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Abstract

It was recently proved in [13] that the Least-Recently-Used (LRU) caching policy, in

the presence of semi-Markov modulated requests that have a generalized Zipf’s law

popularity distribution, is asymptotically insensitive to the correlation in the request

process. However, since the previous result is asymptotic, it remains unclear how small

the cache size can become while still retaining the preceding insensitivity property. In

this paper, assuming that requests are generated by a nearly completely decomposable

Markov-modulated process, we characterize the critical cache size below which the

dependency of requests dominates the cache performance. This critical cache size is

small relative to the dynamics of the modulating process, and in fact it is sublinear

with respect to the sojourn times of the modulated chain that determines the dependence

structure.
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1. Introduction

The basic idea of caching is to maintain high-speed access to a subset of x popular items

out of a larger collection of N documents that are otherwise accessed at a slower rate. In the

context of Internet applications and services, such as Web access and content delivery, caching
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has been widely recognized as an effective way to reduce the latency for downloading Internet

documents. This is achieved by keeping the popular documents in high-speed caches that are

located close to the users requesting these documents. Naturally, the problem of selecting and

possibly dynamically updating the content of a cache is central to the efficient operation of

any caching system. The broad popularity of the LRU policy stems from its many desirable

characteristics, including a high hit ratio, low complexity, and flexibility to dynamically adapt

to possible changes in the request patterns.

Due to its importance in practice, LRU caching has received significant attention in the

research literature, both in the context of combinatorial (worst-case) [3, 4, 15, 16] and proba-

bilistic (average-case) analysis; the latter is the focus of this paper. In particular, we consider

the LRU algorithm in the presence of strong statistical correlation that often characterizes

the access patterns for Internet documents; e.g., see [1, 5, 12] and the references therein.

However, most of the existing work on the average-case analysis of LRU caches is either

performed under the assumption of independent and identically distributed (i.i.d.) requests or

it is computationally intractable. To alleviate this problem, in our recent work [13] we develop

a novel, analytically explicit asymptotic method for analyzing LRU caches in the presence of

semi-Markov modulated requests. This way of modeling dependency in the request process

provides the desired flexibility for capturing possibly strong statistical correlation, including

the widely reported long-range dependence of the access patterns for Web documents. In fact,

Markov modulation techniques are widely used to model dependencies in the arrival processes

in the context of queueing and insurance risk theories; e.g., see [2, 11] and the references

therein. The main results from [12, 13] imply that asymptotically, for large cache sizes, the

cache fault probability in the presence of semi-Markov modulated requests behaves the same

as in the corresponding LRU system with i.i.d. requests [10]. This surprising insensitivity

was further validated experimentally in [12] where we found excellent agreement with the

asymptotic results, even in the cases of actual trace-driven simulations and for relatively small

cache sizes, which further supports our way of modeling dependency in the request process.

Since the results from [13] are asymptotic, they do not provide information on how small

the cache sizes can become while still retaining the discovered insensitivity property. Our

present work attempts to answer this question by studying the cache performance through a

joint scaling of the dependence structure of the requests and the cache size. In this paper, the

request sequence is modeled as a nearly completely decomposable (NCD) Markov-modulated
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process with the modulating Markov process having transition rates linearly proportional to a

scaling parameter δ. The jumps in this modulating process occur on a time scale of the order

1/δ, which implies that the dependency in the request process increases as δ ↓ 0. We scale the

cache size as an increasing function of 1/δ and identify a critical cache sizing below which the

dependency dominates the cache performance. Our main results show that this critical cache

size is sublinear in comparison with the time scale of transitions in the modulating process,

i.e., 1/δ. Thus, informally, our results show that the discovered insensitivity property is indeed

robust.

The remainder of this paper is organized as follows. In Section 2 we define the model used

in our study, while in Section 3 we present a summary of results that are used in our main

theorems. The main results are provided in Theorems 1 and 2 of Section 4, together with a

discussion of their implications. In Section 5 we conclude the paper.

2. Model description

A LRU cache of size x can be described as follows. Consider a universe of N documents

(items), from which x can be placed in an efficiently accessible location called the cache. Each

time a request for a document is made, the cache is searched first. If the document is not found

in the cache (cache fault), additional delay is incurred to access the item from the outside

universe and it is added to the cache by replacing the least recently accessed document in the

cache. The performance measure of interest for this algorithm is the LRU fault probability,

i.e., the probability that the requested document is not found in the cache.

