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1. Introduction 

Adoption of AOSD is hindered by the fact that it 
breaks traditional notions of class ownership. An oft-
repeated objection is that the developer responsible for 
a class (the class owner1) no longer has control over 
the details of the class, because weaving could result in 
separately-written aspect code affecting class seman-
tics. Modern environment support, such as provided by 
AJDT [2], helps by showing the sites of weaving im-
pact, and making it easy to navigate to the relevant 
aspect code, but this still does not give the class owner 
control. 
 
Class ownership is a mixed blessing. We argued in the 
past, in the context of subject-oriented programming, 
that it can lead to bottlenecks, and hence that it is pref-
erable for developers dealing with different concerns 
to be able to contribute separately to shared classes [7]. 
The ability to apply unanticipated aspects to existing 
code, commonly termed obliviousness [5], is an impor-
tant element of AOSD, allowing extension and adapta-
tion of existing software, even in binary form.  
 
It is important to strike a balance between, and ideally 
to integrate, the sort of flexibility that is the hallmark 
of AOSD and the control needed for developers to 
fulfill their responsibilities to write correct code. La-
rochelle, Scheidt and Sullivan made essentially the 
same point in their work on join point encapsulation 
[10]. They motivated the need for some control over 

                                                           
1 Throughout this paper, the term owner is used to re-
fer to a person responsible for developing the owned  
software element. This usage is not to be confused 
with ownership of runtime data as used in alias control 
and the like. 

join point accessibility, and proposed a mechanism that 
allowed selective restriction of join points that can be 
advised. By default, no restrictions apply, allowing full 
obliviousness; restrictions can be added as appropriate 
(in an neatly aspect-oriented fashion). 
 
This paper takes the position that the balance of con-
trol and flexibility is largely a social issue among the 
developers responsible for different parts of the soft-
ware, such as class and aspects owners. Language and 
environment support are needed to facilitate the inter-
actions among these developers, giving class owners 
appropriate control and aspect owners appropriate 
flexibility without undue bottlenecks. 
 
Along these lines, we propose a specific approach, 
called confirmed join points, that offers a spectrum of 
control options. Essentially, aspect owners can write 
pointcuts (or queries) that refer to any join points, but 
class owners must confirm that those join points within 
their classes are acceptable sites for weaving according 
to those pointcuts. This goes beyond ensuring encapsu-
lation, to ensuring that the class and aspect owners 
have consistent understandings of specific join points. 
Confirmations can be done globally, effectively relin-
quishing control, or with various degrees of specificity. 
What is more, environment support can greatly ease 
the task of confirming join points. One effect of this is 
allowing smooth movement from less-controlled to 
more-controlled usages. This approach has not yet 
been implemented, but we believe that it can readily be 
applied to a variety of AOSD languages, approaches or 
environments.  
 
Section 2 briefly discusses ownership and its implica-
tions. Section 3 describes the confirmed join point pro-
posal, and Section 4 environment support for it. Sec-
tion 5 extends the proposal with a discussion of con-
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firmation based on owner rather than pointcut, and 
Section 6 with a subjective notion of confirmation. 
Sections 7 and 8 cover related work and conclusions. 

2. Ownership 

The approach described here applies to contexts in 
which classes are considered to have owners, who are 
responsible for their semantics and integrity. Advice 
can be applied at join points within classes, as speci-
fied by pointcuts [7]. We assume that pointcuts and 
advice also have owners, with similar responsibilities 
relative to them. 
 
This approach is neutral on the issue of static versus 
dynamic join points, so the term join point is used 
throughout; in the case of dynamic join points, some of 
the usages really refer to the corresponding join point 
shadows. The approach is equally applicable to sym-
metric composition situations, where classes and their 
members are composed with one another based on 
composition specifications, and where constructs like 
correspondence queries take the place of pointcuts [5], 
but pointcut-advice terminology is used here.  
 
