Similarly, the appropriate Java JRE version must be used for
correct compilation. In addition, build path information may
need to be adjusted. We further motivate the example by
noting that options within Eclipse can be set for an entire
workspace, or separately for individual projects within the
workspace.

In each of the examples, we look at parallel check-outs. In
other words, we assume that two separate users each check-
out the same code, with both check-outs prior to any code up-
dates. The first user modifies the code and checks in. This is
followed by the second user performing independent modifi-
cations and checking in, necessitating reconciliation between
his modifications and those of the first user.

Example 1
The first example illustrates how DABL treats the reconcilia-
tion step as a learning process. The initial procedure snip-
pet unchecks the “Use default compliance setting” check-
box. Figure 4 shows this initial procedure model. The first
user performs the task and later realizes that the configura-
tion step is not complete; the source compatibility level must
be set to 1.4. The user inserts the relevant step into the pro-
cedure model. The result is shown in Figure 5, where the
newly inserted step is the second from the bottom. The
second user independently performs the task. Being a more
advanced user, she realizes that one should ensure that the
Compiler compliance level be set to 1.4 if it is currently 1.3

Figure 5: Ex. 1. Procedure modified by first user by
inserting a new statement.

Figure 6: Ex. 1. Procedure modified by first user by
inserting a conditional.

Figure 7: Ex. 1. Merged procedure.

before unchecking the‘Use default compliance setting’ check
box. The user turns on recording before performing the alter-
native, and DABL correctly learns the condition under which
the compliance level should be reset. This user makes no
change to the‘Source compatibility’ because it is already set
to 1.4 it her environment

The resulting procedure model is shown in Figure 6. Upon
check-in, DABL incorporates the decision point, A, shown
in Figure 6 into the reconciled model of Figure 7. So far,
DABL behaves (superficially!) like CVS. However, this sim-
ilarity ceases to exist when DABL attempts to explain the
other difference between the repository procedure checked
in by the first user and the one produced by the second user.
This difference is the presence of the additional stepSupply
item ‘1.4’ for Combo Box ‘Source compatibility’ only in the
first check-in. This discrepancy can be explained in terms of
differences between the environments: DABL infers a new
decision point, B, that describes the conditions under which
the‘Source compatibility’ should be changed to1.4 in the final
version of the procedure model (Figure 7). When combining
procedure models, DABL can learn new information on the
structure of the task: this is a unique and distinctive char-
acteristic of DABL that sets it apart from traditional version
control systems and from the other learning algorithms used
in PBD.

Example 2
The second example shows detecting conflicts between a
generated conditional and a code move, with user interven-
tion to resolve the conflict. The original procedure, shown

Figure 8: Ex. 2. Original repository procedure.

Figure 9: Ex. 2. The result of the changes intro-
duced by the first user. Note the new decision point, A,
and the unchanged position of the Set Compiler
compliance subtask, B.

in Figure 8, consists of three subtasks - setting the gener-
ated .class file compatibility compliance for the workspace,
setting up the build path for the DocWizards project, and set-
ting the JRE for the workspace. Note that this procedure has
been manually organized so that the recorded actions for each
subtask are contained within a subtask group. The first user
adds the same conditional described in example one to the
first subtask, then checks the procedure (shown in Figure 9)
into the repository. The second user independently moves
the compiler compliance subtask at the end of the procedure.
The resulting procedure, shown in Figure 10, is inconsistent
with the repository version, since we now have independent
edits that modified a subtask and also moved it.

Should the mergeboth move and edit the subtask, or should
only one of those operations be included? We involve the
user in making the decision through the reconciliation in-
terface (Figure 11). A single conflict has been detected,
and is presented in two parts: at the top DABL highlights

Figure 10: Ex. 2. The result of the changes introduced
by the second user. Note the changed position of the
Set Compiler compliance subtask, B.

Figure 11: Ex. 2. The reconciliation UI with the con-
flict resulting from the changes shown in Figures 9
and 10. Note the three buttons labeled “Use Local”,
“Use Repository”, and “Use Both” above the panel that
shows the conflict. In the main panel at the top, DABL
shows the procedure steps in the local version causing
the conflict within their context and, at the bottom, the
procedure steps in the repository version causing the
conflict within their context.

the statements that were moved in the current local copy,
and shows the surrounding context; below these DABL high-
lights the corresponding unmoved statements with the condi-
tional from the repository copy (as checked in by the first
user), and shows the surrounding context.

The user operates on this representation by selecting a partic-

Figure 12: Ex. 2. The result of merging the con-
flict shown in Figure 12 when the user selects the
“Use Both” option. Note that Set Compiler
compliance subtask is in the same position as in
Figure 10 (B), and that the decision point is incorpo-
rated into this subtask, as in Figure 9 (A).

Figure 13: Ex. 3. Original repository procedure.

ular conflict, and then specifying what to do with it. In this
example, the second user selects ”conflict 1” (in this case,
the only conflict), and then clicks the ”Use Both” button to
specify that DABL is to do a smart merge of her changes with
those in the repository. The resulting procedure, checked into
the repository, is shown in Figure 12.

Example 3
The third example shows another merge conflict, in this case,
a conflict between a code move and a code delete. The orig-
inal procedure, shown in Figure 13, sets the compiler source
compatibility for the DocWizards project, and then sets the
JRE for the workspace. The first user moves the code that
sets the compatibility below the code that sets the JRE to en-
sure that the compatibility level is based on the JRE selected,
then checks in the edited procedure (Figure 14). The second
user realizes that the procedure will be more generic if, in-
stead of setting the compiler options for a particular project,
they are set for the entire workspace. She deletes the sec-
tion of the procedure that sets the compiler options for the
project, then inserts statements that set the compiler options
for the workspace (Figure 15). When the second user checks
the edited procedure into the repository, the merge algorithm

Figure 14: Ex. 3. Procedure edited by the first user.