Analyzing the LRU policy is equivalent to investigating the Move-To-Front (MTF) search-

ing algorithm. In order to justify this claim, we assume that the x documents in the cache,

under the LRU rule, are arranged in increasing order of their last access times. Every time there

is a request for a document that is not in the cache, the document is brought to the first position

of the cache and the last document in the cache is moved to the outside universe. Clearly,

the fault probability stays the same if the remaining N − x documents in the outside universe

are arranged in any specific order. In particular, they can be arranged in increasing order of

their last access times. The obtained searching scheme performed on the ordered list of all

documents is called the MTF algorithm. Furthermore, it is clear from the previous arguments

that the LRU fault probability is equal to the tail of the MTF search cost, i.e., the position
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of the requested document evaluated at the cache size. Additional arguments that justify the

connection between the MTF search cost distribution and the LRU cache fault probability can

be found in [7, 9, 10]. We therefore proceed with a description of the MTF algorithm.

More formally, consider a finite set of documents L = {1, . . . , N} and a sequence of

document requests that arrive at time points {τn, −∞ < n < ∞} which represent a Poisson

process of unit rate. At each point τn, we use Rn to denote the document that has been

requested, i.e., the event {Rn = i} represents a request for document i at time τn. The

sequence {Rn} is assumed to be independent of the Poisson arrival points {τn}. The dynamics

of the MTF algorithm are defined as follows. Suppose that the system starts at the arrival

instant τ0 of the 0th request with an initial permutation Π0 of the MTF list. Then, every time

τn (n ≥ 0) that a document is requested, its position in the list is first determined and this value

represents the searching cost C
(N)
n at time τn. The list is then updated by moving the requested

document to the first position of the list and shifting one position down those documents that

were in front of the requested item. Note that, according to the discussion in the preceding

paragraph, P[C(N)
n > x] represents the fault probability of a cache of size x at time τn.

Next, we characterize the dependence structure of the request process. Let Nδ = {Tn, −∞ <

n < ∞}, T0 ≤ 0 < T1, be a Poisson point process with rate δ > 0. Furthermore, let

{Jn, −∞ < n < ∞} be a finite-state, irreducible, aperiodic Markov chain, independent

of Nδ , taking values in {1, . . . , M}, where M is a finite, positive integer. This process is

assumed to be stationary with marginal distribution πk = P[Jn = k]. Then, by embedding this

Markov chain into the Poisson process Nδ , we construct a piecewise constant right-continuous

modulating process J , where J is defined as Jt = Jn for Tn ≤ t < Tn+1. Note that the

transition rates in J are linearly proportional to δ and, therefore, this is a NCD process for

small δ.

For each 1 ≤ k ≤ M , let q(k)
i be a probability mass function where q

(k)
i is used to denote the

probability of requesting document i when the underlying process J is in state k, 1 ≤ i ≤ N .

The dynamics of Rn are then uniquely determined by the modulating process J according to

the equation

P[Rl = il, 1 ≤ l ≤ n | Jt, t ≤ τn] =
n∏

l=1

q
(Jτl

)

il
,

where n ≥ 1; that is, the sequence of requests Rn is conditionally independent given the

modulating process J . We use qi = P[R = i] =
∑M

k=1 πkq
(k)
i to express the marginal request
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distribution and assume that qi > 0 for all 1 ≤ i ≤ N .

3. Preliminary results

The model described in the previous section, for a fixed δ, is a special case of the more

general one introduced in [13] and, therefore, some of the results from [13] are used in this

paper. In particular, Lemma 1 of [13] shows that the search cost C
(N)
n , N < ∞, converges

in distribution to the stationary value C(N) when the request process {Rn} is stationary

and ergodic. Then, in the following subsection, we outline this convergence and provide

a characterization of the tail of the limiting search cost distribution when the number of

documents N → ∞. Next, Subsection 3.2 contains results on MTF searching with i.i.d.

requests that were stated and proved in [10] and [13] and will be used in proving our main

theorems.

3.1. Representation results

Section 3.1 of [13] contains a general characterization of the stationary distribution of C(N),

N < ∞. Assume that the probability mass functions q
(k)
i are defined for every i ≥ 1, 1 ≤ k ≤

M . Then, let σt be the σ-algebra σ(Ju, −t ≤ u ≤ 0) containing the history of the process

Jt in the interval [−t, 0] and denote the conditional probability Pσt [·] = P[·|σt]. Furthermore,

let Nj(u;J) be the number of requests for document j in [−u, 0), 0 < u ≤ t, and define

an indicator function Bj(t; J) = 1[Nj(t; J) > 0], j ≥ 1, being equal to 1 if item j was

requested in [−t, 0). Then, the number of distinct documents Si(t; J), different from i, that

were requested in [−t, 0) can be expressed as

Si(t;J) ,
∑

j 6=i

Bj(t;J), (1)

where

Pσt [Bj(t; J) = 1] = 1− e−q̂jt. (2)