The owner of a class, to fulfill his/her responsibility for 
it, may wish to control the application of advice to it. 
Two forms of control are possible: 
• Controlling the pointcuts, and hence where advice 

can be applied. 
• Controlling the advice itself. 
This paper focuses on the first, assuming that if a class 
owner allows advice at a particular join point, it is up 
to the advice owner to determine its details. It would, 
in fact, be reasonable and beneficial for the class 
owner to be able to constrain the semantics of advice 
by means such as contracts, including invariants to be 
preserved, or at least to restrict the kind of advice as 
suggested by Larochelle, Scheidt and Sullivan [10]. 
Such constraints are beyond the scope of this paper 
 
The rest of this section briefly analyses some basic 
alternatives from the point of view of control over 
pointcuts. 

2.1. Obliviousness 

The pointcuts are outside the control of the class 
owner, probably written by an aspect owner. Advice 
can be applied anywhere within the class. 

2.2. Exported Pointcuts 

The class owner provides pointcuts as part of the ex-
ported elements of the class. Aspect owners can use 
only these pointcuts. Since the pointcuts are part of the 
class, they can refer to join points within class ele-
ments that are not visible outside. 

2.3. Interface Join Points 

Pointcuts are not controlled by class owners, but they 
may only refer to externally visible elements of a class, 
such as its public methods and fields. This allows as-
pect owners to control the pointcuts, but within limits: 
class owners control the elements at which advice can 
be applied, though not the specific join points. 

2.4. Analysis 

Obliviousness gives all control over pointcuts to the 
aspect owner, and exported pointcuts give it all to the 
class owner. The interface-join-point approach is a 
hybrid, and an appealing one, because it allows aspect 
authors to craft pointcuts themselves, but in terms of 
elements that are publicly visible. However, it falls 
short in two opposite ways: 
• It does not give enough freedom to aspect owners 

in contexts where they are closely associated with 
class owners, in which case they might reasonably 
need join points in non-visible elements. 

• It does not give enough control to class owners, 
because all join points in externally visible ele-
ments are automatically available. 

3. Confirmed Join Points 

The proposal in this paper is to use the time-honored  
programming-language-design approach of adding 
redundancy to achieve checking or control, in a way 
that is not onerous. It is described and exemplified here 
in general terms, without detailed reference to any spe-
cific language, though AspectJ syntax is used for 
pointcuts [7]; it is easy to see how the concepts could 
be realized in a variety of languages. 
 
The approach makes a fundamental underlying as-
sumption: pointcuts serve as an interface between 
class and aspect owners. A pointcut captures an ab-
straction, such as “all modifier methods” or “all calls 
to the XYZ service,” and it is important that class 
owners and aspect owners understand that abstraction 
in consistent ways. Pointcut names thus have the 
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status, and are assumed to have the stability, of public 
names in interfaces. 
 
The essential elements of the approach are: 
• Pointcuts need not be directly under the control of 

class owners. Class owners can include exported 
pointcuts in their classes, and this is certainly a 
good way to enhance the abstractions they are pro-
viding. But named pointcuts can also be written 
within aspects by aspect owners or, preferably, in 
separate modules that serve as interfaces between 
classes and aspects. Pointcut owners can thus be 
class owners, aspect owners, or neither. 

• Class owners must confirm that the join points 
within their classes designated by specific, named 
pointcuts are acceptable. This is taken as given for 
pointcuts defined within the class. 

• Environment support can help to manage confir-
mations. 

3.1. Example 

Consider a pointcut defined in module (e.g., class or 
aspect) M and designating calls to method X.foo(): 

module M { 
   pointcut p(): call(* X.foo()); 
} 

Now consider class C containing some calls to X.foo(): 
class C { 
   void m1() { X.foo(); X.foo(); } 
   void m2() { X.foo(); } 
} 

If confirmed pointcuts were in use, perhaps through a 
compiler option, this would result in three errors, one 
for each call. The owner of C can confirm p for the 
entire class: 

class C confirms M.p{ … } 
for a method: 

… void m1() confirms M.p { … } … 
or for a block: 

… void m1() {  
      confirm M.p { 
         X.foo(); 
      } 
      X.foo(); } … 

3.2. Confirmation 

The example illustrated the ability to confirm pointcuts 
at the class, method and statement level. Expression-
level confirmation is also possible with suitable syntax, 
though likely to be somewhat clumsy. 
 

