
RC24057 (W0609-070) September 19, 2006
Computer Science

IBM Research Report

Confirmed Join Points

Harold Ossher
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Confirmed Join Points

Position Paper
AOSD ’06 Workshop on

Software Engineering Properties of Languages and Aspect Technologies (SPLAT)

Harold Ossher
IBM Thomas J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA
{ossher}@us.ibm.com

1. Introduction

Adoption of AOSD is hindered by the fact that it
breaks traditional notions of class ownership. An oft-
repeated objection is that the developer responsible for
a class (the class owner1) no longer has control over
the details of the class, because weaving could result in
separately-written aspect code affecting class seman-
tics. Modern environment support, such as provided by
AJDT [2], helps by showing the sites of weaving im-
pact, and making it easy to navigate to the relevant
aspect code, but this still does not give the class owner
control.

Class ownership is a mixed blessing. We argued in the
past, in the context of subject-oriented programming,
that it can lead to bottlenecks, and hence that it is pref-
erable for developers dealing with different concerns
to be able to contribute separately to shared classes [7].
The ability to apply unanticipated aspects to existing
code, commonly termed obliviousness [5], is an impor-
tant element of AOSD, allowing extension and adapta-
tion of existing software, even in binary form.

It is important to strike a balance between, and ideally
to integrate, the sort of flexibility that is the hallmark
of AOSD and the control needed for developers to
fulfill their responsibilities to write correct code. La-
rochelle, Scheidt and Sullivan made essentially the
same point in their work on join point encapsulation
[10]. They motivated the need for some control over

1 Throughout this paper, the term owner is used to re-
fer to a person responsible for developing the owned
software element. This usage is not to be confused
with ownership of runtime data as used in alias control
and the like.

join point accessibility, and proposed a mechanism that
allowed selective restriction of join points that can be
advised. By default, no restrictions apply, allowing full
obliviousness; restrictions can be added as appropriate
(in an neatly aspect-oriented fashion).

This paper takes the position that the balance of con-
trol and flexibility is largely a social issue among the
developers responsible for different parts of the soft-
ware, such as class and aspects owners. Language and
environment support are needed to facilitate the inter-
actions among these developers, giving class owners
appropriate control and aspect owners appropriate
flexibility without undue bottlenecks.

Along these lines, we propose a specific approach,
called confirmed join points, that offers a spectrum of
control options. Essentially, aspect owners can write
pointcuts (or queries) that refer to any join points, but
class owners must confirm that those join points within
their classes are acceptable sites for weaving according
to those pointcuts. This goes beyond ensuring encapsu-
lation, to ensuring that the class and aspect owners
have consistent understandings of specific join points.
Confirmations can be done globally, effectively relin-
quishing control, or with various degrees of specificity.
What is more, environment support can greatly ease
the task of confirming join points. One effect of this is
allowing smooth movement from less-controlled to
more-controlled usages. This approach has not yet
been implemented, but we believe that it can readily be
applied to a variety of AOSD languages, approaches or
environments.

Section 2 briefly discusses ownership and its implica-
tions. Section 3 describes the confirmed join point pro-
posal, and Section 4 environment support for it. Sec-
tion 5 extends the proposal with a discussion of con-

2

firmation based on owner rather than pointcut, and
Section 6 with a subjective notion of confirmation.
Sections 7 and 8 cover related work and conclusions.

2. Ownership

The approach described here applies to contexts in
which classes are considered to have owners, who are
responsible for their semantics and integrity. Advice
can be applied at join points within classes, as speci-
fied by pointcuts [7]. We assume that pointcuts and
advice also have owners, with similar responsibilities
relative to them.

This approach is neutral on the issue of static versus
dynamic join points, so the term join point is used
throughout; in the case of dynamic join points, some of
the usages really refer to the corresponding join point
shadows. The approach is equally applicable to sym-
metric composition situations, where classes and their
members are composed with one another based on
composition specifications, and where constructs like
correspondence queries take the place of pointcuts [5],
but pointcut-advice terminology is used here.

The owner of a class, to fulfill his/her responsibility for
it, may wish to control the application of advice to it.
Two forms of control are possible:
• Controlling the pointcuts, and hence where advice

can be applied.
• Controlling the advice itself.
This paper focuses on the first, assuming that if a class
owner allows advice at a particular join point, it is up
to the advice owner to determine its details. It would,
in fact, be reasonable and beneficial for the class
owner to be able to constrain the semantics of advice
by means such as contracts, including invariants to be
preserved, or at least to restrict the kind of advice as
suggested by Larochelle, Scheidt and Sullivan [10].
Such constraints are beyond the scope of this paper

The rest of this section briefly analyses some basic
alternatives from the point of view of control over
pointcuts.

