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Abstract

Modern multiuser software systems have adopted Role-
Based Access Control (RBAC) for authentication and au-
thorization management. This paper presents a formal
model for RBAC policy validation and a static analysis
model for RBAC systems that can be used to (1) identify the
roles required by users to execute an enterprise application,
(2) detect potential inconsistencies caused by principal del-
egation policies, which are used to override a user’s role as-
signment, (3) report if the roles assigned to a user by a given
policy are redundant or insufficient, and (4) report vulner-
abilities which can result from unchecked intra-component
accesses. The algorithms described in this paper have been
implemented as part of IBM’s Enterprise Security Policy
Evaluator (ESPE) tool. Experimental results show that the
tool found numerous policy flaws, including ten previously
unknown flaws from two production-level applications, with
no false positive reports.

1 Introduction: RBAC Systems

Role-Based Access Control (RBAC) [9] has become a
popular authorization model for managing enterprise-scale
applications. Many enterprise software systems support
RBAC, including Java, Enterprise Edition (EE)1 [21], Mi-
crosoft .NET Common Language Runtime (CLR) [10], and
modern database management systems.

An RBAC policy restricts access to protected operations
based on “roles”. A role is a semantic grouping of access
rights, which can be assigned to users and groups of an ap-
plication or system.

Typically, a system administrator manages the RBAC
policy via declarative artifacts, distinct from the application
code. Unfortunately, the code and the security policy can

1Formerly known as Java 2, Enterprise Edition (J2EE).

interact in complex and subtle ways, based on possible com-
ponent dependencies, principal delegation policies, and the
run-time authorization model. In this complexity, an RBAC
policy may hide security vulnerabilities, which can be ex-
tremely difficult to find with testing or code inspection.

To alleviate these problems, we present a static analy-
sis model to verify that an RBAC policy does not exhibit
certain classes of vulnerabilities. This paper presents a
novel theoretical foundation and an interprocedural analy-
sis framework to model the flow of authorization informa-
tion in an RBAC system and automatically detect security
policy misconfigurations.

The model presented in this paper identifies three types
of RBAC security flaws, corresponding to RBAC policies
that are:

• Insufficient, leading to stability problems due to poten-
tial run-time authorization failures,

• Redundant, granting a superset of the minimal set of
roles necessary to execute a program, thus violating
the Principle of Least Privilege [23], or

• Subversive, permitting an execution to bypass de-
clared access restrictions by exploiting unchecked
intra-component calls.

We present a sound static analysis algorithm to verify
that an RBAC policy is sufficient and not subversive, and a
complete analysis to identify redundant policies. The analy-
ses can also suggest alternative policies which remedy these
flaws.

We have implemented the algorithms described in this
paper as part of an IBM tool called Enterprise Security Pol-
icy Evaluator (ESPE). We present the results obtained by
executing ESPE on a number of Java EE applications. The
tool found numerous security policy flaws, including pre-
viously unknown flaws from publicly available codes and
from two production-level commercial applications, with
no false positive reports.
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2 Motivating Example

Typically, an RBAC system allows any resource to be
restricted with zero, one, or multiple roles. If no role pro-
tects a resource, any principal may access it. When multiple
roles restrict a resource, the role requirement manifests as a
logical OR; a principal must possess at least one of the spec-
ified roles. If multiple resources access each other, forming
a chain of calls, then the user accessing the first resource
in the chain needs roles authorizing each link in the chain;
the role requirement manifests as a logical AND. Thus, in
order to configure an RBAC policy correctly, a system ad-
ministrator must infer which role requirements could arise
in any possible execution, and evaluate potentially complex
logical expressions of these role requirements.

Roles Granted:
Student, Assistant

Role Required: Student

Role Required: Student 
or Assistant

run-as: Professor

Role Required: Professor
Role Required: 
Professor

Component

Intercomponent call

Intracomponent call

SubversiveSubversive

InsufficientInsufficient

RedundantRedundant

m0m0

m1m1 m2m2

m3m3 m4m4 m5m5

m6m6 m7m7

Role Required: Student Role Required: Student

InsufficientInsufficient

User: bob

Figure 1. RBAC in Component-Based System

Figure 1 shows a simple example of an RBAC policy
for a distributed component-based system, such as Java
EE. The component run-time system (container) intercepts
inter-component method calls, and checks RBAC authoriza-
tion at that time. In Figure 1, user bob has been granted the
Student role, which satisfies the role requirement to in-
voke entry method m0.

Unfortunately, the behavior of m0 will lead to an au-
thorization failure downstream. The call graph shows
that m0 leads to the invocation of an inter-component call
from m2 to m5, which has been access-restricted with the
Professor role. This invocation will fail at runtime be-
cause bob does not have the required role.

In practice, the container will often fail to maintain
enough information to report useful error messages. In Java
EE, the container will report the following unhelpful error
message at run-time:

java.rmi.ServerException:
Nested exception is: java.rmi.AccessException:
CORBA NO_PERMISSION 9998

For large applications, manually tracking back the error
across the distributed call stack presents a difficult chal-
lenge. For this reason, it is desirable for authorization fail-
ures to occur immediately on entry to an application. We

call a policy that does not enforce this desirable property
insufficient.

The example also violates the Principle of Least Privi-
lege [23], which states that a user should be granted no more
privileges than necessary. The policyr grants bob the role
Assistant, which is extraneous for the example code.
Note that even though a call to m1 would be satisfied by
the Assistant role, since the Student role is required
anyway, granting the Assistant role is unnecessary. A
redundant policy, which grants unnecessary privileges, can
lead to security problems as the code evolves over an appli-
cation’s lifetime.

