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ABSTRACT 
Vision-based head trackers have been around for some 
years and are even beginning to be commercialized, but 
problems remain with respect to usability.    Users without 
the ability to use traditional pointing devices – the 
intended audience of such systems – have no alternative if 
the automatic boot strapping process fails, there is room 
for improvement in face tracking, and the pointer 
movement dynamics do not support accurate and efficient 
pointing.  This paper describes a novel head tracking 
pointer that addresses these problems. 

Categories & Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces -- input devices and strategies 

General Terms 
Human factors 

Keywords 
Human-computer interaction, Vision-based user 
interfaces, Accessible user interfaces 

1. INTRODUCTION 
Vision-based interaction, computer input techniques based 
on a camera and computer vision software, have matured 
significantly in recent years (see e.g. [11]).  The use of 
vision, a non-contact sensing modality, makes these 
systems more flexible than input based on fixed hardware.  
This flexibility can be used to allow these systems to adapt 
to the needs of the user, giving them great potential as an 
input method for people with physical disabilities that 
make standard input devices difficult or impossible to use.   

Head tracking is an alternative interaction mode which has 
received a great deal of attention.  Users who have 
reasonably good head control, but are otherwise limited in 

their use of pointing devices, have had success using head 
tracking for complete pointer control.  For users who are 
able to use conventional pointing devices, though perhaps 
with difficulty, head tracking can reduce the need to resort 
to the mouse for basic tasks such as large object selection, 
symbolic interactions (e.g. Yes / No dialog boxes) or to 
simplify tasks that require higher levels of dexterity, such 
as scrolling. 

Hardware-based head tracking systems using laser and 
active IR (e.g. www.madentec.com) have been around for 
some time, but the hardware is expensive and many users 
seem to prefer an approach that does not require them to 
wear the headsets or markers these systems require.  
Recently vision-based head trackers have become 
available that address that need (e.g. www.eyetwig.com, 
the QualiEye at www.qualilife.com). 

This paper describes the HeadTracking Pointer (HTP), 
which attempts to address some of the problems we have 
encountered in other systems.  We provide improved end 
user control over the system by providing a simple way for 
them to signal the system when tracking is not working 
well, so corrective action can be taken.  We also describe 
an improved method of converting head movement to 
pointer movement, one which is better suited to the needs 
of human body tracking applications than the approaches 
used to date.  The result is a camera-based head tracking 
pointer which is more accurate and pleasing to use. 

2. OTHER WORK 
People have been exploring vision-based head tracking for 
some time.  Most of that work has focused on the technical 
aspects of how to efficiently locate and track the user’s 
head.  Early approaches were hardware intensive lab 
prototypes using multiple cameras, often dedicated 
hardware, and complex feature extraction algorithms e.g. 
[9].   

More recently the idea of using head tracking for pointer 
control has caught on.  This work has generally had more 
modest hardware requirements, usually a single camera 
and one or two personal computers.  In [12] Toyama 
illustrates one approach, where the 3D orientation of the 
head is estimated from the view of a single camera.  This, 
together with assumptions about the relative position of  



the user and the monitor, is used to determine where a line 
extended from the nose would intersect the screen, and so 
position the pointer.   

The systems described in [1] and [3] use a somewhat 
different approach, more similar to the one taken here.  
The absolute position of the head is never estimated, rather 
a feature on the face is located and tracked.  The location 
and motion of that feature relative to the image is used to 
locate and move the pointer on the screen.   Nouse ([3]) 
relies on tracking the nose, which, since it extends in front 
of the face and ends with a somewhat universal rounded 
shape, is relatively easy to identify and track as the user’s 
moves about.  The pointer is moved using the offset of the 
nose from a center point, presumably acquired during 
training.  Nose offset is converted to rate of movement of 
the pointer, but this process is not described in detail. 