2.1. Obliviousness

The pointcuts are outside the control of the class
owner, probably written by an aspect owner. Advice
can be applied anywhere within the class.

2.2. Exported Pointcuts

The class owner provides pointcuts as part of the ex-
ported elements of the class. Aspect owners can use
only these pointcuts. Since the pointcuts are part of the
class, they can refer to join points within class ele-
ments that are not visible outside.

2.3. Interface Join Points

Pointcuts are not controlled by class owners, but they
may only refer to externally visible elements of a class,
such as its public methods and fields. This allows as-
pect owners to control the pointcuts, but within limits:
class owners control the elements at which advice can
be applied, though not the specific join points.

2.4. Analysis

Obliviousness gives all control over pointcuts to the
aspect owner, and exported pointcuts give it all to the
class owner. The interface-join-point approach is a
hybrid, and an appealing one, because it allows aspect
authors to craft pointcuts themselves, but in terms of
elements that are publicly visible. However, it falls
short in two opposite ways:
• It does not give enough freedom to aspect owners

in contexts where they are closely associated with
class owners, in which case they might reasonably
need join points in non-visible elements.

• It does not give enough control to class owners,
because all join points in externally visible ele-
ments are automatically available.

3. Confirmed Join Points

The proposal in this paper is to use the time-honored
programming-language-design approach of adding
redundancy to achieve checking or control, in a way
that is not onerous. It is described and exemplified here
in general terms, without detailed reference to any spe-
cific language, though AspectJ syntax is used for
pointcuts [7]; it is easy to see how the concepts could
be realized in a variety of languages.

The approach makes a fundamental underlying as-
sumption: pointcuts serve as an interface between
class and aspect owners. A pointcut captures an ab-
straction, such as “all modifier methods” or “all calls
to the XYZ service,” and it is important that class
owners and aspect owners understand that abstraction
in consistent ways. Pointcut names thus have the

3

status, and are assumed to have the stability, of public
names in interfaces.

The essential elements of the approach are:
• Pointcuts need not be directly under the control of

class owners. Class owners can include exported
pointcuts in their classes, and this is certainly a
good way to enhance the abstractions they are pro-
viding. But named pointcuts can also be written
within aspects by aspect owners or, preferably, in
separate modules that serve as interfaces between
classes and aspects. Pointcut owners can thus be
class owners, aspect owners, or neither.

• Class owners must confirm that the join points
within their classes designated by specific, named
pointcuts are acceptable. This is taken as given for
pointcuts defined within the class.

• Environment support can help to manage confir-
mations.

3.1. Example

Consider a pointcut defined in module (e.g., class or
aspect) M and designating calls to method X.foo():

module M {
 pointcut p(): call(* X.foo());
}

Now consider class C containing some calls to X.foo():
class C {
 void m1() { X.foo(); X.foo(); }
 void m2() { X.foo(); }
}

If confirmed pointcuts were in use, perhaps through a
compiler option, this would result in three errors, one
for each call. The owner of C can confirm p for the
entire class:

class C confirms M.p{ … }
for a method:

… void m1() confirms M.p { … } …
or for a block:

… void m1() {
 confirm M.p {
 X.foo();
 }
 X.foo(); } …

3.2. Confirmation

The example illustrated the ability to confirm pointcuts
at the class, method and statement level. Expression-
level confirmation is also possible with suitable syntax,
though likely to be somewhat clumsy.

To confirm all pointcuts, supporting obliviousness,
“confirm *” can be used. To confirm all pointcuts
within externally-visible elements, supporting interface
pointcuts, “confirm public” can be used. To confirm
all pointcuts declared in some module M, “confirm
M.*” can be used. To handle sets of pointcuts, confir-
mation of a compound pointcut is construed to con-
firm its subsidiary named pointcuts as well.

The semantics of confirmation are straightforward.
Each named pointcut is evaluated to produce a set of
join points (or join point shadows in the case of dy-
namic join points). At each such join point, a check is
made to determine whether that join point is statically
nested within a confirmation of the relevant pointcut,
or of a pointcut that includes the relevant pointcut. If
not, an confirmation error is reported.