2.1 Principal Delegation

In an RBAC system, the identity of the principal who ini-
tiates a transaction propagates to downstream calls. How-
ever, some resources may need execute as though called by
a principal with different, perhaps more privileged, roles.
For this purpose, most RBAC systems allow the adminis-
trator to map each component to a principal delegation pol-
icy and override the identity of the executing principal with
a specified identity. At runtime, all the downstream calls
from that point on assume the roles held by that identity.

In the example, the component of m1 uses a run-as
delegation policy that forces all the subsequent downstream
calls to be performed under the Professor role. Thanks
to this delegation policy, the authorization check for m3 suc-
ceeds.

Principal delegation polices can lead to authorization
failures. In the example, the component of m3 does not set
the principal delegation policy back to Student, which is
the role requirement to invoke m7. Thus, bob, who was
granted the Student role at the beginning, is now denied
access to m7 for not having the role of Student. In this
case, the principal delegation has, as a side effect, made the
RBAC policy insufficient.

2.2 Intra- vs. Inter-component Calls

Typically component-based systems enforce authoriza-
tion checks only across component boundaries. Once an
execution enters a component, the system does not perform
authorization checks for further behavior inside said com-
ponent [30]. This design favors execution performance.
However, if the access-control policy for an internal exe-
cution point differs from that of the component entry point,
unintended security violations can occur.

In the example, the intra-component call from m3 to m6
will not fail, even though when executing m3 the princi-
pal does not hold the required role, Student. In gen-
eral, when an execution can bypass declared authorization
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checks by exploiting intra-component calls, we call the ex-
ecution subversive.

3 A Formal Model for RBAC

This section presents a formal model for RBAC and de-
fines the notions of sufficiency, minimality, and subversion.

3.1 Concrete Semantics

Given a program p with sets of methods M and roles R,
we define role formulae to be propositional logic statements
over R, where each r ∈ R is considered as a predicate. We
denote the set of role formulae over R by B(R).

Definition 3.1. An RBAC policy for p is a tuple P =
(R, U, υ, µ, π), where

1. R is a finite set of role predicates.
2. U is a finite set of users.
3. υ : U → B(R) is the user role assignment function,

interpreted as follows: ∀u ∈ U , υ(u) defines the roles
granted to u at program entry; υ(u) 6= false.

4. µ : M → B(R) is the role requirement function, map-
ping each method to the roles required to invoke it.

5. π : M ⇀ B(R) is the principal delegation partial func-
tion, defined as follows: ∀m ∈ M , π(m), if defined,
indicates the roles that m sets as part of its principal
delegation policy; π(m) 6= false.

Function µ typically requires a disjunction of roles, al-
lowing a user u to invoke a method m if and only if u pos-
sesses any of the roles in the disjunction µ(m). More pre-
cisely, if g ∈ B(R) defines the roles dynamically held by
an execution when it invokes m, the invocation of m will
succeed if and only if g ⇒ µ(m). In particular, if µ(m) ⇔
true, then m is unprotected, while if µ(m) ⇔ false,
then m is inaccessible.

Function υ typically assigns a conjunction of roles,
granting a user multiple roles simultaneously. If υ(u) ⇔
true for some user u, then u can only access unprotected
resources.

The π partial function models changes in privileges ac-
cording to principal delegation policies. If, for a method m,
π(m) is defined, then when the program makes a call from
m, it assumes roles π(m). When π(m) is not defined, it
signifies no principal delegation in place; the roles held by
the user executing p do not change. If π(m) ⇔ true, the
principal delegation policy strips all privileges; in this state,
the program can access only unprotected resources.

We now define, informally, an instrumented concrete se-
mantics to describe the behavior of a program under an
RBAC policy. We assume a standard concrete semantics for
a program in the underlying language, where the program

state consists of a program counter, stack, heap, local vari-
ables, and global variables. We assume for this discussion a
single thread of execution; generalizing to multiple threads
does not introduce any difficulties. We instrument the pro-
gram state additionally with a stack w of dynamically held
roles; if S is the program configuration under the standard
concrete semantics, then 〈S,w〉 is the program configura-
tion under the instrumented concrete semantics. The stack
alphabet is Σ := B(R); each σ ∈ Σ represents roles that an
execution may hold at a particular point.

Definition 3.2. The base instrumentation for an execu-
tion initiated by a user u is defined as follows. Given a
configuration 〈S, w〉, we denote a transition of the instru-
mented concrete semantics into a configuration 〈S′, w′〉 by
〈S,w〉 V 〈S′, w′〉. Since the only operations that affect
the instrumentation are method calls and returns, we only
describe the effect of these operations. When a security vi-
olation occurs, the semantics transitions into a designated
authorization error state. In the following, we only show
transitions to non-error states (implicitly defining all other
transitions as transitions to the error state), and we assume
that S′ is the updated configuration according to the stan-
dard concrete semantics applied to S.
• Init: Call to entry point m′

〈S, ε〉 V 〈S′, υ(u)ε〉, υ(u) ⇒ µ(m′)

• Call: m calls m′

〈S, σw〉 V
{
〈S′, σσw〉, π(m) undefined ∧σ ⇒ µ(m′)
〈S′, π(m)σw〉, π(m) defined ∧π(m) ⇒ µ(m′)

• Return
〈S, σw〉 V 〈S′, w〉

3.2 Accounting for Intra-component Calls

As discussed in Section 2.2, an RBAC system typically
performs authorization checks only on inter-component
calls. This unintuitive semantics can lead to unexpected vi-
olations of the Principle of Least Privilege, if not accounted
for correctly. We now extend the instrumented concrete se-
mantics to distinguish between intra-component and inter-
component calls. We denote the set of modules of p by
MD and define a function md : M → MD that maps each
method to its module. The modified semantics is identi-
cal to those of Section 3.1, with the following special rule,
which overrides the semantics of intra-component proce-
dure calls:

Definition 3.3. The modified instrumentation for an exe-
cution is identical to the base instrumentation for inits and
returns, and changes the handling of calls as follows:
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• Intercomponent Call: m calls m′, md(m) 6= md(m′)

〈S, σw〉 V
{
〈S′, σσw〉, π(m) undefined ∧σ ⇒ µ(m′)
〈S′, π(m)w〉, π(m) defined ∧π(m) ⇒ µ(m′)

• Intra-component Call: m calls m′, md(m) = md(m′)

〈S, σw〉 V 〈S′, σσw〉

Note that the rule for intra-component calls does not have
any side condition. Therefore such calls cannot lead to an
authorization check error.

3.3 Sufficiency, Minimality, Subversion

This section formalizes the notion of an RBAC policy
being too restrictive or too permissive.

Definition 3.4. An RBAC policy P for a program p is suf-
ficient if for any user u and for any execution e such that
υ(u) ⇒ µ(me), where me ∈ M is the entry point of e, e
does not transition to an authorization error state; insuffi-
cient otherwise.

In other words, for P to be sufficient, it is necessary that
no execution transitions to an authorization error state, pro-
vided the user has permission to initiate the execution by
calling its entry point. If a security authorization failure oc-
curs, it must occur immediately when the user calls an entry
point (for example, an application service).

It is possible to define a partial order on the class of all
the RBAC policies on a program p that share the same role
requirement function.

Definition 3.5. Given a program p with sets of methods M ,
users U , and roles R, we define a partial order on the class
C(U,R, µ) of all the RBAC policies on p sharing the same
role requirement function µ : M → B(R), as follows.

Given two user role assignment functions υ1, υ2 : U →
B(R), we say that υ1 is less permissive than υ2, and write
υ1 ¹ υ2, if υ1(u) ⇒ υ2(u), ∀u ∈ U . If υ1 ¹ υ2∧∃u ∈ U :
υ2(u) ; υ1(u), we say that υ1 is strictly less permissive
than υ2, and write υ1 ≺ υ2.

Given two principal delegation partial functions π1, π2 :
M ⇀ B(R), we say that π1 is less permissive than π2,
and write π1 ¹ π2, if ∀m ∈ M either π1(m) ⇒ π2(m)
or both π1(m) and π2(m) are undefined. If π1 ¹ π2, and
∃m ∈ M : π2(m) ; π1(m), we say that π1 is strictly less
permissive than π2, and write π1 ≺ π2.

Given two RBAC policies P1 = (R, U, υ1, µ, π1), P2 =
(R, U, υ2, µ, π2) ∈ C(U,R, µ), we say that P1 is less per-
missive than P2, and write P1 ¹ P2 if υ1 ¹ υ2 and π1 ¹
π2. If P1 ¹ P2 and υ1 ≺ υ2 or π1 ≺ π2, we say that P1 is
strictly less permissive than P2, and write P1 ≺ P2.

Intuitively, if P1 ≺ P2, then P1 is stricter than P2; P1

grants fewer privileges to the users executing the code. This
allows reasoning about the Principle of Least Privilege; an
RBAC policy should grant the minimum set of privileges
necessary to prevent authorization failures. More formally,
an RBAC policy should be “minimal”:

Definition 3.6. An RBAC policy P sufficient for a program
p is minimal if there exists no sufficient RBAC policy Q for
p such that Q ≺ P ; otherwise, P is redundant.

Given a program, it is possible to execute it with respect
to either the base or the modified instrumentation. In the
latter case, the execution will differ in the state of roles veri-
fied and granted, and in possible transitions to authorization
error states.

Definition 3.7. An RBAC policy P is subversive if there
exists any execution with P that transitions to an autho-
rization error state under the base instrumentation, but not
under the modified instrumentation.

In other words, P is subversive if sufficient under the
modified instrumentation, but insufficient under the base in-
strumentation. From a security perspective, a subversive
execution is a violation of the Principle of Least Privilege
because a user may access a restricted resource, bypassing
the intended security policy by exploiting unchecked intra-
component calls.

4 Static Analysis for RBAC

Let P be an RBAC policy for a program p. At each pro-
gram point, it is important to detect whether P is either too
permissive or too restrictive. To do this, it is important to
identify: (i) the set of roles required at each program point,
and (ii) the set of roles the user may possess at each program
point, based on the concrete semantics of P . This section
describes a conservative Role Requirement Analysis that
approximates these sets, and shows how this analysis can
identify RBAC policies that can cause security flaws. The
Role Requirement Analysis can be used to infer alternative
policies that correct such flaws.

4.1 Role Domain

At each point during execution, the RBAC policy re-
quires a certain set of roles, and the user holds a certain
set of roles. The Role Requirement Analysis computes val-
ues that overapproximate the set of roles required at any
program point. The values computed are preconditions that
ensure that a call to a given method m will not lead to au-
thorization errors, including (transitively) any further calls
from m.
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As described in Section 3.1, an RBAC policy specifies
role requirements and user authorization in terms of role
formulae over the set of roles R, B(R). Henceforth, we as-
sume that these role formulae are monotone (no negations),
and specified in conjunctive normal form.