CameraMouse ([1]) locates visible features on the user’s 
face, then tracks face movement by searching for similar 
looking regions in subsequent frames.  This approach is 
similar to, though simpler than the one taken in HTP.  The 
literature describes a system where the user must manually 
select a feature to track, but the most recent CameraMouse 
downloads have implemented a relatively robust automatic 
face finding process.  The process of converting the face 
location/motion into pointer location/motion is not 
described in any detail, but we infer that the facial location 
is filtered to remove noise, then mapped to pointer motion 
by some algorithm that allows the user’s face to point 
roughly in the direction of the pointer location.   

The work presented here differs from these others in 
several ways, two of which are especially significant for 
this audience.  First, we give the end user the ability to 
control system operation more directly, using head 
gestures that are available even when pointer control fails.  
Second we use a pointer control function (“transfer 
function”) that takes into account the dynamics of human 
motion to give a smoother and more responsive pointer 
motion.  Other differences also contribute to the overall 
usability of the system, most importantly the specifics of 
the face tracking algorithm.  This will be discussed only 
briefly in this paper. 

Moving a pointer by tracking a body part requires three 
distinct processes, bootstrapping the system by locating 
the body part, then tracking it accurately, and finally 
turning that tracking information into pointer movement 
on the screen.     

Existing systems bootstrap in one of two ways.  Early 
systems required someone to identify the body part to be 
tracked using the standard interface devices (e.g. mouse) 
before vision-based pointer control could begin.  This 
required that users unable to use a standard pointing 

device have someone help them initially and again 
whenever tracking begins to fail because of lighting or 
environmental changes.   

More recent head tracking systems rely on automatic face 
finding.  While automatic face finding has improved 
significantly, it is still prone to failure in difficult lighting 
or other unusual situations.  For example, automatic face 
finding often relies on the use of color for identifying skin, 
which can be unreliable because of its variability in the 
face of lighting changes, the variability of human skin 
color, and the presence of similar colors in the 
environment.  While automatic face finding can be very 
robust if the environment is kept within certain bounds (by 
adjusting lighting or providing a contrasting background), 
it is preferable to have systems which do not depend on 
environmental conditions. 

We feel that the user should not be at the mercy of either 
an automatic process or another person.  If face finding 
fails or head tracking is not working properly, it is 
important that the end user should have some method of 
bootstrapping the system without outside help.  Our 
approach has been to provide an alternate channel, 
independent of face tracking, by which the end user can 
signal the system to reset.   

In our review of the literature, little attention has been paid 
to the details of the transfer function between the head 
movement and pointer movement.  Tests on the 
downloadable version of various systems show there is a 
significant amount of noise in the pointer location, and 
small smooth positioning motions are not possible.  
Ideally, a user should be able to position the pointer to 
within about one on-screen character in order to perform 
all the tasks needed in an unmodified GUI.  In our 
experience the pointer motion in most systems too rough 
to support positioning of this accuracy. 

To address this, HTP uses a novel transfer function that 
takes into account the kinematics of human movement, the 
needs of pointer control in a modern GUI, and the more 
subjective characteristics that make a pointer feel 
responsive and pleasing to use. 

 

3. SYSTEM DESCRIPTION 
3.1 User’s view 
Figure 1 shows the HeadTracking Pointer from the user’s 
point of view.  The right window shows the camera’s 
view, and the left window is the control panel.  These 
windows initially appear in the top left 3” x 2” of the 
screen, but can be resized, moved, or minimize 
independently to suit the user’s needs. 



When it starts, the system is running, but not tracking the 
user.  To begin tracking, the user tips their head three 
times (left/right/left, or right/left/right) (figure 2) and then 
pauses.  One thread of the program is always watching for 
this signal.  When a possible tipping head is observed, a 
box is drawn around it to tell users their actions have been 
seen.  After HTP observes the three head tips and a pause, 
it draws a large window centered at the middle of the 
screen and rapidly shrinks it to a small window saying 
“Aim Here”.  This catches the user’s attention, and 
encourages them to aim their head at the center of the 
screen.  After a brief pause, the system captures the image 
of the user’s face, and begins to track it, moving the 
pointer in such a way that it moves to approximately 
where their nose is pointing.   