To confirm all pointcuts, supporting obliviousness, 
“confirm *” can be used. To confirm all pointcuts 
within externally-visible elements, supporting interface 
pointcuts, “confirm public” can be used. To confirm 
all pointcuts declared in some module M, “confirm 
M.*” can be used. To handle sets of pointcuts, confir-
mation of a compound  pointcut is construed to con-
firm its subsidiary named pointcuts as well. 
 
The semantics of confirmation are straightforward. 
Each named pointcut is evaluated to produce a set of 
join points (or join point shadows in the case of dy-
namic join points). At each such join point, a check is 
made to determine whether that join point is statically 
nested within a confirmation of the relevant pointcut, 
or of a pointcut that includes the relevant pointcut. If 
not, an confirmation error is reported.  
 
Confirmation errors are, essentially, a communication 
vehicle from pointcut owners to class owners. Pointcut 
owners introduce or modify pointcuts, which then 
match new join points. The errors highlight those join 
points so that class owners can examine and, ideally, 
confirm them. Lack of errors indicates agreement. 

3.3. Denial 

Agreement might not be so easy to attain, however. 
The class owner might find, upon examination, that a 
particular join point should not, in fact, match a point-
cut. It might be determined that the join point was in-
troduced in error, such as by coding a call to the wrong 
method, but it is more likely that the pointcut will need 
to be modified. One possibility would be to add a 
clause to the pointcut that specifically excludes the join 
point, or perhaps its containing method or class. For 
example: 

module M { 
   pointcut p():  
      call(* X.foo()) && 
      ! withincode(void C.m2()); 
} 

 
It can be argued that this type of change to a pointcut 
can reasonably be made by a class owner alone. When 
doing confirmations, the class owner is assumed to 
understand the abstraction the pointcut captures, and is 
here asserting that the specific join point in question 
does not fall under that abstraction. However, it is 
likely to be safer and more productive to negotiate 
with the pointcut owner, to determine whether some 
broader modification would be more appropriate. 
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Explicit pointcut denial facilitates this communication 
from class owner back to pointcut owner. For example: 

class C { 
   void m1() confirms M.p { … } 
   void m2() denies M.p { … } 
} 

Here the explicit “denies” clause indicates that the 
class owner has determined that join points within 
C.m2() are not appropriate matches for M.p. This is 
reported as a denial error on the pointcut, alerting the 
pointcut owner to the need to modify it. This might, of 
course, lead to discussion between the owners.  
 
Denial can be used to override coarse-grained confir-
mation, most appropriate where there are a few local-
ized exceptions to a general rule. For example: 

class C confirms M.p { 
   void m1(){ … } 
   void m2() denies M.p { … } 
   ... 
} 

Denial is stronger than lack of confirmation, and has 
the opposite effect with respect to communication: it is 
an explicit statement that the join point should not 
match the pointcut, and that the pointcut owner has 
responsibility for fixing the pointcut; lack of confirma-
tion indicates that the status of the join point has not 
been determined, and that the class owner has respon-
sibility for doing so. 
 
A number of embellishments or variations are possible. 
For example, a pointcut declared as weak might auto-
matically exclude any denied join points without re-
porting errors; this is somewhat dangerous, however, 
as it makes it easy for class owners to deny lazily 
without really considering each case carefully. A full 
design based on the concepts presented in this paper 
would need to consider the alternatives in the context 
of the specific AOSD language or approach in which 
they are being embedded. 

4. Environment Support 

A software development environment supporting con-
firmed join points would highlight confirmation and 
denial errors, and allow developers to navigate to and 
examine the sites of such errors. Ideally, it would pro-
vide “quick fixes,” as in Eclipse, to enable developers 
to make standard changes easily. For confirmation 
errors, quick fixes would be available to add confirma-
tions or denials, offering choices of granularity (e.g., 
statement, method, or class). It would also be conven-
ient to allow multiple, or all, confirmation errors to be 
selected and confirmed at once. For denial errors, 

quick fixes would allow extension of the pointcut to 
exclude the denied join points. 
 
