
RC24065 (W0609-158) September 29, 2006
Computer Science

IBM Research Report

Improvements in Vision-based Pointer Control

Rick Kjeldsen
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Improvements in Vision-based Pointer Control
Rick Kjeldsen

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

(914) 784-7558

fcmk@us.ibm.com

ABSTRACT
Vision-based head trackers have been around for some
years and are even beginning to be commercialized, but
problems remain with respect to usability. Users without
the ability to use traditional pointing devices – the
intended audience of such systems – have no alternative if
the automatic boot strapping process fails, there is room
for improvement in face tracking, and the pointer
movement dynamics do not support accurate and efficient
pointing. This paper describes a novel head tracking
pointer that addresses these problems.

Categories & Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces -- input devices and strategies

General Terms
Human factors

Keywords
Human-computer interaction, Vision-based user
interfaces, Accessible user interfaces

1. INTRODUCTION
Vision-based interaction, computer input techniques based
on a camera and computer vision software, have matured
significantly in recent years (see e.g. [11]). The use of
vision, a non-contact sensing modality, makes these
systems more flexible than input based on fixed hardware.
This flexibility can be used to allow these systems to adapt
to the needs of the user, giving them great potential as an
input method for people with physical disabilities that
make standard input devices difficult or impossible to use.

Head tracking is an alternative interaction mode which has
received a great deal of attention. Users who have
reasonably good head control, but are otherwise limited in

their use of pointing devices, have had success using head
tracking for complete pointer control. For users who are
able to use conventional pointing devices, though perhaps
with difficulty, head tracking can reduce the need to resort
to the mouse for basic tasks such as large object selection,
symbolic interactions (e.g. Yes / No dialog boxes) or to
simplify tasks that require higher levels of dexterity, such
as scrolling.

Hardware-based head tracking systems using laser and
active IR (e.g. www.madentec.com) have been around for
some time, but the hardware is expensive and many users
seem to prefer an approach that does not require them to
wear the headsets or markers these systems require.
Recently vision-based head trackers have become
available that address that need (e.g. www.eyetwig.com,
the QualiEye at www.qualilife.com).

This paper describes the HeadTracking Pointer (HTP),
which attempts to address some of the problems we have
encountered in other systems. We provide improved end
user control over the system by providing a simple way for
them to signal the system when tracking is not working
well, so corrective action can be taken. We also describe
an improved method of converting head movement to
pointer movement, one which is better suited to the needs
of human body tracking applications than the approaches
used to date. The result is a camera-based head tracking
pointer which is more accurate and pleasing to use.

2. OTHER WORK
People have been exploring vision-based head tracking for
some time. Most of that work has focused on the technical
aspects of how to efficiently locate and track the user’s
head. Early approaches were hardware intensive lab
prototypes using multiple cameras, often dedicated
hardware, and complex feature extraction algorithms e.g.
[9].

More recently the idea of using head tracking for pointer
control has caught on. This work has generally had more
modest hardware requirements, usually a single camera
and one or two personal computers. In [12] Toyama
illustrates one approach, where the 3D orientation of the
head is estimated from the view of a single camera. This,
together with assumptions about the relative position of

the user and the monitor, is used to determine where a line
extended from the nose would intersect the screen, and so
position the pointer.

The systems described in [1] and [3] use a somewhat
different approach, more similar to the one taken here.
The absolute position of the head is never estimated, rather
a feature on the face is located and tracked. The location
and motion of that feature relative to the image is used to
locate and move the pointer on the screen. Nouse ([3])
relies on tracking the nose, which, since it extends in front
of the face and ends with a somewhat universal rounded
shape, is relatively easy to identify and track as the user’s
moves about. The pointer is moved using the offset of the
nose from a center point, presumably acquired during
training. Nose offset is converted to rate of movement of
the pointer, but this process is not described in detail.

CameraMouse ([1]) locates visible features on the user’s
face, then tracks face movement by searching for similar
looking regions in subsequent frames. This approach is
similar to, though simpler than the one taken in HTP. The
literature describes a system where the user must manually
select a feature to track, but the most recent CameraMouse
downloads have implemented a relatively robust automatic
face finding process. The process of converting the face
location/motion into pointer location/motion is not
described in any detail, but we infer that the facial location
is filtered to remove noise, then mapped to pointer motion
by some algorithm that allows the user’s face to point
roughly in the direction of the pointer location.