The system may be retrained in this way at any time.  
Thus, if the system is not operating as the user would like 
– say the pointer is off to one side of where they aim their 
nose, or tracking is unsteady because the lighting 
conditions have changed - they need only tip their head to 
correct the problem. 

To the left of the video window (figure 1) is the Click 
Control dialog.  It contains buttons to enable the various 
click actions.  Floating the pointer within one of these 
buttons for about 1 second (adjustable) enables the 
selected click and turns the button green.  The user then 

moves the pointer to a location on the screen and keeps the 
pointer still (dwells) for about 1 second (again adjustable) 
to trigger the click.   

The top two buttons control click generation.  If the “Click 
Once” button is selected, a click will be generated only on 
the next dwell.  When the “Turn Click ON” button is 
selected, it stays on and changes its label to “Turn Click 
OFF” (and the “Click Once” button disappears) until it is 
selected again.  When Turn Click ON is activated, a click 
will be generated any time the user dwells at a point on the 
screen. 

The remainder of the buttons control the type of click 
generated.  Dwelling over “Right” or “Double” modifies 
the next click to that type.  Note that the user need not 
select Click Once AND a modifier.  If a modifier is 
selected, Click Once will turn on automatically (unless 
Turn Click ON is active).  The “Drag and Drop” modifier 
button makes the subsequent dwell a mouse-down event, 
and the dwell after that a mouse-up event, so that drag-
and-drop operations can be executed. 

The Click Control dialog can be resized, which will also 
resize the buttons within it, so that the user can customize 
the window to suit their pointer dexterity.  The video 
window can be resized or hidden.  Both windows can also 
be moved around the screen as needed. 

If another window covers the Click Control dialog, it will 
automatically pop to the top when the pointer moves over 
it, so that the user always has access to the buttons.  To 
generate a click in a window at a point under the Click 
Control window, the user must move one of the windows 
first. 

 
Figure 2: Head tipping motion used to train the 
HeadTracking Pointer.  The green line denotes the 
approximate centerline of the face, which HTP uses to 
identify the tip movements. Figure 3: Settings adjustment dialog of HTP. 

Figure 1: HeadTracking Pointer windows.  On the 
left is the Click Control dialog and on the right the 
video mirror.  These windows initially appear in the 
upper left corner of the screen. 



From the Click Control dialog the user can access a dialog 
to adjust various systems settings (figure 3).  The settings 
are divided into groups for Training and Tracking.  For 
training, the user can adjust the amount of head movement 
required to be considered a head tip, and the amount of 
time needed to complete the head tip training.  Reducing 
these parameters makes the system easier to train for users 
with limited or difficult head movement, but makes 
inadvertent training more likely.  Inadvertent training is 
not a significant problem – the “Look Here” window 
appears, the user aims their head, pauses, then can resume 
work – but it can be annoying if it occurs unexpectedly. 

The user can also adjust the behavior of the system during 
tracking.  The amount of head movement needed to move 
the pointer from one side of the screen to the other can be 
adjusted, as can the “damping” of the pointer, the exact 
meaning of which will be described later in this paper. 

At the top of the dialog are buttons that allow the user to 
initialize the sliders to one of several preset configurations. 

The remainder of this section describes how the main 
components of HTP are implemented. 

3.2 Training 
The head tip training signal is always available to the user.  
It is implemented independently from the head tracking 
for pointer control, using algorithms designed to be robust 
to almost any background or lighting conditions.  In 
essence there are two head tracking processes going on in 
parallel, one that is very robust and one that is very 
accurate.  The first is used to bootstrap the second. 

A tipping head is defined as a moving blob of the correct 
shape (oval, taller vertically than horizontally), where the 
vertical axis moves back and forth within the right range 
of angles and within a range of frequencies expected of a 
tipping head. 