Confirmation errors are, essentially, a communication
vehicle from pointcut owners to class owners. Pointcut
owners introduce or modify pointcuts, which then
match new join points. The errors highlight those join
points so that class owners can examine and, ideally,
confirm them. Lack of errors indicates agreement.

3.3. Denial

Agreement might not be so easy to attain, however.
The class owner might find, upon examination, that a
particular join point should not, in fact, match a point-
cut. It might be determined that the join point was in-
troduced in error, such as by coding a call to the wrong
method, but it is more likely that the pointcut will need
to be modified. One possibility would be to add a
clause to the pointcut that specifically excludes the join
point, or perhaps its containing method or class. For
example:

module M {
 pointcut p():
 call(* X.foo()) &&
 ! withincode(void C.m2());
}

It can be argued that this type of change to a pointcut
can reasonably be made by a class owner alone. When
doing confirmations, the class owner is assumed to
understand the abstraction the pointcut captures, and is
here asserting that the specific join point in question
does not fall under that abstraction. However, it is
likely to be safer and more productive to negotiate
with the pointcut owner, to determine whether some
broader modification would be more appropriate.

4

Explicit pointcut denial facilitates this communication
from class owner back to pointcut owner. For example:

class C {
 void m1() confirms M.p { … }
 void m2() denies M.p { … }
}

Here the explicit “denies” clause indicates that the
class owner has determined that join points within
C.m2() are not appropriate matches for M.p. This is
reported as a denial error on the pointcut, alerting the
pointcut owner to the need to modify it. This might, of
course, lead to discussion between the owners.

Denial can be used to override coarse-grained confir-
mation, most appropriate where there are a few local-
ized exceptions to a general rule. For example:

class C confirms M.p {
 void m1(){ … }
 void m2() denies M.p { … }
 ...
}

Denial is stronger than lack of confirmation, and has
the opposite effect with respect to communication: it is
an explicit statement that the join point should not
match the pointcut, and that the pointcut owner has
responsibility for fixing the pointcut; lack of confirma-
tion indicates that the status of the join point has not
been determined, and that the class owner has respon-
sibility for doing so.

A number of embellishments or variations are possible.
For example, a pointcut declared as weak might auto-
matically exclude any denied join points without re-
porting errors; this is somewhat dangerous, however,
as it makes it easy for class owners to deny lazily
without really considering each case carefully. A full
design based on the concepts presented in this paper
would need to consider the alternatives in the context
of the specific AOSD language or approach in which
they are being embedded.

4. Environment Support

A software development environment supporting con-
firmed join points would highlight confirmation and
denial errors, and allow developers to navigate to and
examine the sites of such errors. Ideally, it would pro-
vide “quick fixes,” as in Eclipse, to enable developers
to make standard changes easily. For confirmation
errors, quick fixes would be available to add confirma-
tions or denials, offering choices of granularity (e.g.,
statement, method, or class). It would also be conven-
ient to allow multiple, or all, confirmation errors to be
selected and confirmed at once. For denial errors,

quick fixes would allow extension of the pointcut to
exclude the denied join points.

This kind of support, along with the ability to turn con-
firmation checking on or off through an option or pref-
erence setting, makes it particularly easy to transition
from uncontrolled situations to controlled ones. Ini-
tially, pointcuts could be written and used without con-
firmation checking, as they are today. At any point in
time, confirmation checking could be turned on, and
would show where confirmations are needed. This is
exactly analogous to browsing the effects of pointcuts
using an environment like AJDT [1], at a stage in the
project when one wants to check them manually. It
has the advantage, however, that confirmations and
denials can be recorded easily, using the quick fixes.
Of course, it is the class owners who should do this
examination and apply the confirmation error fixes.
The fact that it is their responsibility is consistent with
the fact that the confirmation insertions are actual
modifications to their classes. Similarly, it is pointcut
owners’ responsibility to deal with denial errors. Once
this has been done, in the absence of newly-introduced
errors, class owners can be confident that advice is not
being attached at unexpected places in their classes,
and pointcut owners can be confident that class owners
agree about where advice should be applied.

Further confirmation errors can arise either as a result
of changes to a class, introducing new join points that
match an existing pointcut, or due to changes in point-
cuts. Both are useful, alerting class owners to the need
to examine the new join points and to confirm or deny
them. More sophisticated support for evolution is pro-
vided by subjective confirmations, described in Sec-
tion 6.