The work presented here differs from these others in
several ways, two of which are especially significant for
this audience. First, we give the end user the ability to
control system operation more directly, using head
gestures that are available even when pointer control fails.
Second we use a pointer control function (“transfer
function”) that takes into account the dynamics of human
motion to give a smoother and more responsive pointer
motion. Other differences also contribute to the overall
usability of the system, most importantly the specifics of
the face tracking algorithm. This will be discussed only
briefly in this paper.

Moving a pointer by tracking a body part requires three
distinct processes, bootstrapping the system by locating
the body part, then tracking it accurately, and finally
turning that tracking information into pointer movement
on the screen.

Existing systems bootstrap in one of two ways. Early
systems required someone to identify the body part to be
tracked using the standard interface devices (e.g. mouse)
before vision-based pointer control could begin. This
required that users unable to use a standard pointing

device have someone help them initially and again
whenever tracking begins to fail because of lighting or
environmental changes.

More recent head tracking systems rely on automatic face
finding. While automatic face finding has improved
significantly, it is still prone to failure in difficult lighting
or other unusual situations. For example, automatic face
finding often relies on the use of color for identifying skin,
which can be unreliable because of its variability in the
face of lighting changes, the variability of human skin
color, and the presence of similar colors in the
environment. While automatic face finding can be very
robust if the environment is kept within certain bounds (by
adjusting lighting or providing a contrasting background),
it is preferable to have systems which do not depend on
environmental conditions.

We feel that the user should not be at the mercy of either
an automatic process or another person. If face finding
fails or head tracking is not working properly, it is
important that the end user should have some method of
bootstrapping the system without outside help. Our
approach has been to provide an alternate channel,
independent of face tracking, by which the end user can
signal the system to reset.

In our review of the literature, little attention has been paid
to the details of the transfer function between the head
movement and pointer movement. Tests on the
downloadable version of various systems show there is a
significant amount of noise in the pointer location, and
small smooth positioning motions are not possible.
Ideally, a user should be able to position the pointer to
within about one on-screen character in order to perform
all the tasks needed in an unmodified GUI. In our
experience the pointer motion in most systems too rough
to support positioning of this accuracy.

To address this, HTP uses a novel transfer function that
takes into account the kinematics of human movement, the
needs of pointer control in a modern GUI, and the more
subjective characteristics that make a pointer feel
responsive and pleasing to use.

3. SYSTEM DESCRIPTION
3.1 User’s view
Figure 1 shows the HeadTracking Pointer from the user’s
point of view. The right window shows the camera’s
view, and the left window is the control panel. These
windows initially appear in the top left 3” x 2” of the
screen, but can be resized, moved, or minimize
independently to suit the user’s needs.

When it starts, the system is running, but not tracking the
user. To begin tracking, the user tips their head three
times (left/right/left, or right/left/right) (figure 2) and then
pauses. One thread of the program is always watching for
this signal. When a possible tipping head is observed, a
box is drawn around it to tell users their actions have been
seen. After HTP observes the three head tips and a pause,
it draws a large window centered at the middle of the
screen and rapidly shrinks it to a small window saying
“Aim Here”. This catches the user’s attention, and
encourages them to aim their head at the center of the
screen. After a brief pause, the system captures the image
of the user’s face, and begins to track it, moving the
pointer in such a way that it moves to approximately
where their nose is pointing.

The system may be retrained in this way at any time.
Thus, if the system is not operating as the user would like
– say the pointer is off to one side of where they aim their
nose, or tracking is unsteady because the lighting
conditions have changed - they need only tip their head to
correct the problem.

To the left of the video window (figure 1) is the Click
Control dialog. It contains buttons to enable the various
click actions. Floating the pointer within one of these
buttons for about 1 second (adjustable) enables the
selected click and turns the button green. The user then

moves the pointer to a location on the screen and keeps the
pointer still (dwells) for about 1 second (again adjustable)
to trigger the click.