The head tip thread first computes a frame-to-frame 
difference between images, labeling all the pixels which 
have changed in appearance, to create a motion mask as 
shown in figure 4.  Some basic image processing 
eliminates spurious dots and highlights the remainder.  
The bounding rectangle of the result is computed and 

analyzed to ensure the aspect ratio is what is expected for 
a tipping head.  A Hough Transform [5] is used to identify 
approximately vertical lines in this data.  Obvious outliers 
are eliminated, and the lines with the most support are 
combined to determine the vertical axis of the head (blue 
line in figure 2).  The angle of this line is monitored to 
identify head tips. 

Since this process relies on moving objects, when the head 
pauses at the end of the tips it disappears, however we can 
assume it is still at the same location.  The last observed 
head location is recorded, along with the size and shape of 
the head blob, which were estimated during the tips.  From 
this information, the location of the center of the face 
(eyes/nose area) is estimated.   

At this point the user is asked to aim their head the center 
of the screen.  After a brief pause, allowing them to orient 
their head, a new image is recorded.  The estimated 
eye/nose area is checked to ensure there is sufficient 
contrast in both the horizontal and vertical directions.  If 
not, the region around it is searched till a suitable box is 
found.  The image data in this box is recorded as our 
original tracking template. 

3.3 Tracking 
Once a tracking template has been recorded, the system 
uses it to follow the face in subsequent images of the video 
stream.   The tracking algorithm must be able to locate the 
face as accurately as possible with little or no drift over 
time.  Unlike CameraMouse (as described in [1]), which 
uses the relative movement of the face to move the 
pointer, we use the absolute location of the face, as in our 
experience this helps make pointing more stable and 
predictable, but it requires a stable estimate of the location 
of the face.  If the estimated location drifts to different 
parts of the face over time, tracking is adversely affected.   

There are two general approaches to tracking an object 
like the face with a template.  One is to search for image 
regions that match the original tracking template as closely 
as possible.  This leads to problems when the appearance 
of the face changes as it moves throughout its range.  
Appearance can change both due to uneven lighting, as 
you would get when sitting next to a window, and because 
the face is a 3D object which is rotating as it moves.  The 
end result is that methods which track only the original 
template tend to fail catastrophically when the face turns 
to certain orientations, though they recover well when it 
turns back. 

The second tracking approach is to search for a region that 
most closely resembles the appearance of the template 
region from the previous image.  Thus, as the appearance 
of the face changes gradually from frame to frame the 
tracking template adapts.  The main problem here is that 
the location being tracked tends to drift across the face 
over time, with the result is that the pointer eventually 

Figure 4: Motion mask found during a head tip 
signal.  On the left is the raw data, on the right the 
data after some simple processing. 



ends up not tracking where the user is aiming their nose, 
but off to the side.   

We have adopted a combined approach that uses both the 
original template and the template from the previous 
image to track the face accurately through appearance 
changes, but also resist drift. 

Our approach is to first search for the regions which match 
the appearance of the face tracking region in the previous 
image, then take the best candidates (those with the 
highest match score) and compare them to the original 
template.  This results in only a small increase in 
computational complexity, but significantly improves 
performance.  Tracking remains “locked on” through a 
much larger range of rotation and lighting changes, but 
drift is essentially eliminated. 

As template matching is the most computationally 
expensive aspect of this system, we constrain the search to 
parts of the image where we can expect to find the face.  
The size and location of the head, estimated during 
training, are used to determine the region of the image 
where the head could possibly move to.  We also take 
advantage of the location of the face in the previous frame, 
and an estimate for the maximum speed a head can move. 

3.4 Transfer function 
Once the location of the face is identified, its location 
and/or movement must be turned into a location or 
movement of the pointer.  For face tracking, one of two 
techniques is appropriate.  In the first, the absolute 
position of the face with respect to some reference frame 
determines the absolute position of the pointer on the 
screen (Position Control).  In the second, the movement of 
the face is translated into a corresponding motion of the 
pointer (Rate Control).  Cross control methods, such as 
when the location of the face controls the motion of the 
pointer, are generally not suitable for facial pointing 
because of limits on the range of head movement and 
because head position affects where the user can 
comfortably look. 