We present the Role Requirement Analysis as a dataflow
analysis over sets of roles. To this end, we map role formu-
lae in monotone conjunctive normal form (MCNF(R)) to el-
ements of P(P(R)) via a mapping φ: For σ ∈ MCNF(R),
with σ =

∧k
i=1

∨ti

j=1 rij ,

φ(σ) := {Ri}k
i=1, where Ri := {rij}ti

j=1

Via this mapping, we proceed to define a set-based
dataflow analysis over the semilattice LS with elements
P(P(R)), join operator ∪, and partial order ⊇. Appendix
A shows that, with appropriate quotients, this semilattice is
isomorphic through φ to the corresponding semilattice de-
rived from MCNF(R) with join operator ∧ and partial order
⇒. This result ensures that the set-based dataflow analysis
formulation is a faithful representation of the analysis prob-
lem derived from the concrete semantics defined in terms
B(R) and ⇒.

4.2 Role Requirement Analysis

The first step of the Role Requirement Analysis algo-
rithm is to build a call graph G = (N, E) overapproxi-
mating the method calls during execution of the applica-
tion, and to compute the RBAC policy P by identifying
which methods in the application are access-restricted and
which components define principal delegation policies. If a
method is reachable from the program entry point, then it
will correspond to a node in G.

The Role Requirement Analysis overapproximates the
sets of roles required at each program point via the solu-
tion to a backwards dataflow problem induced by G and
P . We first define mc : N → M , mapping a call graph
node to its corresponding method. Functions µc, πc : N →
P(P(R)) and mdc : N → MD are defined as follows:
µc(n) := µ(mc(n)), πc(n) := π(mc(n)), and mdc(n) =
md(mc(n)), ∀n ∈ N . Dataflow functions Gen, Kill : E →
P(P(R)) are defined as follows, ∀e = (n1, n2) ∈ E:

Gen(e) :=

{
µc(n2), mdc(n1) 6= mdc(n2) ∧ πc(n1) undef
∅, otherwise

Kill(e) :=

{
P(R), mdc(n1) 6= mdc(n2) ∧ πc(n1) defined
∅, otherwise

We use Gen and Kill in the following dataflow equations:

Out(e) = (In(e) \ Kill(e)) ∪ Gen(e)
In(e) =

⋃
f∈Γ+(e) Out(f)

where Γ+((n1, n2)) := {(n′1, n′2) ∈ E : n′1 = n2}.
These monotone dataflow equations are solved via itera-

tion to a fixed point [1]. In the solution, Out((n1, n2)) over-
approximates the roles required for a user invoking mc(n2)
from mc(n1). We define a function Λ : N → B(R) that an-
notates each node with (an overapproximation of) the tran-
sitive role requirement needed to call that node from another
component. Λ(n) is defined as follows, ∀n ∈ N :

Λ(n) = φ−1((
⋃

(n,n′)∈E

Out(n, n′)) ∪ µc(n))

4.3 Security Analyses

The Role Requirement Analysis forms the basis for sev-
eral security analyses. Specifically, given an RBAC policy
P = (R,U, υ, µ, π) as in Definition 3.1, the Role Require-
ment Analysis can be used to automatically detect if P is
insufficient, minimal, or subversive. If it detects that P
is insufficient or subversive, the analysis can report code
locations that make P insufficient or subversive, and out-
put alternative υ and π that can make P sufficient or non-
subversive, respectively. If it detects that P is redundant,
the analysis can report a more accurate policy P in which,
according to the analysis, the redundancy has been elimi-
nated.

4.3.1 Sufficiency Analysis

This section defines a notion of an RBAC policy’s being suf-
ficient with respect to the Role Requirement Analysis result,
and then proves a related soundness property.

We define the following two types of edges in the call
graph:
• Entry Edges. We augment the call graph G = (N, E)

with an additional node ñ ∈ N representing a generic
client invoking p’s entry points. If m0 ∈ M is an entry
point of p and n0 ∈ N is a call graph node representing
m0, then the edge e0 := (ñ, n0) ∈ E is called an entry
edge.

• run-as Edges. An edge e = (n1, n2) ∈ E is said to
be a run-as edge if it is an inter-component edge and
if πc(n1) is defined. Run-as edges are exactly those on
which the Kill function is nontrivial.

For notational convenience in later sections, we define
the result of sufficiency analysis as indicating a policy to be
“abstractly sufficient:”

Definition 4.1. Let P be an RBAC policy and Λ : N →
B(R) the result of Role Requirement Analysis for P . P is
abstractly sufficient if the following two conditions hold:

1. For each entry edge e0 = (ñ, n0) ∈ E, υ(u) ⇒ Λ(n0)
for each u ∈ U such that υ(u) ⇒ µ(n0).

2. π(n1) ⇒ Λ(n2) for each run-as edge (n1, n2) ∈ E.
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Otherwise, P is said to be abstractly insufficient.

It is straightforward to verify whether an RBAC policy P
is abstractly sufficient based on Definition 4.1. The follow-
ing theorem establishes soundness of sufficiency analysis as
so defined:

Theorem 4.1. If an RBAC policy P is abstractly sufficient,
then it is sufficient.

Proof. Straightforward by induction on the structure of the
call graph.

Of course, there can be RBAC policies that are abstractly
insufficient, but sufficient in the concrete semantics. These
false alarms can arise due to overapproximation in the call
graph on which the analysis relies.

4.3.2 Minimality Analysis

Using the results of sufficiency analysis, we now present
an analysis to determine if an RBAC policy is redundant,
violating the Principle of Least Privilege.

Given a Role Requirement Analysis Λ for an RBAC pol-
icy P , a simple greedy algorithm can search for an alterna-
tive policy Q such that P is more permissive than Q, but
Q is still sufficient. This minimality analysis iteratively re-
moves one role from role assignments υ(u),∀u ∈ U , and
π(m), ∀m ∈ M , and verifies via Λ whether the resulting
RBAC policy is still abstractly sufficient. This process ter-
minates after at mostO(|R|(|E|+|M |)) iterations and leads
to a sufficient RBAC policy that better satisfies the Principle
of Least Privilege.