The top two buttons control click generation. If the “Click
Once” button is selected, a click will be generated only on
the next dwell. When the “Turn Click ON” button is
selected, it stays on and changes its label to “Turn Click
OFF” (and the “Click Once” button disappears) until it is
selected again. When Turn Click ON is activated, a click
will be generated any time the user dwells at a point on the
screen.

The remainder of the buttons control the type of click
generated. Dwelling over “Right” or “Double” modifies
the next click to that type. Note that the user need not
select Click Once AND a modifier. If a modifier is
selected, Click Once will turn on automatically (unless
Turn Click ON is active). The “Drag and Drop” modifier
button makes the subsequent dwell a mouse-down event,
and the dwell after that a mouse-up event, so that drag-
and-drop operations can be executed.

The Click Control dialog can be resized, which will also
resize the buttons within it, so that the user can customize
the window to suit their pointer dexterity. The video
window can be resized or hidden. Both windows can also
be moved around the screen as needed.

If another window covers the Click Control dialog, it will
automatically pop to the top when the pointer moves over
it, so that the user always has access to the buttons. To
generate a click in a window at a point under the Click
Control window, the user must move one of the windows
first.

Figure 2: Head tipping motion used to train the
HeadTracking Pointer. The green line denotes the
approximate centerline of the face, which HTP uses to
identify the tip movements. Figure 3: Settings adjustment dialog of HTP.

Figure 1: HeadTracking Pointer windows. On the
left is the Click Control dialog and on the right the
video mirror. These windows initially appear in the
upper left corner of the screen.

From the Click Control dialog the user can access a dialog
to adjust various systems settings (figure 3). The settings
are divided into groups for Training and Tracking. For
training, the user can adjust the amount of head movement
required to be considered a head tip, and the amount of
time needed to complete the head tip training. Reducing
these parameters makes the system easier to train for users
with limited or difficult head movement, but makes
inadvertent training more likely. Inadvertent training is
not a significant problem – the “Look Here” window
appears, the user aims their head, pauses, then can resume
work – but it can be annoying if it occurs unexpectedly.

The user can also adjust the behavior of the system during
tracking. The amount of head movement needed to move
the pointer from one side of the screen to the other can be
adjusted, as can the “damping” of the pointer, the exact
meaning of which will be described later in this paper.

At the top of the dialog are buttons that allow the user to
initialize the sliders to one of several preset configurations.

The remainder of this section describes how the main
components of HTP are implemented.

3.2 Training
The head tip training signal is always available to the user.
It is implemented independently from the head tracking
for pointer control, using algorithms designed to be robust
to almost any background or lighting conditions. In
essence there are two head tracking processes going on in
parallel, one that is very robust and one that is very
accurate. The first is used to bootstrap the second.

A tipping head is defined as a moving blob of the correct
shape (oval, taller vertically than horizontally), where the
vertical axis moves back and forth within the right range
of angles and within a range of frequencies expected of a
tipping head.

The head tip thread first computes a frame-to-frame
difference between images, labeling all the pixels which
have changed in appearance, to create a motion mask as
shown in figure 4. Some basic image processing
eliminates spurious dots and highlights the remainder.
The bounding rectangle of the result is computed and

analyzed to ensure the aspect ratio is what is expected for
a tipping head. A Hough Transform [5] is used to identify
approximately vertical lines in this data. Obvious outliers
are eliminated, and the lines with the most support are
combined to determine the vertical axis of the head (blue
line in figure 2). The angle of this line is monitored to
identify head tips.

Since this process relies on moving objects, when the head
pauses at the end of the tips it disappears, however we can
assume it is still at the same location. The last observed
head location is recorded, along with the size and shape of
the head blob, which were estimated during the tips. From
this information, the location of the center of the face
(eyes/nose area) is estimated.

At this point the user is asked to aim their head the center
of the screen. After a brief pause, allowing them to orient
their head, a new image is recorded. The estimated
eye/nose area is checked to ensure there is sufficient
contrast in both the horizontal and vertical directions. If
not, the region around it is searched till a suitable box is
found. The image data in this box is recorded as our
original tracking template.

3.3 Tracking
Once a tracking template has been recorded, the system
uses it to follow the face in subsequent images of the video
stream. The tracking algorithm must be able to locate the
face as accurately as possible with little or no drift over
time. Unlike CameraMouse (as described in [1]), which
uses the relative movement of the face to move the
pointer, we use the absolute location of the face, as in our
experience this helps make pointing more stable and
predictable, but it requires a stable estimate of the location
of the face. If the estimated location drifts to different
parts of the face over time, tracking is adversely affected.