From empirical evaluation of several current vision-based 
head tracking systems, most appear to use a rate control 
approach.  This may be because rate control places fewer 
demands on the tracking algorithm.  With rate control, the 
tracker only need identify motion in some portion of the 
image.  If the exact region being tracked drifts from one 
part of the face to another, there is little effect on 
performance.  With position control the tracker must 
remain accurately locked onto the same features on the 
face.   

The disadvantage of rate control is that the apparent 
location of the pointer with respect to head position “slips” 
quite easily, often with just a few seconds of use.  Systems 
using rate control usually provide a method to re-center 
the pointer, often by “pushing” against the edge of the 

screen, but this action must be performed very regularly 
by the user to keep the pointer in a usable position with 
respect to the head.  Position control systems generally do 
not suffer from this problem, the pointer will stay in the 
same position with respect to the face as long as the 
tracking algorithm does not drift. 

With either rate or position control, there must be a 
Transfer Function that determines exactly how the facial 
input is converted to pointer movement.  This function can 
have a large effect on the usability of the pointer.  In 
previous work, the transfer function is generally a linear 
mapping from head input to pointer output.  A filter, often 
a predictive filter such as that found in [7], is applied to 
either the head or the pointer position to reduce the effect 
of noise and effectively increase pointer resolution.  
Although these filters can reduce noise, simple filtering 
does nothing to accommodate the needs of the domain.  
The following list attempts to specify the attributes of 
vision-based body tracking pointer control that the transfer 
function must take into account.   

First are the constraints imposed by the physical system: 

- The required pointer accuracy is higher than 
either the resolution of the camera, or the 
accuracy with which users can position their 
heads.   

- Estimates of the user’s head position are noisy by 
the very nature of computer vision.  For users 
with erratic head control this problem is 
exacerbated. 

Some additional constraints must be addressed in order to 
ensure the pointer is responsive to both large and small 
movements.  Pointing movements tend to have two 
phases, an initial ballistic phase that puts the pointer in the 
vicinity of the target, followed by a series of short 
movements performed in a visual feedback loop to fine 
position the pointer [10].  Therefore: 

- On long movements the pointer must track the 
head quickly with little lag.  This tight coupling 
between head and pointer is important so the user 
can begin the fine tuning phase as soon as their 
head is aimed at the target.  Lag has been shown 
to slow down pointing significantly [8].  
Positional accuracy is not important because long 
movements are followed by the fine tuning phase.   

- On short movements the pointer movement must 
be slower and more stable so that the user can 
fine tune the position in a tight feedback loop 
with the system.  Head movements must result in 
relatively smaller pointer movements so that the 
user need not use impossibly small head 
movements to move the pointer a character or 
two.  Smoothness and stability are important 



because jitter has been shown to slow down 
accurate positioning [6]. 

Finally, some constraints should be imposed to make the 
pointer movement more pleasing to the user. 

- When the user stops moving their head, the 
pointer should smoothly come to a complete stop.  
This is important to support accurate dwell 
clicking, as well as for user comfort.  If the 
pointer jumps around when the user’s head is 
still, it can be very disconcerting.   

- The user must be able to look as directly as 
possible at the pointer while they are positioning 
it.  While this sounds obvious, it is an easy 
condition to violate. 

Because of the problems with rate control, we chose to use 

a position control algorithm for pointer movement.  To 
address the constraints identified above, we have 
developed a transfer function based on a modified 
sigmoid.  Initially absolute head position determines a 
target location on the screen, then the sigmoidal function 
is used to move the pointer toward the target. 

The initial target location on the screen is determined 
using the displacement of the user’s face from the 
reference face location.  The reference location is 
determined during training when the user is asked to aim 
at the center of the screen.  The current displacement from 
that location is computed in “face width” units (face 
width, again, is determined during training), and 
multiplied by a ScreenWidthRatio parameter to determine 
the screen location.   The ScreenWidthRatio specifies the 
number of “screen widths” of pointer movement for each 
“face width” of head movement.  The user has access to 
this parameter to tune how much face movement is 
required to move the pointer. 