The environment might also highlight confirmation
regions that contain no matching join points, especially
if they had contained matches before the current set of
changes.

5. Owner-Based Confirmation

In the approach so far presented, confirmation con-
structs refer to specific pointcut declarations (so do
denial constructs, but denial will no longer be men-
tioned explicitly, for convenience). In many contexts it
is actually more important to exercise control by
owner, or owner’s team or organization, rather than by
pointcut. This supports the ability to work with trusted
partners, without the overhead of enumerating the
pointcuts they own. The assumption is that they will

5

cope with changes made within classes, and under-
stand the essential class semantics and not violate it.

Conceptually, it is easy to extend confirmation point-
cuts to support confirmation by owner, with constructs
like
 … confirms o …
or
 … confirms * owned by o …
where o designates an owner, or a set of owners such
as a team or organization. The second form allows
finer control by both pointcut and owner if desired
(and avoids possible confusion between pointcut
names and owner designations).

The difficulty arises in certifying ownership. This is
usually an extra-lingual issue, requiring support from
the development environment and operating system.
Such support is common, however, in environments
that include software configuration management; their
versioned repositories keep track of who owns and
changes artifacts, and some even support team struc-
tures. Confirmation checks in the context of such an
environment can use this information

6. Subjective Confirmation

When fine-grained confirmations are used, relevant
changes to either classes or pointcuts will usually re-
sult in confirmation errors, leading the class owners to
examine the changes as described in Section 4. When
coarse-grained confirmations are used, however, such
as confirming a pointcut or owner for an entire class,
even radical changes might not result in confirmation
errors. In the case of close collaboration and trust be-
tween the class and aspect owners, this might be ac-
ceptable, even desired. But in many cases it would be
better for the changes to be brought to the notice of
class owners. Subjective confirmations allow this to be
done without the inconvenience of fine-grained con-
firmations.

A subjective confirmation not only names a pointcut,
but includes a subjective definition of that pointcut
from the point of view of the confirmer. For example:

class C
 confirms M.p = call(* X.foo())
{ … }

This states explicitly that M.p may refer to calls to
X.foo() within class C. It records the class owner’s
assertion that s/he understands the abstraction that M.p
captures, and that the definition accurately specifies
the join points in this class that fall under that abstrac-
tion. If new calls to X.foo() are added to the class, no

confirmation errors will result. However, if M.p is
changed to

module M {
 pointcut p(): call(* X.foo())
 || call(* Y.bar());
}

then any calls to Y.bar() in C will yield confirmation
errors.

The confirmation might also be broader than the refer-
enced pointcut. For example, with M.p as originally
defined, consider the confirmation:

class C
 confirms M.p = call(* X.foo(..))
{ … }

Now C might contain calls, such as to X.foo(int), that
match the confirmation but not the referenced pointcut.
A strong interpretation of subjectivity would require
that this yield a confirmation error also: the abstraction
captured by the pointcut includes more join points in
the class owner’s view than in the aspect owner’s
view, a clear inconsistency that must be resolved.
However, if the objective is merely to restrict access
rather than to ensure agreement about the meaning of
pointcuts, then this situation can be considered accept-
able.

The semantics of weak subjective confirmations are
thus that any join point in the scope of the confirma-
tion that is matched by the referenced pointcut but is
not matched by the confirmation yields a confirmation
error. For strong subjective confirmations, any join
point in the scope of the confirmation that matches the
confirmation but not the referenced pointcut also
yields a confirmation error. The class and pointcut can
then evolve independently, with confirmation errors
arising precisely then the class and pointcut owners’
views diverge.

7. Related Work

As noted in the introduction, Larochelle, Scheidt and
Sullivan’s work on join point encapsulation [10] was
motivated by similar considerations. Their mechanism
involves applying special restriction advice to join
points that are to be restricted, using standard pointcuts
to characterize the join points. The usage they describe
where restriction advice is placed in inner aspects
within classes provides class-owner control. The alter-
native usage, where the restriction advice is placed in a
top-level aspect describing what restrictions apply to
the system as a whole, allows overall control by an
architect or designer, someone filling the composition

6

designer role mentioned in Section 8. The key differ-
ence in our approaches is that restriction advice fo-
cuses on specifying join points that are not available
for advice binding, whereas ours, especially subjective
confirmation, focuses on ensuring a consistent under-
standing of the abstractions captured by pointcuts.