There are two general approaches to tracking an object
like the face with a template. One is to search for image
regions that match the original tracking template as closely
as possible. This leads to problems when the appearance
of the face changes as it moves throughout its range.
Appearance can change both due to uneven lighting, as
you would get when sitting next to a window, and because
the face is a 3D object which is rotating as it moves. The
end result is that methods which track only the original
template tend to fail catastrophically when the face turns
to certain orientations, though they recover well when it
turns back.

The second tracking approach is to search for a region that
most closely resembles the appearance of the template
region from the previous image. Thus, as the appearance
of the face changes gradually from frame to frame the
tracking template adapts. The main problem here is that
the location being tracked tends to drift across the face
over time, with the result is that the pointer eventually

Figure 4: Motion mask found during a head tip
signal. On the left is the raw data, on the right the
data after some simple processing.

ends up not tracking where the user is aiming their nose,
but off to the side.

We have adopted a combined approach that uses both the
original template and the template from the previous
image to track the face accurately through appearance
changes, but also resist drift.

Our approach is to first search for the regions which match
the appearance of the face tracking region in the previous
image, then take the best candidates (those with the
highest match score) and compare them to the original
template. This results in only a small increase in
computational complexity, but significantly improves
performance. Tracking remains “locked on” through a
much larger range of rotation and lighting changes, but
drift is essentially eliminated.

As template matching is the most computationally
expensive aspect of this system, we constrain the search to
parts of the image where we can expect to find the face.
The size and location of the head, estimated during
training, are used to determine the region of the image
where the head could possibly move to. We also take
advantage of the location of the face in the previous frame,
and an estimate for the maximum speed a head can move.

3.4 Transfer function
Once the location of the face is identified, its location
and/or movement must be turned into a location or
movement of the pointer. For face tracking, one of two
techniques is appropriate. In the first, the absolute
position of the face with respect to some reference frame
determines the absolute position of the pointer on the
screen (Position Control). In the second, the movement of
the face is translated into a corresponding motion of the
pointer (Rate Control). Cross control methods, such as
when the location of the face controls the motion of the
pointer, are generally not suitable for facial pointing
because of limits on the range of head movement and
because head position affects where the user can
comfortably look.

From empirical evaluation of several current vision-based
head tracking systems, most appear to use a rate control
approach. This may be because rate control places fewer
demands on the tracking algorithm. With rate control, the
tracker only need identify motion in some portion of the
image. If the exact region being tracked drifts from one
part of the face to another, there is little effect on
performance. With position control the tracker must
remain accurately locked onto the same features on the
face.

The disadvantage of rate control is that the apparent
location of the pointer with respect to head position “slips”
quite easily, often with just a few seconds of use. Systems
using rate control usually provide a method to re-center
the pointer, often by “pushing” against the edge of the

screen, but this action must be performed very regularly
by the user to keep the pointer in a usable position with
respect to the head. Position control systems generally do
not suffer from this problem, the pointer will stay in the
same position with respect to the face as long as the
tracking algorithm does not drift.

With either rate or position control, there must be a
Transfer Function that determines exactly how the facial
input is converted to pointer movement. This function can
have a large effect on the usability of the pointer. In
previous work, the transfer function is generally a linear
mapping from head input to pointer output. A filter, often
a predictive filter such as that found in [7], is applied to
either the head or the pointer position to reduce the effect
of noise and effectively increase pointer resolution.
Although these filters can reduce noise, simple filtering
does nothing to accommodate the needs of the domain.
The following list attempts to specify the attributes of
vision-based body tracking pointer control that the transfer
function must take into account.

First are the constraints imposed by the physical system:

- The required pointer accuracy is higher than
either the resolution of the camera, or the
accuracy with which users can position their
heads.

- Estimates of the user’s head position are noisy by
the very nature of computer vision. For users
with erratic head control this problem is
exacerbated.