Once a target location has been determined, the pointer is 
moved toward that target.  The percentage of the distance 
the pointer moves each frame is determined from the 
distance between the current pointer location and the 
target.  When the two are far apart, the pointer moves most 
of the way toward the target.  As the two get closer, the 
pointer moves less of the total distance.  The percentage of 
the distance moved is varied smoothly with distance using 
a modified sigmoid function as follows. 

The distance D moved by the pointer toward the target is 
computed each frame using the relationship 
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where { }yxi ,∈ .  iii PT −=∆  is the distance between 
the current pointer location P and the target location T.  

10 ≤≤ κ  and 10 ≤≤ µ , called the knee and slope, 
respectively, of the sigmoid, control the shape of the 
relationship. 

Figure 5 shows two views of the sigmoidal relationship 
between PT −=∆  and the pointer movement D.  In the 
top view, notice that as the distance between the pointer 
and the target increases, the percentage of that distance 
traveled by the pointer increases as well.  The bottom view 
shows the same relationship plotted slightly differently.  
Here, the fine dotted line represents what would happen if 
the pointer always went the full distance to the target.  
You can see that for small displacements the pointer only 
goes a small fraction of that distance each cycle, while at 
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Figure 5: Two views of the modified sigmoid 
function used to smooth the pointer motion.  The 
solid line shows the function for users with good 
quality head movement.  The dashed line shows the 
function modified for users with erratic head 
movements. 



large displacements it goes to the target almost 
immediately. 

The shape of the sigmoid can be adjusted to adapt the 
pointer to the head movement of different users.  For users 
with erratic head movements, both µ and κ have been 
increased to reduce the effect of their unintentional head 
movement on pointer position. 

One advantage of this function is the smooth transitions 
between the different regions in the curve.  Some systems 
simulate a similar relationship using “pointer 
acceleration”, where the pointer is sped up when pointer 
speed passes a threshold.  When these non-linear 
relationships are simulated using thresholds, the junctions 
are abrupt making pointer movement change suddenly.  
The smooth transitions provided by the sigmoid make it 
easier for the user to anticipate the pointer movement, 
which is important for accurate control. 

The movement in x and y are computed separately because 
that gives the pointer movement a small amount of affinity 
for straight vertical and horizontal motions.  This 
characteristic is handy for many interactions in a modern 
GUI, such as moving along the characters in a line or 
traversing nested sub-menus.  It should be pointed out that 
this characteristic actually decreases the accuracy of 
pointer tracking, making free-form tasks, such as drawing 
a smooth curve, more difficult.  It is a simple matter to use 
the same approach on the straight line distance between T 
and P, in effect creating a “drawing mode” for the pointer. 

 

4 PERFORMANCE 
The HeadTracking Pointer is currently undergoing formal 
field trials with two groups of users, one with Cerebral 
Palsy and one with spinal cord injuries.  To this point it 
has been used informally for some time by both 
quadriplegic and fully-abled users.  To date, one brief test 
with 5 fully-abled users has been done, comparing HTP 
and the demonstration version of CameraMouse[1].  
CameraMouse was chosen because it uses standard 
filtering techniques to turn head movement into pointer 
movement, and so make a good comparison to the 
sigmoidal filter used in HTP.   

The users were asked to use a standard on-screen keyboard 
to type phrases of from 12 to 15 characters long using each 
system.  The time to complete each phrase was measured.  
The typing task was chosen as it required accurate 
selection of small screen regions at various distances and 
locations.  The users were allowed to use a system until 
they felt comfortable with it before the timing was begun.  
The systems were presented to the subjects in random 
order.  One subject had prior experience with both 
systems, the other subjects had never used head tracking 
pointers before.  