The following result shows that this minimality analysis
algorithm is complete:

Corollary 4.1. If an RBAC policy P is abstractly sufficient,
and there exists an abstractly sufficient policy Q such that
Q ≺ P , then P is redundant.

Proof. By Theorem 4.1, both P and Q are sufficient. There-
fore, according to Definition 3.6, P is redundant.

Thus any problems reported by minimality analysis rep-
resent actual violations of the Principle of Least Privilege;
there are no false alarms. The analysis is not sound, and
may fail to identify some violations.

4.3.3 Subversion Analysis

It is easy to construct a Role Requirement Analysis that
overapproximates the roles required by a program p assum-
ing that p will be executed with respect to the base instru-
mented semantics as explained in Definition 3.2. To do
so, it is enough to modify the dataflow computation pre-
sented in Section 4.2 by disregarding the distinction be-
tween inter- and intra-component edges, and considering all

calls as inter-component calls. Technically, we define each
call graph node to be in a separate module by using a mod-
ified set of modules MD′ and a module mapping function
md′c : N → MD′.

We define a labeling function Λ′, that annotates the call
graph with the solution of the dataflow equation under the
module mapping md′c.

The notions of an RBAC policy’s being abstractly suf-
ficient or abstractly insufficient with respect to the base
instrumented semantics abstraction can be obtained from
Definition 4.1 by simply replacing Λ with Λ′. For simplic-
ity, we will say that P is abstractly sufficient for Λ [Λ′] if is
abstractly sufficient with respect to the modified [base] in-
strumented semantics abstraction; abstractly insufficient for
Λ [Λ′] otherwise.

It is easy to see that Theorem 4.1 applies to the base in-
strumented semantics as well, with straightforward modifi-
cations. In particular, this means that an RBAC policy P
that is abstractly sufficient for Λ′ is sufficient with respect
to the base instrumented semantics. Thus the subversion
analysis is sound:

Corollary 4.2. If a RBAC policy P is abstractly sufficient
for Λ′, then it is not subversive.

With Corollary 4.2, the analysis can verify that a policy
is not subversive, with the analysis subject to potential false
alarms.

5 Implementation

This section describes the implementation of the security
analyses described in Section 4.3.

5.1 General Architecture

ESPE runs as a stand-alone application, which can be
launched on top of a Java, Standard Edition (SE) run-time
environment from the command line or from Eclipse [8].
It can analyze Java EE deployed applications packaged in
Enterprise ARchive (EAR) files or separate Java ARchive
(JAR) and Web ARchive (WAR) files [30]. These files con-
tain the object code and deployment descriptors of one or
more applications. Source code is unnecessary since ESPE
analyzes object code. ESPE analyzes standard Java EE ap-
plications regardless of the platform vendor. All the library
files used by the applications at run time must be part of the
analysis to allow ESPE to provide sound results.

ESPE comprises two main components: a deployment
descriptor analyzer and a security analysis engine. ESPE
analyzes the object code and produces a call graph model-
ing the execution of the applications. ESPE analyzes also
the deployment descriptors to detect which resources have
been access-restricted with roles, and which components
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define principal delegation policies. Based on this informa-
tion, the deployment descriptor analyzer produces two map-
pings: one mapping associates enterprise resources with the
roles necessary to access them; the other mapping asso-
ciates each component with the run-as role specified by
that component, if any. Next, ESPE analyzes both the call
graph and the security mappings, and identifies security and
stability problems.

After the call graph has been built, as explained in Sec-
tion 5.2, the ESPE engine performs the Role Requirement
Analysis. Section 6 presents the experimental results ob-
tained by executing ESPE on a number of applications.

5.2 Call Graph Construction

ESPE’s security analysis engine relies on a Java EE byte-
code analysis system called DOMO, developed at IBM Re-
search. DOMO provides a range of call graph construc-
tion algorithms, ranging from class hierarchy analysis [6]
to control-flow analysis with a variety of context-sensitivity
policies [11]. With these choices, ESPE supports a range of
cost/precision trade-offs.

A crucial implementation challenge for Java EE anal-
ysis concerns accurate modeling of inter-component calls.
Consider for example an enterprise bean having remote in-
terface Bean2, remote home interface Bean2Home, and
enterprise bean class Bean2Bean [27]. Suppose that
method m1 in enterprise bean Bean1Bean calls remote
method m2 on Bean2Bean. For this to be possible, m2
must be a method declared in Bean2 and implemented in
Bean2Bean, and a code similar to the following must be
embedded in m1.

Context initial = new InitialContext();
Object objref =

initial.lookup("java:comp/env/ejb/Bean2");
Bean2Home bean2Home = (Bean2Home)

PortableRemoteObject.narrow(
objref, Bean2Home.class);

Bean2 bean2Object = bean2Home.create();
bean2Object.m2();

At the bytecode level, the call to bean2Object.m2()
delegates to an implementation generated automatically by
the Java EE deployment tool. This implementation would
consult run-time registries and pass a message over Remote
Method Invocation over Internet Inter-ORB Protocol (RMI-
IIOP) to the process hosting the home container for the
bean. The receiving process would unmarshall the RMI-
IIOP message, activate the relevant component through the
bean lifecycle implementation, and finally delegate to a re-
flective call to complete the remote invocation.