Some additional constraints must be addressed in order to
ensure the pointer is responsive to both large and small
movements. Pointing movements tend to have two
phases, an initial ballistic phase that puts the pointer in the
vicinity of the target, followed by a series of short
movements performed in a visual feedback loop to fine
position the pointer [10]. Therefore:

- On long movements the pointer must track the
head quickly with little lag. This tight coupling
between head and pointer is important so the user
can begin the fine tuning phase as soon as their
head is aimed at the target. Lag has been shown
to slow down pointing significantly [8].
Positional accuracy is not important because long
movements are followed by the fine tuning phase.

- On short movements the pointer movement must
be slower and more stable so that the user can
fine tune the position in a tight feedback loop
with the system. Head movements must result in
relatively smaller pointer movements so that the
user need not use impossibly small head
movements to move the pointer a character or
two. Smoothness and stability are important

because jitter has been shown to slow down
accurate positioning [6].

Finally, some constraints should be imposed to make the
pointer movement more pleasing to the user.

- When the user stops moving their head, the
pointer should smoothly come to a complete stop.
This is important to support accurate dwell
clicking, as well as for user comfort. If the
pointer jumps around when the user’s head is
still, it can be very disconcerting.

- The user must be able to look as directly as
possible at the pointer while they are positioning
it. While this sounds obvious, it is an easy
condition to violate.

Because of the problems with rate control, we chose to use

a position control algorithm for pointer movement. To
address the constraints identified above, we have
developed a transfer function based on a modified
sigmoid. Initially absolute head position determines a
target location on the screen, then the sigmoidal function
is used to move the pointer toward the target.

The initial target location on the screen is determined
using the displacement of the user’s face from the
reference face location. The reference location is
determined during training when the user is asked to aim
at the center of the screen. The current displacement from
that location is computed in “face width” units (face
width, again, is determined during training), and
multiplied by a ScreenWidthRatio parameter to determine
the screen location. The ScreenWidthRatio specifies the
number of “screen widths” of pointer movement for each
“face width” of head movement. The user has access to
this parameter to tune how much face movement is
required to move the pointer.

Once a target location has been determined, the pointer is
moved toward that target. The percentage of the distance
the pointer moves each frame is determined from the
distance between the current pointer location and the
target. When the two are far apart, the pointer moves most
of the way toward the target. As the two get closer, the
pointer moves less of the total distance. The percentage of
the distance moved is varied smoothly with distance using
a modified sigmoid function as follows.

The distance D moved by the pointer toward the target is
computed each frame using the relationship

 ∆−

+

∆
=

µ
κ i

e

D i
i

1

where { }yxi ,∈ . iii PT −=∆ is the distance between
the current pointer location P and the target location T.

10 ≤≤ κ and 10 ≤≤ µ , called the knee and slope,
respectively, of the sigmoid, control the shape of the
relationship.

Figure 5 shows two views of the sigmoidal relationship
between PT −=∆ and the pointer movement D. In the
top view, notice that as the distance between the pointer
and the target increases, the percentage of that distance
traveled by the pointer increases as well. The bottom view
shows the same relationship plotted slightly differently.
Here, the fine dotted line represents what would happen if
the pointer always went the full distance to the target.
You can see that for small displacements the pointer only
goes a small fraction of that distance each cycle, while at

Pointer Movement vs. Distance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pointer / Target Distance
(Pct of Screen Size)

Po
in

te
r M

ov
em

en
t

(P
ct

 o
f T

ot
al

 D
is

ta
nc

e)

Good Head Mvt
Eratic Head Mvt

knee

Pointer Movement vs. Distance
(in Pct of Screen)

0%

10%

20%

30%

40%

50%

60%

70%

80%

0% 10% 20% 30% 40% 50% 60% 70%

Pointer / Target Distance

Po
in

te
r M

ov
em

en
t

Good Head Mvt
Eratic Head Mvt
Full movement

Figure 5: Two views of the modified sigmoid
function used to smooth the pointer motion. The
solid line shows the function for users with good
quality head movement. The dashed line shows the
function modified for users with erratic head
movements.

large displacements it goes to the target almost
immediately.

The shape of the sigmoid can be adjusted to adapt the
pointer to the head movement of different users. For users
with erratic head movements, both µ and κ have been
increased to reduce the effect of their unintentional head
movement on pointer position.