We use q̂j ≡ q̂j(t), j ≥ 1, in (2) to denote the empirical probabilities of requesting document

j in the interval [−t, 0), i.e.,

q̂j ,
M∑

k=1

q
(k)
j π̂k and π̂k ≡ 1

t

∫ 0

−t

1[Ju = k] du. (3)
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Now, one can construct a sequence of finite lists and show that their search costs C(N)

converge in distribution, as N →∞, to

P[C > x] = E
∫ ∞

0

f̂(t)Pσt
[Si(t; J) > x− 1] dt, (4)

where f̂(t) is defined as

f̂(t) ,
∞∑

i=1

q
(J0)
i q

(J−t)
i e−q̂it, (5)

and q̂i, Si(t;J) are as introduced in (1) - (3). The reader is referred to the proof of Propo-

sition 1 in [13] for details, where the above results are established under more general model

assumptions on the request process {Rn} than the ones introduced in Section 2. The preceding

representation of the distribution of C is the starting point of our analysis.

Remark 1. (i) Throughout this paper we will exploit the properties that the variables Sj(t; J),

Bj(t;J), j ≥ 1, are monotonically increasing in t and that the variables Bj(t; J), j ≥ 1, are

conditionally independent given σt. This conditional independence arises from the Poisson

arrival structure, as is apparent from the derivation in [13]. In general, when the request

times are not Poisson, e.g., integer time arrivals, these variables may not be conditionally

independent. For i.i.d. requests, the Poisson embedding technique was first introduced in [8].

(ii) It is clear that the derivation of the above results does not rely on the fact that the requests

arrive at a constant rate [13]. Thus, our results can be generalized to the case where the arrival

rate depends on the state of the modulating process J , i.e., the rate can be set to λk when

Jt = k. We do not consider this extension, since it further complicates the notation without

providing any significant new insight.

3.2. Results for i.i.d. requests

We next provide several lemmas that consider the LRU caching scheme under independent

requests, which will be used in proving our main theorems. The MTF model with i.i.d. requests

is equivalent to our general problem formulation when the modulating process is assumed to

be a constant, i.e., Jt ≡ constant. In this case the Bernoulli variables {Bj(t), j ≥ 1} indi-

cating that a document j was requested in [−t, 0) are independent with success probabilities

P[Bi(t) = 1] = 1− e−qit. Then, using the notation Si(t) ,
∑

j 6=i Bj(t), it is easy to see that

the distribution of the limiting stationary search cost C from (4) reduces to

P[C > x] =
∫ ∞

0

∞∑

i=1

q2
i e−qitP[Si(t) > x− 1]dt. (6)
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Throughout this paper we shall use some standard notation. For any two real functions

a(t) and b(t) and fixed t0 ∈ R ∪ {∞}, we will use a(t) ∼ b(t) as t → t0 to denote

limt→t0 [a(t)/b(t)] = 1. Similarly, we say that a(t) & b(t) as t → t0 if lim inft→t0 a(t)/b(t) ≥
1; a(t) . b(t) has a complementary definition. The following two results, originally proved in

Lemmas 1 and 2 of [10], are restated here for convenience.

Lemma 1. Assume that qi ∼ c/iα as i →∞, with α > 1 and c > 0. Then, as t →∞,

∞∑

i=1

q2
i e−qit ∼

c
1
α

α
Γ

(
2− 1

α

)
t−2+ 1

α ,

where Γ is the Gamma function.

Lemma 2. Let S(t) =
∑∞

i=1 Bi(t) and assume qi ∼ c/iα as i → ∞, with α > 1 and c > 0.

Then, as t →∞,

m(t) , ES(t) ∼ Γ
(

1− 1
α

)
c

1
α t

1
α .

Throughout this paper we shall use H to be a sufficiently large positive constant, whereas

h will be used to denote a sufficiently small positive constant. The values of H and h are

generally different in different places. For example, H/2 = H , H2 = H , H + 1 = H , etc.

Now, the next two lemmas, which are repeatedly used in establishing our main results, were

originally proved in [13].

Lemma 3. Let {Bi, i ≥ 1} be a sequence of independent Bernoulli random variables, S =
∑∞

i=1 Bi and m = E[S]. Then for any ε > 0, there exists θε > 0, such that

P[|S −m| > mε] ≤ He−θεm.

Lemma 4. If 0 ≤ qi ≤ H/iα for some fixed α > 1, then for any x ≥ 1,

P[C > x] ≤ H

xα−1
.

Finally, the result established in the following lemma is repeatedly used in the proof of

Theorem 1.