Figure 15: Ex. 3. Procedure edited by the second
user.

Figure 16: Ex. 3. Unreconciled statements.

is able to successfully merge in the additional statements that
she has added. However the statements deleted by her are the
same statements that the first user moved, so the merge algo-
rithm is unable to reconcile the edits. The unreconciled state-
ments are presented as shown in Figure 16. The user spec-
ifies that the local changes are to be retained, which causes
the move in the repository to be discarded, and the result of
the merge is the same procedure shown in Figure 15.

Example 4

The last example demonstrated the ability of DABL to per-
form additional learning on a previously updated repository
entry. The final check-in from example three is the starting
point. A third user checks out the merged code, then adds an
additional demonstration, resulting in the same conditional
described in example one. The updated code is shown in
Figure 17. Note that DABL is able to learn from additional
demonstrations in exactly the same way as with ”original”
unmerged code.

Figure 17: Ex. 4. Result of enhancing a merged pro-
cedure with demonstrations.

CONCLUSIONS
We have presented DABL, the first incremental learning al-
gorithm for distributed collaborative PBD.

DABL can sequentially learn the structure of a task and gen-
eralize predicates and action steps from multiple recordings
of user actions. Additionally, DABL allows the user to di-
rectly edit the procedure, and seamlessly integrates the edit-
ing operations with the learning process.

These characteristics of DABL are not sufficient for creating
procedure models by combining models produced separately
by multiple experts. DABL supports distributed collabora-
tive PBD by providing a version-control-like environment
for merging separately enhanced procedure models. DABL
supports the familiar and intuitive CVS paradigm: an expert
checks out a procedure model from the repository, enhances
it, and reconciles it with the repository version before check-
ing in the changes.

What sets DABL aside from existing version control systems
is the fact that reconciliation is a learning operation—while
merging the repository procedure model and the user’s ver-
sion, DABL can infer structural information and logical pred-
icates that are not obtainable from either model.

The merge operation consists of identifying conflicts be-
tween versions, automatically merging changes that do not
result in conflicts while learning new structural and logical
information, and asking the user to manually reconcile con-
flicts by accepting or discarding changes. This reconciliation
paradigm lends itself to the construction of intuitive userin-
terfaces, such as the one incorporated in the DocWizards sys-
tem and used to generate the examples shown in this paper.

By supporting incremental, real-time learning from multiple
demonstrations and manual edits, and by offering a novel
learning mode integrated in the procedure reconciliation pro-
cess, DABL is the first learning algorithm with the features
required to support distributed collaborative PBD.

Future work includes usability studies. We are particularly
interested in determining how to best deal with Type 2 con-
flicts with additional valid reconciliation alternatives beyond
the three currently supported by the interface. Specifically,
it is unclear whether providing all the alternatives would be
more effective or more confusing than limiting the choice to
the currently supported three alternatives and requiring the
user to edit the reconciliation result. We also intend to study

the benefits of previewing the results of the different alterna-
tive conflict resolutions.

Acknowledgments
We would like to thank Apratim Purakayastha, Paul G. Crum-
ley, Chandrasekhar Narayanaswami, and Siddhartha Chatter-
jee for their support of our work.

REFERENCES
1. Y. Bengio and P. Frasconi. Input-Output HMM’s for

sequence processing.IEEE Trans. Neural Networks,
7(5):1231–1249, September 1996.

2. L. Bergman, V. Castelli, T. Lau, and D. Oblinger.
DocWizards: a system for authoring follow-me docu-
mentation wizards. InProc. 18th annual ACM Symp.
on User Interface Software and Technology, UIST2005,
pages 191–200, 2005.

3. L.D. Bergman, T. Lau, V. Castelli, and D. Oblinger.
Personal Wizards: collaborative end-user program-
ming. In Proc. of CHI2003 Workshop on Perspectives
in End User Development, Fort Lauderdale, FL, Apr.
5–10 2003.

4. Allen Cypher, editor.Watch what I do: Programming
by demonstration. MIT Press, Cambridge, MA, 1993.

5. Eclipse platform technical overview .
http://www.eclipse.org/articles/index.php?filter=
whitepaper, July 2001.

6. T. Lau, L.D. Bergman, V. Castelli, and D. Oblinger.
Sheepdog: Learning procedures for technical support.
In Proc. 2004 Int. Conf. on Intelligent User Interfaces,
pages 106–116, 2004.

7. T. Lau, D. Oblinger, L.D. Bergman, V. Castelli, and
C. Anderson. Learning procedures for autonomic com-
puting. In Proc. of Workshop on AI and Autonomic
Computing: Developing a Research Agenda for Self-
Managing Computer Systems, IJCAI 2003, Acapulco,
Mexico, Aug. 9–15 2003.

8. H. Lieberman, editor.Your Wish is My Command: Giv-
ing Users the Power to Instruct their Software. Morgan
Kaufmann, 2001.

9. D. Oblinger, V. Castelli, and L.D. Bergman.
Augmentation-based learning, combining observations
and user edits for programming-by-demonstration. In
Proc. 2006 Int. Conf. on Intelligent User Interfaces,
pages 202–209, February 2006.

10. D. Oblinger, V. Castelli, T. Lau, and L.D. Bergman.
Similarity-based alignment and generalization. InProc.
Sixteenth Europ. Conf. on Machine Learning, pages
657–664, Berlin, October 2005. Springer.

11. Per Cederqvist, et al. Version management with cvs (for
cvs 1.11.6), http://www.cvshome.org/docs/manual/,
1993.