Analyzing bytecode solely, it would be impossible to re-
solve this remote method invocation, since the relevant dis-
patch tables are effectively encoded in the XML deploy-

ment descriptor, and read by the container at run-time. In-
stead, DOMO consults the Java EE deployment descriptor
to identify such inter-component calls and models the ob-
served behavior, independent of the container implementa-
tion. Effectively, DOMO ignores the generated, deployed
code, and models the application-level semantics of inter-
component calls directly, based on direct analysis of the de-
ployment descriptor. This functionality is necessary for ac-
curate analysis of inter-component calls in Java EE, and to
our knowledge is not supported by any other static analysis
implementation.

For the code above, the call graph will contain an addi-
tional edge that links the declaration of m2 in Bean2 to the
actual (remote) implementation of m2 in Bean2Bean, as
shown in Figure 2.

Bean1Bean.m1()

Bean2.m2()

Bean1Bean.m1()

Bean2.m2()

Bean2Bean.m2()

Traditional Static
Analysis Engine

J2EE-specific Static
Analysis Engine

Component

Intercomponent call

Intracomponent call

Figure 2. Traditional Static Analyzer vs. ESPE

ESPE also includes code to automatically identify ap-
plication entry points, which correspond to EJB inter-
faces, servlets, JavaServer Pages (JSP) applications, Struts,
message-driven beans, and Java EE application clients. The
call graph construction resolves behavior from these vari-
ous types of entry points appropriately, depending on the
semantics of each type as specified by Java EE [30].

6 Experimental Results

This section summarizes the experimental results ob-
tained by using ESPE on the following Java EE
V1.4 applications: PetStore [29], Bookstore [7],
EnrollerApp [28], SavingsAcc [28], DukesBank
[28], ITSOBank [18], Trade3 [12], SPECj2002 [26],
and anonymous production-level applications A and B.

The results reported in Table 1 are from running ESPE on
an IBM T60P ThinkPad with an Intel T2600 Core Duo 2.16
GHz processor, 2 GB of Random Access Memory (RAM),
and Microsoft Windows XP SP2 operating system. ESPE
was run on a Java SE V1.5.0 07 run-time environment. For
each application, Table 1 shows the application size (which
does not include the libraries), the size of the call graph gen-
erated by ESPE, the time taken to perform the analysis, the
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total amount of memory (Java heap size) required to per-
form the analysis, the number of roles defined by the appli-
cation, and the number of problems reported by ESPE, char-
acterized as insufficiency, redundancy, and subversion prob-
lems. We further classify each problem as arising from role
assignments to users (υ) or role assignements from princi-
pal delegation policies (π).
DukesBank, ITSOBank, and commercial applications

A and B came with predefined roles, while for the other ap-
plications it was necessary for a system administrator to
define the security policy based on the introspection per-
formed on the applications by Sun Microsystems’ Deploy-
ment Tool for Java 2 Platform Enterprise Edition 1.4. In
this task, the system administrator attempted to configure
valid security policies, and did not intend to introduce any
security flaws.

The experiments in this paper rely on call graph con-
struction via Rapid Type Analysis (RTA) [2], supporting
analysis of large Java EE applications in relatively short
time.

The results shows that the analysis discovered a num-
ber of policy problems in each application, spanning the
three types of policy flaws we have identified. Most of the
flaws stem from user role assignments as opposed to prin-
cipal delegation policies. Notably, the analysis discovered
thirty-eight flaws in the four applications which came con-
figured with RBAC policies, including ten flaws in the two
production codes A and B from IBM customers.

As explained earlier, the redundancy analysis is com-
plete, so all redundancy reports identify actual violations of
the Principle of Least Privilege. The sufficiency and subver-
sion analyses are sound but not complete, and so subject to
false positives. We examined each of the insufficiency and
subversion problems reported by ESPE by hand, in order to
identify false positives.

Somewhat surprisingly, none of the reported problems
appear to be false positives, despite overapproximations in
the relatively imprecise RTA call graph. We believe that
the calling patterns in these Java EE programs that affect
RBAC analysis are predominantly monomorphic, and thus
amenable to context-insensitive call graph analysis. In prac-
tice, most enterprise beans map directly from the structure
of an underlying relational database, and so do not utilize
inheritance or linked structures. Furthermore, applications
rarely store or manipulate EJB instances with complex heap
data structures. Although the underlying container utilizes
complex libraries and data structures, the DOMO analyzer
truncates paths into the container, so container code does
not pollute the application-level call graph. Furthermore,
interactions with Java standard libraries are usually uninter-
esting for role analysis, since library methods are not re-
stricted with roles.

We now discuss the problems identified in the four codes

which came with pre-configured RBAC policies. We first
discuss the problems in the two production commercial ap-
plications in more detail, since these represent real prob-
lems from the field.

Commercial application A contained three insufficiency
errors that were not detected during testing. The architec-
ture of application A assumed that four of its archive files be
installed on an Internet environment, while the remaining
three archive files be installed on an intranet environment
for use by customer service representatives. During test-
ing, paths of execution initiated in the intranet and involving
components of both environments were never explored, and
three role requirements were not identified, leading to three
insufficiency problems. Those paths, which were valid,
were however identified by ESPE, and the security policy
was corrected before any user could experience a run-time
authorization failure.

Production-level application B contained seven security
problems, one of which was due to the user role assignment
function’s being insufficient. This vulnerability was inter-
esting because it was also difficult to discover without an
automated tool. In an RBAC system, certain resources can
be marked as inaccessible, meaning that no user can ac-
cess them regardless of the roles the user has been granted.
One of the methods in B was marked as inaccessible be-
cause it was supposed to be executed only for debugging
purposes, when security is disabled. ESPE detected a path
that exposed that inaccessible method to indirect invocation
by other programs. If that path had inadvertently been ex-
ploited at run time, it would have caused an authorization
failure. That problem was not detected during testing.