Considerable work has been done exploring the impli-
cations of aspects for modularity [1][3][4][9][12][13],
which is closely related to issues of ownership and
control. Herrmann has explored the combination of
flexibility and strictness in the context of the Object
Teams paradigm [7]. Detailed analysis of our approach
relative to these has not yet been done. However, we
believe that the focus on facilitating communication
aimed at achieving and maintaining a consistent under-
standing of the abstractions captured by pointcuts is
novel.

8. Conclusion

This position paper proposed a simple practical ap-
proach to ameliorating the tension between control by
class owners and flexibility for aspect owners. Point-
cuts can be written and modified at will by pointcut
owners (who might also be aspect owners or class
owners). However, class owners must confirm explic-
itly that join points matching those pointcuts are ac-
ceptable, and those confirmations remain visible in the
class code. Environment support and coarse-grained
confirmation options make the confirmation process
lightweight. To allow software processes involving
multiple levels of trust among multiple collaborating
groups, confirmation based on ownership is also sup-
ported.

This paper discussed the roles of class and aspect own-
ers. It is also worth considering another role, composi-
tion architect, responsible for assembling pieces
(classes, aspects, components, composition filters, hy-
perslices, etc.) and specifying how they should be
composed, and perhaps for coordinating the efforts of
the owners of the separate pieces. Maintaining point-
cuts might therefore be one of his/her duties. The com-
position architect is assumed to have a broader view
than piece owners, and probably greater or even over-
riding authority. Still, it would be valuable to include
in the development process the ability for piece owners
to confirm or deny join points used for composition.
Examining the details in this context remains an area
for future work.

9. Acknowledgements

Thanks to Stan Sutton for helpful comments, espe-
cially raising the issue of the composition-architect
role. Thanks to Mark Wegman for helpful comments,
especially raising the issue of owner-based confirma-
tion. Thanks to the reviewers for their very helpful
feedback.

10. References

[1] J. Aldrich. Open Modules: Reconciling Extensibility
and Information Hiding. In AOSD workshop on Soft-
ware Engineering Properties of Languages for Aspect
Technologies (SPLAT '04), March 2004.

[2] AJDT: AspectJ Development Tools Eclipse Technology
Project. http://www.eclipse.org/ajdt.

[3] C. Clifton and G. Leavens, “Obliviousness, Modular
Reasoning, and the Behavioral Subtyping Analogy.”
Technical Report 03-01a, Dept. of Computer Science,
Iowa State University.

[4] C. Clifton and G. Leavens, “Observers and assistants: A
proposal for modular aspect-oriented reasoning.” In
Proc. FOAL Workshop, 2002.

[5] R. Filman and D. Friedman. “Aspect-Oriented Pro-
gramming is Quantification and Obliviousness.” In R.
Filman et. al. (Eds.), Aspect-Oriented Software Devel-
opment, Addison-Wesley, 2005.

[6] W. Harrison, H. Ossher and P. Tarr. “Concepts for De-
scribing Composition of Software Artifacts.” IBM Re-
search Report RC23345, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, NY, September 2004.

[7] S. Herrmann. “Sustainable architectures by combining
flexibility and strictness in Ojbect Teams.” In IEE Pro-
ceedings - Software Engineering 151(2), Special Issue
on Unanticipated Software Evolution, April 2004.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, Jef-
frey Palm and William G. Griswold. “An Overview of
AspectJ.” Proc. 15th European Conference on Object-
Oriented Programming, 327-353 (2001).

[9] G. Kiczales and M. Mezini, “Aspect-Oriented Pro-
gramming and Modular Reasoning.” In Proceedings of
ICSE'05.

[10] D. Larochelle, K. Scheidt and K. Sullivan, “Join Point
Encapsulation,” In Proceedings SPLAT Workshop,
2003.

[11] H. Ossher, W. Harrison, F. Budinsky, and I. Simmonds,
“Subject-oriented programming: Supporting decentral-
ized development of objects.” In Proceedings of the 7th
IBM Conference on Object-Oriented Technology, IBM,
July 1994.

[12] Y. Song, “Join Point Interfaces: Information Hiding
Modularity for Aspect-Oriented Program Design.” Mas-
ters project, University of Virginia.

[13] K. Sullivan, W. Griswold, Y. Song, Y. Cai, M. Shonle,
N. Tewari, H. Rajan, “Information Hiding Interfaces for
Aspect-Oriented Design.” In Proceedings of ESEC/FSE
’05.