This kind of support, along with the ability to turn con-
firmation checking on or off through an option or pref-
erence setting, makes it particularly easy to transition 
from uncontrolled situations to controlled ones. Ini-
tially, pointcuts could be written and used without con-
firmation checking, as they are today. At any point in 
time, confirmation checking could be turned on, and 
would show where confirmations are needed. This is 
exactly analogous to browsing the effects of pointcuts 
using an environment like AJDT [1], at a stage in the 
project when one wants to check  them manually. It 
has the advantage, however, that confirmations and 
denials can be recorded easily, using the quick fixes. 
Of course, it is the class owners who should do this 
examination and apply the confirmation error fixes. 
The fact that it is their responsibility is consistent with 
the fact that the confirmation insertions are actual 
modifications to their classes. Similarly, it is pointcut 
owners’ responsibility to deal with denial errors. Once 
this has been done, in the absence of newly-introduced 
errors, class owners can be confident that advice is not 
being attached at unexpected places in their classes, 
and pointcut owners can be confident that class owners 
agree about where advice should be applied. 
 
Further confirmation errors can arise either as a result 
of changes to a class, introducing new join points that 
match an existing pointcut, or due to changes in point-
cuts. Both are useful, alerting class owners to the need 
to examine the new join points and to confirm or deny 
them. More sophisticated support for evolution is pro-
vided by subjective confirmations, described in Sec-
tion 6. 
 
The environment might also highlight confirmation 
regions that contain no matching join points, especially 
if they had contained matches before the current set of 
changes. 

5. Owner-Based Confirmation 

In the approach so far presented, confirmation con-
structs refer to specific pointcut declarations (so do 
denial constructs, but denial will no longer be men-
tioned explicitly, for convenience). In many contexts it 
is actually more important to exercise control by 
owner, or owner’s team or organization, rather than by 
pointcut. This supports the ability to work with trusted 
partners, without the overhead of enumerating the 
pointcuts they own. The assumption is that they will 
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cope with changes made within classes, and under-
stand the essential class semantics and not violate it. 
 
Conceptually, it is easy to extend confirmation point-
cuts to support confirmation by owner, with constructs 
like 
   … confirms o … 
or 
   … confirms * owned by o … 
where o designates an owner, or a set of owners such 
as a team or organization. The second form allows 
finer control by both pointcut and owner if desired 
(and avoids possible confusion between pointcut 
names and owner designations). 
 
The difficulty arises in certifying ownership. This is 
usually an extra-lingual issue, requiring support from 
the development environment and operating system. 
Such support is common, however, in environments 
that include software configuration management; their 
versioned repositories keep track of who owns and 
changes artifacts, and some even support team struc-
tures. Confirmation checks in the context of such an 
environment can use this information 

6. Subjective Confirmation 

When fine-grained confirmations are used, relevant 
changes to either classes or pointcuts will usually re-
sult in confirmation errors, leading the class owners to 
examine the changes as described in Section 4. When 
coarse-grained confirmations are used, however, such 
as confirming a pointcut or owner for an entire class, 
even radical changes might not result in confirmation 
errors. In the case of close collaboration and trust be-
tween the class and aspect owners, this might be ac-
ceptable, even desired. But in many cases it would be 
better for the changes to be brought to the notice of 
class owners. Subjective confirmations allow this to be 
done without the inconvenience of fine-grained con-
firmations. 
 
A subjective confirmation not only names a pointcut, 
but includes a subjective definition of that pointcut 
from the point of view of the confirmer. For example: 

class C  
   confirms M.p = call(* X.foo()) 
{ … } 

This states explicitly that M.p may refer to calls to 
X.foo() within class C. It records the class owner’s 
assertion that s/he understands the abstraction that M.p 
captures, and that the definition accurately specifies 
the join points in this class that fall under that abstrac-
tion. If new calls to X.foo() are added to the class, no 

confirmation errors will result. However, if M.p is 
changed to 

module M { 
   pointcut p(): call(* X.foo()) 
              || call(* Y.bar()); 
} 

then any calls to Y.bar() in C will yield confirmation 
errors.  
 