Using CameraMouse the average length of time to type the 
phrases was 72 seconds.  Using HTP, the average length 
of time was 56 seconds.  Asked their opinions, the users 
indicated that the pointer motion was less erratic with HTP 
than with CameraMouse.  They also commented that the 
pointer was easier to keep still with HTP.  While in 
general they liked the quality of the HTP pointer motion 
better, they reported that it took a little while to get used to 
controlling the pointer accurately because it tended to drift 
slowly to a stop after they had stopped moving their head.  
Stopping the pointer immediately took a slight head 
motion in the opposite direction, which took some time to 
learn. 

HTP is currently in field test with several users with 
Cerebral Palsy.  The results are not yet available, but they 
have begun using the system as part of a trial of a web 
browsing system [4], and there have been some interesting 
observations during our efforts to adapt the system to their 
needs. 

The initial problem was to enable the user to successfully 
train the system with the head tip motion.  With spinal 
cord injury patients, it was not uncommon for a user to be 
unable to use a physical pointing device, but still have 
good head and neck control.  With the cerebral palsy 
population, often a user who is severely enough affected to 
not be able to use a mouse or track ball also has limited or 
irregular head movement.  The original training algorithm 
assumed that the users’ head movement would be 
symmetrical and relatively smooth during the head tipping 
motion.  With the CP users, this assumption was violated.  
To be successful with the CP patients, head tip recognition 
had to be adjusted to be more forgiving of asymmetrical 
and irregular head tip motions.   

A second problem came about because the CP population 
seemed to be more prone to erratic head motions while 
using the pointer than we expected.  This was addressed 
by tuning the shape of the sigmoid filter function.  As 
shown in figure 5, for users with erratic head movements, 
both µ and κ  can be increased so that moderate sized 
head motions have less effect on pointer motion.  The low 
gain region at the left of figure 5 is extended so that the 
pointer is motionless, or very slowly moving for relatively 
larger head movements.  The upper region is similar to the 
original function, so that large head movements are still 
tracked immediately.  The key difference is in the 
important center section of the function, where the user is 
trying to position the pointer slightly to the left or right to 
select an icon or other object.  Here the pointer motion is 
lower compared to the original curve so that more of the 
erratic head movement is damped out, while still allowing 
the pointer to follow trends in head movement.  The 
pointer becomes less responsive to the small spastic head 
movements, while still responding smoothly to trends in 
head position.  Importantly, this is achieved while large 



pointer movements are still tracked quickly, so the user 
does not have to wait for the pointer to travel long 
distances across the screen. 

We make this control available to the user with a single 
parameter that varies µ and κ  together.  This “sensitivity 
knob” allows the user a single, simple to understand 
adjustment to tune the system to their level of head 
control.  In future work it may be interesting to 
automatically tune this parameter based on an analysis of 
the steadiness of the user’s head movements. 

 

5 CONCLUSION 
This paper has described a vision-based head tracking 
pointer which addresses several of the limitations of 
similar systems.  Specifically, we have given the user 
increased control over the operation of the system by 
providing symbolic head gesture recognition.  The path for 
recognizing these gestures is independent of the standard 
head tracking algorithm, so that end users signal the 
system that head tracking is not working properly without 
asking for help from other individuals.  We believe this 
extra level of autonomy is a valuable addition.  In future 
work it would be interesting to extend these symbolic head 
signals to other control tasks. 

HTP also demonstrates a novel head tracking algorithm 
that is robust to lighting changes, and resistant to the drift 
often associated with head tracking.  This allows users to 
get consistent behavior from the system. 

Finally we have described in some detail a novel transfer 
function for converting head motion into pointer motion.  
This algorithm has several improvements over standard 
filtering approaches that make it easier for the user to 
control the pointer.  The pointer remains more stable in the 
face of noise and inadvertent user movement, while 
allowing smooth and highly accurate pointer control.  It 
allows the user to smoothly stop the pointer without 
having it jump around.  These characteristics make for a 
more pleasing user experience and initial results indicate it 
may have better usability as well. 

(A demonstration version of HTP is available at 
www.alphaworks.ibm.com/tech/headpointer ) 
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