One advantage of this function is the smooth transitions
between the different regions in the curve. Some systems
simulate a similar relationship using “pointer
acceleration”, where the pointer is sped up when pointer
speed passes a threshold. When these non-linear
relationships are simulated using thresholds, the junctions
are abrupt making pointer movement change suddenly.
The smooth transitions provided by the sigmoid make it
easier for the user to anticipate the pointer movement,
which is important for accurate control.

The movement in x and y are computed separately because
that gives the pointer movement a small amount of affinity
for straight vertical and horizontal motions. This
characteristic is handy for many interactions in a modern
GUI, such as moving along the characters in a line or
traversing nested sub-menus. It should be pointed out that
this characteristic actually decreases the accuracy of
pointer tracking, making free-form tasks, such as drawing
a smooth curve, more difficult. It is a simple matter to use
the same approach on the straight line distance between T
and P, in effect creating a “drawing mode” for the pointer.

4 PERFORMANCE
The HeadTracking Pointer is currently undergoing formal
field trials with two groups of users, one with Cerebral
Palsy and one with spinal cord injuries. To this point it
has been used informally for some time by both
quadriplegic and fully-abled users. To date, one brief test
with 5 fully-abled users has been done, comparing HTP
and the demonstration version of CameraMouse[1].
CameraMouse was chosen because it uses standard
filtering techniques to turn head movement into pointer
movement, and so make a good comparison to the
sigmoidal filter used in HTP.

The users were asked to use a standard on-screen keyboard
to type phrases of from 12 to 15 characters long using each
system. The time to complete each phrase was measured.
The typing task was chosen as it required accurate
selection of small screen regions at various distances and
locations. The users were allowed to use a system until
they felt comfortable with it before the timing was begun.
The systems were presented to the subjects in random
order. One subject had prior experience with both
systems, the other subjects had never used head tracking
pointers before.

Using CameraMouse the average length of time to type the
phrases was 72 seconds. Using HTP, the average length
of time was 56 seconds. Asked their opinions, the users
indicated that the pointer motion was less erratic with HTP
than with CameraMouse. They also commented that the
pointer was easier to keep still with HTP. While in
general they liked the quality of the HTP pointer motion
better, they reported that it took a little while to get used to
controlling the pointer accurately because it tended to drift
slowly to a stop after they had stopped moving their head.
Stopping the pointer immediately took a slight head
motion in the opposite direction, which took some time to
learn.

HTP is currently in field test with several users with
Cerebral Palsy. The results are not yet available, but they
have begun using the system as part of a trial of a web
browsing system [4], and there have been some interesting
observations during our efforts to adapt the system to their
needs.

The initial problem was to enable the user to successfully
train the system with the head tip motion. With spinal
cord injury patients, it was not uncommon for a user to be
unable to use a physical pointing device, but still have
good head and neck control. With the cerebral palsy
population, often a user who is severely enough affected to
not be able to use a mouse or track ball also has limited or
irregular head movement. The original training algorithm
assumed that the users’ head movement would be
symmetrical and relatively smooth during the head tipping
motion. With the CP users, this assumption was violated.
To be successful with the CP patients, head tip recognition
had to be adjusted to be more forgiving of asymmetrical
and irregular head tip motions.

A second problem came about because the CP population
seemed to be more prone to erratic head motions while
using the pointer than we expected. This was addressed
by tuning the shape of the sigmoid filter function. As
shown in figure 5, for users with erratic head movements,
both µ and κ can be increased so that moderate sized
head motions have less effect on pointer motion. The low
gain region at the left of figure 5 is extended so that the
pointer is motionless, or very slowly moving for relatively
larger head movements. The upper region is similar to the
original function, so that large head movements are still
tracked immediately. The key difference is in the
important center section of the function, where the user is
trying to position the pointer slightly to the left or right to
select an icon or other object. Here the pointer motion is
lower compared to the original curve so that more of the
erratic head movement is damped out, while still allowing
the pointer to follow trends in head movement. The
pointer becomes less responsive to the small spastic head
movements, while still responding smoothly to trends in
head position. Importantly, this is achieved while large

pointer movements are still tracked quickly, so the user
does not have to wait for the pointer to travel long
distances across the screen.