Lemma 5. Let c/iα ≤ qi ≤ c−1/iα, α > 1, for some positive constant c. Then, for any

x > 0,

P[C > x] ≥ h

xα−1
.
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Proof. Note that for any ε > 0 and x large enough, by using (6), the tail of the search cost

C can be lower bounded as

P[C > x] ≥ P[S(Hxα) > x− 1]
∫ ∞

Hxα

∞∑

i=1

q2
i e−qitdt

≥ (1− ε)
∞∑

i=1

qie
−Hxαqi , (7)

where the first inequality follows from the monotonicity of S(t), while the second inequality is

obtained by applying Lemmas 2, 3 and integration. Next, from the assumptions of the lemma,

we have
∞∑

i=1

qie
−Hqix

α ≥
∞∑

bxc+1

c

iα
e−H xα

iα ≥ ce−H

∫ ∞

x+1

1
uα

du ≥ h

xα−1
,

which in conjunction with (7) proves the result.

4. Main results

In this section we state and prove our main results. We show that the cache fault probability

exhibits different performance characteristics depending on the scaling between the cache size

x and the parameter δ.

In preparation for these proofs we denote the epochs of reversed jump points Tn , −T−n,

n ≥ 0; this notation is convenient since C depends on Jt for values t ≤ 0. Furthermore, we

define S(k)(t) , B
(k)
i (t) + S

(k)
i (t) = B

(k)
i (t) +

∑
j 6=i B

(k)
j (t), 1 ≤ k ≤ M , where B

(k)
i (t),

i ≥ 1, are Bernoulli random variables with P[B(k)
i (t) = 1] = 1− e−q

(k)
i t. In addition, let C(k)

correspond to the stationary search cost with i.i.d. requests when Jt ≡ k.

4.1. Asymptotic decomposability

The following theorem establishes the critical cache size scaling as a function of the para-

meter δ below which the dependency in the request process dominates cache performance, i.e.,

the insensitivity result does not hold.

Theorem 1. Let qi ≤ c1/iα, α > 1, and suppose there exists k, 1 ≤ k ≤ M , such that

q
(k)
i ≥ c2/iα, c2 > 0. If xδ satisfies xδδ

1/α → 0 as δ → 0, then

P[C > xδ] ∼
M∑

k=1

πkP[C(k) > xδ] as xδ →∞. (8)
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Proof. To simplify notation we write x ≡ xδ . First, we prove the lower bound. Since

S(t;J) = S(k)(t) a.s. on {J0 = k} for all −T0 ≤ t ≤ 0, the representation formula given in

(4) implies

P[C > x] = E
∫ ∞

0

f̂(t)Pσt
[Si(t; J) > x− 1]dt

≥ E
∫ T0

0

∞∑

i=1

(q(J0)
i )2e−q

(J0)
i tP[S(J0)

i (t) > x− 1|J0]dt

≥
M∑

k=1

P[J0 = k, T0 > Hxα]
∫ ∞

0

∞∑

i=1

(q(k)
i )2e−q

(k)
i tP[S(k)

i (t) > x− 1]dt

−
M∑

k=1

πk

∫ ∞

Hxα

∞∑

i=1

(q(k)
i )2e−q

(k)
i tdt. (9)

Now, since q
(k)
i ≤ q̄i , qi/ mink πk, 1 ≤ k ≤ M , qi ≤ c1/iα and xe−x ≤ e−1 (for x ≥ 0),

the second summand in (9) can be bounded as

M∑

k=1

πk

∫ ∞

Hxα

∞∑

i=1

(q(k)
i )2e−q

(k)
i tdt ≤

M∑

k=1

πk
1

Hxα

bH1/αxc∑

i=1

q
(k)
i Hxαe−q

(k)
i Hxα

+
1

(mink πk)

∫ ∞

H1/αx

c1

yα
dy

≤ 1
H1−1/α

1
xα−1

(
e−1 +

c1

(mink πk)(α− 1)

)
. (10)

Then, by the assumption of the theorem, P[J0 = k, T0 > Hxα] = πke−Hδxα → πk as δ → 0

(x →∞), and, therefore, from (9) and (10) we obtain

P[C > x] &
M∑

k=1

πkP[C(k) > x]− 1
H1−1/α

(
e−1 +

c1

(mink πk)(α− 1)

)
1

xα−1
as x →∞.