The ITSOBank program exposes a redundant pol-
icy. For example, when method onMessage in
IncomingTransferBean invokes getBalance and
setBalance on BranchAccountLocal, its com-
ponent sets the principal delegation to mdbuser, but
this role is not necessary to execute any of the
methods transitively reached from that execution point,
which makes π redundant. Similarly, entry point
Consultation.getBranchBalance has been re-
stricted with role formula accountant ∨ manager ∨
clerk ∨ consultant. A system administrator granting
a user the right to execute this entry point may either choose
any of these roles, or all of them. ESPE has detected that
roles manager ∧ clerk ∧ consultant are transitively
necessary to execute the application starting at that entry
point, but role accountant is not.

Both DukesBank and ITSOBank present cases of
subversive policies. For example, in DukesBank, the
Dispatcher component sets the principal-delegation
policy to bankAdmin, but this role would not be suf-
ficient to execute the intra-component method invoca-
tions restricted with bankCustomer if authorization

8



Application Size Call Graph Time Mem. Roles Problems
(KB) Nodes Edges (sec.) (MB) Insufficiency Redundancy Subversion

υ π υ π υ π

PetStore 1,282 6,465 23,360 35 117 3 8 0 0 5 0 0
Bookstore 359 16,269 86,448 62 162 3 2 2 0 14 0 0
EnrollerApp 15 2,212 10,060 12 220 3 1 0 0 0 0 0
SavingsAcc 10 2,164 9,799 12 227 4 1 0 0 0 0 0
DukesBank 149 3,452 9,322 23 212 2 1 0 0 1 0 3
ITSOBank 1,388 11,448 42,220 59 150 7 10 0 6 3 0 4
Trade3 2,414 5,634 20,655 29 114 2 21 0 0 0 1 0
SPECj2002 3,608 5,536 20,614 52 150 2 31 0 0 13 2 3
A 2,580 618 1,007 11 239 4 3 0 0 0 0 0
B 12,889 15,527 78,434 19 241 6 1 2 2 2 0 0

Table 1. Empirical Results of ESPE Analysis

were enforced regardless of component boundaries. In
ITSOBank, the component IncomingTransferBean
enforces principal delegation by assigning the user the iden-
tify of role mdbuser. However, this principal delegation
policy would not be sufficient for the user to pass the sub-
sequent internal authorization test for manager ∨ clerk
∨ consultant.

Overall, we conclude that ESPE is effective in identify-
ing flaws in security policies. The tool has been applied by
various groups in IBM working with customer enterprise
applications.

7 Related Work

Ferraiolo and Kuhn proposed RBAC in 1992 [9]. Work
on building and analyzing models and implementations
for RBAC has concentrated on complex architectures [24].
Schaad, et al. [25] used the Alloy specification language
[13] for modeling RBAC96, and the Alloy Constraint An-
alyzer (Alcoa) [14] to check desirable properties such as
separation of duties.

eXtensible Markup Language (XML) documents are of-
ten used by Web applications. Several mechanisms and
frameworks for specification and enforcement of RBAC
policies for XML documents have been proposed [5, 15].
Such mechanisms are flexible in the sense that they pro-
hibit or allow access to specific individual elements in XML
documents. Recently, Murata, et al. [16] proposed a static
analysis approach based on finite state automata that allevi-
ates the burden of enforcement of such specifications at run
time. A positive side effect of this work is faster execution
of queries over XML documents.

In the area of Web applications, a number of testing and
static analysis techniques have been studied, but they have
concentrated primarily on the problem of control and infor-
mation flow between static and dynamic resources utilized

by Web applications. For example, Ricca, et al. [22] intro-
duced a Unified Modeling Language (UML) model for Web
applications that is useful for structural testing. However,
this model concentrates on links between Web pages and in-
teractive features of Web applications, and does not provide
support for distributed object components. The purpose of
the work of Clarke, et al. [4] is to enforce confinement of
EJB objects. An EJB object’s confinement can be breached
when a direct reference to the EJB object is returned to a
client, thereby allowing a client to invoke security-sensitive
methods bypassing any RBAC restriction. They proposed
coding guidelines that, if observed, prevent confinement
breaches. Additionally, they described a straightforward
static analysis algorithm that checks for violations of those
guidelines in EJB programs. Naumovich and Centonze [17]
identified the need for mapping a method-based RBAC pol-
icy to the underlying data. Subsequently, Centonze, et al.
[3] proved necessary and sufficient conditions under which
a method-based RBAC policy admits an equivalent data-
based RBAC policy, and proposed a static analysis model
to determine whether an RBAC policy is inconsistent (for
example, two EJB methods accessing the same data in the
same mode are not restricted with the same roles).

In addition to RBAC, Java offers a low-level access con-
trol mechanism to protect static resources, such as the file
system, network, and operating system. Both static and dy-
namic analysis techniques are employed in modeling secu-
rity and authorization. Much of this work has been applied
to eliminate or minimize redundant authorization tests and
identify the minimal security policy to execute a Java SE
application without authorization failures [20].
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A Semilattice Isomorphism

This section shows that the set-based dataflow analysis
described in Section 4.2 is isomorphic to an analysis for-
mulated directly using predicate logic on role requirements.

Let R be the finite set of role predicates for p and
MCNF(R) ⊆ B(R) be the set of propositional logic state-
ments in monotone (no negations) conjunctive normal form
over R. It is easy to see that LB :=

(
MCNF(R)

⇔ ,∧
)

is a join
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semilattice, with an induced partial order corresponding to
implication, ⇒.