The confirmation might also be broader than the refer-
enced pointcut. For example, with M.p as originally 
defined, consider the confirmation: 

class C  
  confirms M.p = call(* X.foo(..)) 
{ … } 

Now C might contain calls, such as to X.foo(int), that 
match the confirmation but not the referenced pointcut. 
A strong interpretation of subjectivity would require 
that this yield a confirmation error also: the abstraction 
captured by the pointcut includes more join points in 
the class owner’s view than in the aspect owner’s 
view, a clear inconsistency that must be resolved. 
However, if the objective is merely to restrict access 
rather than to ensure agreement about the meaning of 
pointcuts, then this situation can be considered accept-
able. 

 
The semantics of weak subjective confirmations are 
thus that any join point in the scope of the confirma-
tion that is matched by the referenced pointcut but is 
not matched by the confirmation yields a confirmation 
error. For strong subjective confirmations, any join 
point in the scope of the confirmation that matches the 
confirmation but not the referenced pointcut also 
yields a confirmation error. The class and pointcut can 
then evolve independently, with confirmation errors 
arising precisely then the class and pointcut owners’ 
views diverge. 

7. Related Work 

As noted in the introduction, Larochelle, Scheidt and 
Sullivan’s work on join point encapsulation [10] was 
motivated by similar considerations. Their mechanism 
involves applying special restriction advice to join 
points that are to be restricted, using standard pointcuts 
to characterize the join points. The usage they describe 
where restriction advice is placed in inner aspects 
within classes provides class-owner control. The alter-
native usage, where the restriction advice is placed in a 
top-level aspect describing what restrictions apply to 
the system as a whole, allows overall control by an 
architect or designer, someone filling the composition 
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designer role mentioned in Section 8. The key differ-
ence in our approaches is that restriction advice fo-
cuses on specifying join points that are not available 
for advice binding, whereas ours, especially subjective 
confirmation, focuses on ensuring a consistent under-
standing of the abstractions captured by pointcuts. 
 
Considerable work has been done exploring the impli-
cations of aspects for modularity [1][3][4][9][12][13], 
which is closely related to issues of ownership and 
control. Herrmann has explored the combination of 
flexibility and strictness in the context of the Object 
Teams paradigm [7]. Detailed analysis of our approach 
relative to these has not yet been done. However, we 
believe that the focus on facilitating communication 
aimed at achieving and maintaining a consistent under-
standing of the abstractions captured by pointcuts is 
novel. 

8. Conclusion 

This position paper proposed a simple practical ap-
proach to ameliorating the tension between control by 
class owners and flexibility for aspect owners. Point-
cuts can be written and modified at will by pointcut 
owners (who might also be aspect owners or class 
owners). However, class owners must confirm explic-
itly that join points matching those pointcuts are ac-
ceptable, and those confirmations remain visible in the 
class code. Environment support and coarse-grained 
confirmation options make the confirmation process 
lightweight. To allow software processes involving 
multiple levels of trust among multiple collaborating 
groups, confirmation based on ownership is also sup-
ported. 
 
This paper discussed the roles of class and aspect own-
ers. It is also worth considering another role, composi-
tion architect, responsible for assembling pieces 
(classes, aspects, components, composition filters, hy-
perslices, etc.) and specifying how they should be 
composed, and perhaps for coordinating the efforts of 
the owners of the separate pieces. Maintaining point-
cuts might therefore be one of his/her duties. The com-
position architect is assumed to have a broader view 
than piece owners, and probably greater or even over-
riding authority. Still, it would be valuable to include 
in the development process the ability for piece owners 
to confirm or deny join points used for composition. 
Examining the details in this context remains an area 
for future work. 
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