To simplify the notation in the remainder of the paper we will simply write f(x) &,∼, .
g(x) without explicit reference to x → ∞. Next, by applying Lemma 5 and letting H → ∞,

we conclude

P[C > x] &
M∑

k=1

πkP[C(k) > x]. (11)

Let us now prove the upper bound. After splitting the integral in (4), we define

P[C > x] = E
∫ T0

0

+E
∫ ∞

T0

, I1(x) + I2(x). (12)

First, we provide an upper bound for I1(x). Since S(t; J) = S(k)(t) a.s. on {J0 = k}, we
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derive

I1(x) = E
M∑

k=1

1[J0 = k]
∫ T0

0

∞∑

i=1

(q(k)
i )2e−q

(k)
i tP[S(k)

i (t) > x− 1]dt

≤
M∑

k=1

πk

∫ ∞

0

∞∑

i=1

(q(k)
i )2e−q

(k)
i tP[S(k)

i (t) > x− 1]dt =
M∑

k=1

πkP[C(k) > x], (13)

where the inequality is obtained after replacing T0 with ∞.

Next, in deriving an asymptotic estimate of I2(x), we use q
(J−t)
i e−q̂itdt = −d(e−q̂it) as

follows

I2(x) ≤ E
∞∑

i=1

q
(J0)
i

∫ ∞

T0

q
(J−t)
i e−q̂itdt = E

∞∑

i=1

q
(J0)
i

∫ ∞

T0

−d(e−q̂it)

= E
∞∑

i=1

q
(J0)
i e−q

(J0)
i T0 =

M∑

k=1

πk

∞∑

i=1

q
(k)
i δ

q
(k)
i + δ

.

Since the first assumption of the theorem implies q
(k)
i ≤ H/iα, 1 ≤ k ≤ M , using the

inequality

∞∑

i=1

q
(k)
i

q
(k)
i + δ

≤
∞∑

i=1

1
1 + hδiα

≤
∫ ∞

0

1
1 + hδzα

dz ≤ 1
(hδ)1/α

∫ ∞

0

1
1 + yα

dy, (14)

we obtain

I2(x) ≤ Hδ1−1/α = o

(
1

xα−1

)
, (15)

where the last equality is implied by the assumption of the theorem since xδ1/α → 0 as δ → 0

yields δ1−1/α = o(1/xα−1). Finally, this last observation together with (13) and Lemma 5

imply I2(x) = o(I1(x)), which, in conjunction with (12) and (11), concludes the proof of the

theorem.

4.2. Asymptotic insensitivity

The following theorem establishes the scaling of the cache size as a function of the parame-

ter δ for which the insensitivity result holds.

Theorem 2. Let qi ∼ c/iα as i → ∞, α > 1. If xδ satisfies xδδ
1/α/ log xδ → ∞ as δ → 0,

then

P[C > xδ] ∼ K(α)P[R > xδ] as xδ →∞, (16)

where

K(α) ,
(

1− 1
α

) [
Γ

(
1− 1

α

)]α

,
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and Γ is the Gamma function.

Remark 2. The following proof is based on Theorem 3 of [13]. The main technical novelty

of the present paper is to demonstrate that the estimates from this proof hold uniformly for all

small δ. In this regard, the proof below draws these parallels and emphasizes the derivation of

the uniform bounds.

Proof. Again, to simplify the notation, we set x ≡ xδ . First we prove the upper bound.

After splitting the integral in (4), we define

P[C > x] = E
∫ Tbhxαδc

0

+E
∫ ∞

Tbhxαδc

, I1(x) + I2(x). (17)

Next, we show that I1(x) is negligible for large x, i.e.,

I1(x) = o

(
1

xα−1

)
. (18)

To this end, after conditioning on the value of Tbhxαδc, we obtain

I1(x) ≤ E
[
1[Tbhxαδc > 2hxα]

∫ Tbhxαδc

0

f̂(t)Pσt [S(t;J) ≥ x]dt

]

+ E

[
1[Tbhxαδc ≤ 2hxα]

∫ Tbhxαδc

0

f̂(t)Pσt [S(t; J) ≥ x]dt

]
,

where f̂(t) is defined in (5). Note that f̂(t) ≤ ∑∞
i=1 q

(J0)
i = 1 and

∫ ∞

0

f̂(t)dt = 1, (19)

since −d(e−q̂it) = e−q̂itd(
∑M

k=1 q
(k)
i

∫ 0

−t
1[Ju = k]du) = e−q̂itq

(J−t)
i dt. Then, using (19),

I1(x) ≤ E
[
1[Tbhxαδc > 2hxα]