Consider now the subset D(R) := {{Ri}k
i=1 ∈

P(P(R)) : ∀j ∈ [1, k], j 6= i ⇒ Ri 6⊆ Rj}. It is easy
to prove that ∀X ∈ P(P(R)), X can be canonically re-
duced to its subset χ(X) ∈ D(R), called the canonical
form of X , obtained by eliminating from X those elements
that are supersets of other elements. This defines a func-
tion χ : P(P(R)) → D(R). The relation ∼ on P(P(R))
defined by X ∼ Y

def⇐⇒ χ(X) = χ(Y ) is an equivalence
relation, andLS :=

(
P(P(R))

∼ ,∪
)

is a join semilattice, with
induced partial order ⊇.

We will prove LS to be isomorphic to LB through the
function φ : LB → LS defined as follows, ∀σ ∈ MCNF(R),
with σ =

∧k
i=1

∨ti

j=1 rij :

φ(σ) := {Ri}k
i=1, where Ri := {rij}ti

j=1,∀i = 1, . . . , k

To prove that φ is an isomorphism of semilattices, we will
show that (i) φ is well defined, (ii) φ is invertible, and (iii)
φ is a homomorphism of semilattices.

Proposition A.1. ∀X = {Ri}k
i=1 ∈ P(P(R)), with Ri =

{rij}ti
j=1,∀i = 1, . . . , k, let ψ(X) :=

∧k
i=1

∨ti

j=1 rij . Then
ψ(φ(σ)) ⇔ σ,∀σ ∈ MCNF(R).

Proof. ψ(φ(σ)) and σ differ at most by the order of the
disjuncts and of the predicates inside each disjunct, and by
the fact that in ψ(φ(σ)) there are no duplicate disjuncts.

An element σ′ ∈ MCNF(R) is said to be in canonical
form if σ′ has no duplicate disjuncts and φ(σ′) ∈ D(R).
Proposition A.2 shows that any σ ∈ MCNF(R) has an
equivalent canonical form σ′.

Proposition A.2. ∀σ ∈ MCNF(R), let σ′ :=
ψ(χ(φ(σ))) ∈ MCNF(R). Then χ(φ(σ′)) = φ(σ′) and
σ ⇔ σ′.

Proof. Let σ =
∧k

i=1

∨ti

j=1 rij and φ(σ) = {Ri}k
i=1,

where Ri := {rij}ti
j=1,∀i = 1, . . . , k. Assume ∃q, s ∈

{1, . . . , k} : q 6= s ∧ Rq ⊆ Rs. Clearly,
∨tq

j=1 rqj ∧∨ts

j=1 rsj ⇔
∨tq

j=1 rqj , so ψ({Ri}i∈1,...,k\{s}) ⇔ σ. Elim-
inating from φ(σ) all the elements that are supersets of other
elements yields χ(φ(σ)), which implies that σ′ has the de-
sired properties.

Lemma A.1. If σ′1 =
∧k

i=1

∨ti

j=1 xij , σ
′
2 =∧h

q=1

∨lq
s=1 yqs are in canonical form and ∃i ∈

{1, . . . , k}, q ∈ {1, . . . , h} : Xi ⊂ Yq , with
Xi = {xij}ti

j=1, Yq = {yqs}lq
s=1, then σ′1 6⇔ σ′2.

Proof. Since Xi ⊂ Yq, ∃yq ∈ Yq \ Xi, and since σ′2 is in
canonical form, ∀l ∈ {1, . . . , h} \ {q}, it must be Yl * Yq ,

which implies that ∃yl ∈ Yl \ Yq , and so yl /∈ Xi. Thus, the
following truth assignment is possible, which demonstrates
σ′1 6⇔ σ′2:
• yl := true,∀l = 1, . . . , h, which makes σ′2 true
• x := false, ∀x ∈ Xi, which makes σ′1 false

Theorem A.1. ∀σ1, σ2 ∈ MCNF(R), σ1 ⇔ σ2 if and only
if φ(σ1) ∼ φ(σ2).

Proof. If χ(φ(σ1)) = χ(φ(σ2)), then ψ(χ(φ(σ1))) =
ψ(χ(φ(σ2))), and by Proposition A.2, σ1 ⇔ σ2.

Now, assume σ1 ⇔ σ2. By Proposition A.2, σ′1 :=
ψ(χ(φ(σ1))), σ′2 := ψ(χ(φ(σ′2))) are in canonical form,
and σ′2 ⇔ σ2 ⇔ σ1 ⇔ σ′1. Let χ(φ(σ1)) =
{Xi}k

i=1, χ(φ(σ2)) = {Yj}h
j=1, and assume by contradic-

tion that ∃i ∈ {1, . . . , k} : Xi 6= Yj , ∀j = 1, . . . , h.
By Lemma A.1, Yj * Xi, ∀j = 1, . . . , h, and so ∀j =
1, . . . , h, ∃yj ∈ Yj \Xi, making the following truth assign-
ment possible:
• yj := true,∀j = 1, 2, . . . h, which makes σ′2 true
• x := false, ∀x ∈ Xi, which makes σ′1 false

This implies σ′1 6⇔ σ′2, a contradiction.

Thus, φ is well defined, with inverse ψ. From Theo-
rem A.1, it follows immediately that φ also preserves the
structures of LB and LS with respect to the binary opera-
tors ∧ and ∪. Thus φ is an isomorphism of join semilattices,
which maps ⇒ in LB to ⊇ in LS . This allows us to faith-
fully cast the Role Requirement Analysis into a dataflow
problem over LS .

11