We make this control available to the user with a single
parameter that varies µ and κ together. This “sensitivity
knob” allows the user a single, simple to understand
adjustment to tune the system to their level of head
control. In future work it may be interesting to
automatically tune this parameter based on an analysis of
the steadiness of the user’s head movements.

5 CONCLUSION
This paper has described a vision-based head tracking
pointer which addresses several of the limitations of
similar systems. Specifically, we have given the user
increased control over the operation of the system by
providing symbolic head gesture recognition. The path for
recognizing these gestures is independent of the standard
head tracking algorithm, so that end users signal the
system that head tracking is not working properly without
asking for help from other individuals. We believe this
extra level of autonomy is a valuable addition. In future
work it would be interesting to extend these symbolic head
signals to other control tasks.

HTP also demonstrates a novel head tracking algorithm
that is robust to lighting changes, and resistant to the drift
often associated with head tracking. This allows users to
get consistent behavior from the system.

Finally we have described in some detail a novel transfer
function for converting head motion into pointer motion.
This algorithm has several improvements over standard
filtering approaches that make it easier for the user to
control the pointer. The pointer remains more stable in the
face of noise and inadvertent user movement, while
allowing smooth and highly accurate pointer control. It
allows the user to smoothly stop the pointer without
having it jump around. These characteristics make for a
more pleasing user experience and initial results indicate it
may have better usability as well.

(A demonstration version of HTP is available at
www.alphaworks.ibm.com/tech/headpointer)

REFERENCES
[1] Betke, M., Gips, J. and Fleming, P. The Camera Mouse:

Visual Tracking of Body Features to Provide Computer
Access For People with Severe Disablilities. IEEE
Transactions on Neural Systems and Rehabilitation
Engineering. April 2002.

[2] Fast B. N. Waber, J. J. Magee, and M. Betke. Fast Head Tilt
Detection for Human-Computer Interaction. Proceedings of
the ICCV Workshop on Human Computer Interaction.,
Beijng, China, October 2005. Springer Verlag.

[3] Gorodnichy, D., Malik, S., and Roth, G. Nouse ‘Use your
nose as a joystick or a mouse’ - a new technology for
handsfree games and interfaces. in Proc. Intern. Conf. on
Vision Interface (VI’2002), Calgary, May 2002.

[4] Hanson, V. L., Brezin, J., Crayne, S., Keates, S., Kjeldsen,
R., Richards, J. T., Swart, C.,Trewin, S. accessibilityWorks:
Web Access for an Open Source Browser, IBM Systems
Journal Vol. 44, No. 3

[5] Ballard, D.H., Generalizing the Hough transform to detect
arbitrary shapes, Pattern Recognition, Vol. 13, Issue 2,
1981, pg. 111-122

[6] Kjeldsen, F. , Visual Recognition of Hand Gesture as a
Practical Interface Modality, PhD thesis,Department of
Computer Science, Columbia University, 1997

[7] Kohler, M., Using the Kalman Filter to Track Human
Interactive Motion – Modeling an Initialization of the
Kalman Filter for Translational Motion. Technical Report
629, Informatik VII, University of Dortmund, January 1997.

[8] MacKenzie, I.S., and Ware, C., Lag as a Determinant of
Human Performance in Interactive Systems, in Proceedings
of INTERCHI '93, Amsterdam, April 1993.

[9] Matsumoto, Y., Ogasawara, T., and Zelinsky, A., Behavior
Recognition Based on Head Pose and Gaze Direction
Measurement, in Proceedings of the 2000 IEEE/RSJ
International Conference on Intelligent Robots and Systems

 [10] Meyer, D. E., Smith, K. J. E., Kornblum, S., Abrams, R. A.,
Wright, C. E., Speed-Accuracy Tradeoffs in Aimed
Movements: Toward a Theory of Rapid Voluntary Action.
in Attention and Performance XIII, M. Jeanerod, Ed.
Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1990
pp. 173-226.

 [11] Proceedings of the 7th IEEE International Conference on
Automatic Face and Gesture Recognition (FGR 2006),
April 2006, Southampton, United Kingdom.

 [12] Toyama, K.. ‘Look, Ma – no hands!’ Hands-free cursor
control with real-time 3D face tracking. in Proceedings of
the Workshop on Perceptual User Interfaces (PUI’98), San
Fransisco, November 1998.