∫ ∞

0

f̂(t)dt

]
+ E

∫ 2hxα

0

Pσt [S(t;J) ≥ x]dt

≤ P[Tbhxαδc > 2hxα] + 2hxαP[S̄(2hxα) ≥ x], (20)

where S̄(t) ,
∑

i≥1 B̄i, and B̄i, i ≥ 1, are independent Bernoulli random variables with

P[B̄i = 1] = 1 − e−q̄it, q̄i , qi/(mink πk), similarly as in (28) of [13]. Now, by Lemmas 2

and 3, the last term of (20) is o(1/xα−1).
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Next, after using the Chernoff bound for the sum of exponential i.i.d. random variables, we

obtain for any δ > θ > 0,

P[Tbhxαδc > 2hxα] ≤ e−θ2hxα

e−bhxαδc log(1− θ
δ )

≤ e−
1
2 h xαδ

log x log x = o

(
1

xα−1

)
as x →∞, (21)

since xαδ/ log x →∞ as x →∞, which follows directly from the assumption xδ1/α/ log x →
∞ as δ → 0. Finally, using the preceding estimates in (20), we have proved (18).

In order to estimate I2(x), we define the set A(n) as

A(n) , ∩1≤k≤M

{∣∣∣∣τk(Tn)− πk(n + 1)
δ

∣∣∣∣ ≤ 2ε
πk(n + 1)

δ

}
, (22)

where τk(Tn) represents the total time that process J spends in state k in the interval (−Tn, 0).

Next, due to the memoryless property of the exponential distribution, note that τk(Tn) d=
∑Nn(k)

i=0 εi, where Nn(k) is equal to the number of times that the Markov chain {J−Ti} visits

state k and εi are exponential i.i.d. random variables with mean 1/δ, both for 0 ≤ i ≤ n.

Then,

P
[
τk(Tn) > (1 + ε)

πk(n + 1)
δ

]
≤ P[Nn(k) ≥ (1 + ε)πk(n + 1)]

+ P



d(1+ε)πk(n+1)e∑

i=0

εi > (1 + 2ε)
πk(n + 1)

δ


 .

(23)

Next, note that for any 0 < θ < δ and any positive integer n

P

[
n∑

i=1

εi > (1 + ε)
n

δ

]
= P

[
eθ
Pn

i=1 εi > eθ(1+ε) n
δ

]
≤ e−n[ θ

δ (1+ε)+log(1− θ
δ )],

where in the last expression we applied the Markov inequality. Therefore, by setting u = θ/δ

in the preceding expression,

P

[
n∑

i=1

εi > (1 + ε)
n

δ

]
≤ inf

0<u<1
e−n[u(1+ε)+log(1−u)] = e−n(ε+log(1+ε)), (24)

where the minimum is achieved for u = ε/(1 + ε). Then, after applying a well-known large

deviation result on finite-state ergodic Markov chains (e.g., see Section 3.1.2 of [6]) to bound

the first term of (23) and using (24), we conclude that there exists a constant θk(ε) > 0,
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independent of δ, which satisfies

P
[
τk(Tn) > (1 + ε)

πk(n + 1)
δ

]
≤ e−θk(ε)n. (25)

Using arguments analogous to those in (23), (24) and (25) for estimating the exponential upper

bound for P
[
τk(Tn) < (1− ε)πk(n+1)

δ

]
, in conjunction with the union bound, we conclude

P[Ac(n)] ≤ max
k
P

[∣∣∣∣τk(Tn)− πk(n + 1)
δ

∣∣∣∣ > 2ε
πk(n + 1)

δ

]
≤ He−θεn, (26)

for some positive constant θε > 0, independent of δ.

At this point, we are ready to proceed with estimating the integral I2(x). After multiplying

I2(x) with 1[A(n)] and 1[Ac(n)], we define

I2(x) ≤ E
∞∑

n=bhxαδc

∫ Tn+1

Tn

f̂(t)Pσt [S(t; J) ≥ x]dt

= E
∞∑

n=bhxαδc
1[Ac(n)]

∫ Tn+1

Tn

f̂(t)Pσt [S(t; J) ≥ x]dt

+ E
∞∑

n=bhxαδc
1[A(n)]

∫ Tn+1

Tn

f̂(t)Pσt [S(t; J) ≥ x]dt

, I21(x) + I22(x). (27)

Then, by using (26), we obtain

I21(x) ≤
∞∑

n=bhxαδc
P[Ac(n)] ≤ He−θεhxαδ = o

(
1

xα−1

)
as x →∞. (28)

Next, we estimate I22(x). Since S(t; J) is a.s. non-increasing in t, after splitting the sum

we obtain

I22(x) ≤ E
bgεxαδc∑

n=bhxαδc
1[A(n)]

∫ Tn+1

Tn

f̂(t)PσTn+1
[S(Tn+1; J) ≥ x]dt

+ E
∞∑

n=bgεxαδc+1

1[A(n)]
∫ Tn+1

Tn

f̂(t)dt, (29)

where gε will be defined later. Note that for every ω ∈ A(n) and k, 1 ≤ k ≤ M ,

(1− 2ε)πk
n + 1

δ
≤ τk(Tn) ≤ (1 + 2ε)πk

n + 1
δ

. (30)

Therefore, by definition (2),

PσTn
[Bi(Tn; J) = 1] = 1− e−

PM
k=1 q

(k)
i τk(Tn) ≤ P[B∗

i (n) = 1],
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and

PσTn
[S(Tn; J) ≥ x] ≤ P[S∗(n) ≥ x], (31)

where we define S∗(n) ,
∑∞

i=1 B∗
i (n) with {B∗

i (n), i ≥ 1} representing a sequence of

independent Bernoulli random variables and P[B∗
i (n) = 1] = 1 − e−(1+2ε)qi(n+1)/δ; S∗(n)

is constructed to be non-decreasing in n. Then, if we pick gε to be

gε , (1− 2ε)α

[
Γ

(
1− 1

α

)]α
c(1 + 2ε)

,

using the analogous arguments as in (66) - (67) of [13], we conclude that, for any large x,

ES∗(gεx
αδ) < (1− ε)x and, therefore, by Lemma 3,

E
bgεxαδc∑

n=bhxαδc
1[A(n)]

∫ Tn+1

Tn

f̂(t)PσTn+1
[S(Tn+1; J) ≥ x]dt

≤ gεx
αδP[S∗(gεx

αδ) ≥ x] = o

(
1

xα−1

)
. (32)

Next, we derive the asymptotics of the second term in (29). Note that for every ω ∈ A(n)

and t ∈ (Tn, Tn+1], the bound from (30) results in

f̂(t) ≤
∞∑

i=1

q
(J0)
i q

(J−n−1)
i e−(1−2ε)qi

n
δ e−q

(J−n−1)
i (t−Tn); (33)

recall that Tn = −T−n from above and that J−Tn+1 = JT−n−1 = J−n−1 from Section 2.

Using the preceding bound in the second term of (29), computing the integration with respect

to t and applying 1− e−x ≤ x, x ≥ 0, we obtain

E
∞∑

n=bgεxαδc+1

1[A(n)]
∫ Tn+1

Tn

f̂(t)dt ≤ E
∞∑

n=bgεxαδc+1

1[A(n)]
∞∑

i=1

q
(J0)
i q

(J−n−1)
i (Tn+1 − Tn)e−(1−2ε)qi

n
δ

≤
∞∑

n=bgεxαδc+1

∞∑

i=1

1
δ
E[q(J0)

i E[q(J−n−1)
i |J0]]e−nqi(1−2ε)/δ.

(34)

Now, in the last expression, we employ the asymptotic independence of the Markov chain Jn,

similarly as in (19) - (20) of [13], and the independence between {Tn} and {J−n}, and then

we bound the resulting sum by an integral with the change of variable t = n/δ, which, in
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conjunction with (32), yields

I22(x) ≤ (1 + ε)
∞∑

n=bgεxαδc+1

∞∑

i=1

q2
i

1
δ
e−(1−2ε)qi

n
δ + o

(
1

xα−1

)

≤ (1 + ε)
∫ ∞

gεxα

∞∑

i=1

q2
i e−(1−2ε)qitdt + o

(
1

xα−1

)
.

Finally, by applying Lemma 1, we derive

lim sup
x→∞

I22(x)xα−1 ≤ K(α)
(1 + ε)2(1 + 2ε)1−

1
α

(1− 2ε)1+α− 1
α

, (35)

which by passing ε → 0, in conjunction with (29), (28), (27) and (17), proves the upper bound.

The estimation of the lower bound of (4) starts from

P[C > x] ≥ E
∞∑

n=bgεxαδc
1[A(n)]

∫ Tn+1

Tn

f̂(t)PσTn
[S(Tn;J) ≥ x]dt, (36)

where gε , (1 + 2ε)α[Γ[1 − 1
α ]]−αc−1(1 − ε)−1. Using analogous arguments to those in

obtaining (31), with redefined P[B∗
i (n) = 1] = 1− e−(1−2ε)qi(n+1)/δ , i ≥ 1, we obtain

E
∞∑

n=bgεxαδc
1[A(n)]

∫ Tn+1

Tn

f̂(t)PσTn
[S(Tn;J) ≥ x]dt

≥ P[S∗(gεx
αδ) > x]E

∞∑

n=bgεxαδc
1[A(n)]

∫ Tn+1

Tn

f̂(t)dt.

We then complete the proof of this theorem by applying arguments analogous to those used in

(33) - (34) to lower bound f̂(t) and, therefore, the integral on the right hand side of (36) for all

ω ∈ A(n), t ∈ [Tn, Tn+1). Then, in conjunction with asymptotic independence and bounding

arguments analogous to those used in (19)-(21) of [13] for all δ small enough, one can easily

complete the proof of the lower bound, the details of which are omitted since the arguments

are repetitive.

4.3. Discussion

Note that when x < 1/δp for some p > 0, the condition xδ1/α/ log x → ∞ of The-

orem 2 is implied by xδ1/α/ log(1/δ) → ∞. Thus, for H large enough and for all x >

H log(1/δ)/δ1/α, the cache behaves as the corresponding i.i.d. system with marginal distri-

bution {qi}. Hence, under this asymptotic scaling, the correlation structure plays no role.

On the other hand, Theorem 1 states that for very small caches, x ≤ 1/(Hδ1/α), the cache
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performance is distinctly different from that of the corresponding i.i.d. system; in fact, the

fault probability is decomposed into a mixture of i.i.d. systems. Informally, we see that

this qualitative transition in the cache performance occurs around cache sizes on the order

of 1/δ1/α. As previously noted, this value is sublinear (relatively negligible) in comparison to

the time scale of jumps (1/δ) in the modulating process J .

In order to gain additional insights into the qualitative behavior underlying Theorems 1

and 2, consider the expected time between two successive requests for a document during

which the underlying Markov chain Jt is in a fixed state. Then, the expected length of this

time interval is inversely proportional to the document’s conditional access frequency, and

thus the LRU algorithm has a tendency, in stationarity, to arrange the documents in the cache

list in (approximately) descending order of their access probabilities. Therefore, it can be

intuitively expected that the access probabilities of documents at the end of the cache list are

on the order of x−α, which from the above arguments implies that the time period during which

every document in the cache is accessed at least once is of the order xα. Hence, if the expected

sojourn time that the modulated process spends in a particular state, 1/δ, is much greater

than xα, i.e., 1/δ À xα, then the cache content basically goes through many replacement

cycles and the cache essentially reaches stationarity while the underlying modulating process

remains in the same state, resulting in the decomposition result presented in Theorem 1. On the

other hand, if 1/δ ¿ xα, then the Markov chain Jt undergoes significant mixing between the

successive requests for documents that are at the end of the cache list. Therefore, successive

requests for documents with probabilities smaller than 1/xα, which essentially determine the

cache fault probability, appear nearly independent, implying that the cache fault probability is

the same as if the requests were i.i.d., as we have rigorously shown in Theorem 2.

In the critical regime, when 1/δ ≈ xα, the above arguments suggest that the time scale of

jumps in Jt and the access frequencies of documents at the end of the cache list are comparable.

Therefore, the cache fault probability is a result of an intricate and complex interplay between

the modulating chain dependence structure and the conditional access frequencies. While

deeper understanding of this critical regime is important for a complete mathematical under-

standing of the problem, we strongly believe that the potential asymptotic results will likely

be more difficult to prove and will not be explicit, as those in Theorems 1 and 2. Rather, even

asymptotically, the cache fault probability in the critical regime will be a complex functional

of the transition probabilities of Jt and the conditional access frequencies q
(k)
i whose further



Critical Sizing of LRU Caches with Dependent Requests 17

understanding will require numerical studies. Therefore, we do not pursue this direction

further.

5. Concluding remarks

In this paper we investigate the performance, namely fault probability, of LRU caches in

the presence of correlated requests. It has been recently discovered in [12, 13] that, for the

semi-Markov modulated requests and generalized Zipf’s law marginal access frequencies, the

caching performance does not depend on the correlation in the request traffic for large cache

sizes. Specifically, LRU cache performance is asymptotically identical to the case of i.i.d.

requests that have the same access frequences. However, for small caches this is clearly not the

case. Hence, in our present study we investigate the smallest (critical) cache size above which

the discovered asymptotic insensitivity property still holds. We answer this question based

on the use of a joint scaling between the request process dependence structure and the cache

size. More precisely, we consider requests that are modulated by NCD Markov processes with

small transition rate δ such that the cache size xδ grows to infinity as δ ↓ 0. Then, extending

the analytical techniques from [12, 13], we show in Theorems 1 and 2 that, maybe somewhat

surprisingly, the critical scaling of the cache size xδ is very small in relation to the time scale

of the request process dependence structure; basically it is sublinear in the average time 1/δ

between the jumps in the modulating process. Hence, from a practical perspective, it may not

be necessary to model in great detail the request process dependence structure found in Web

environments. In addition, it is worth noting that our results can be extended to the case with

variable document sizes by exploiting the recent analysis in [14].
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