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Abstract. The main attraction of Partitioned Global Address Space (PGAS) lan-
guages to programmers is the ability to distribute the data to exploit the affinity of
threads within shared-memory domains. Thus, PGAS languages, such as Unified
Parallel C (UPC), are a promising programming paradigm for emerging parallel
machines that employ hierarchical data- and task-parallelism. For example, large
systems are built as distributed-shared memory architectures, where multi-core
nodes access a local, coherent address space and many such nodes are intercon-
nected in a non-coherent address space to form a high-performance system.
This paper studies the access patterns of shared data in UPC programs. By ana-
lyzing the access patterns of shared data in UPC we are able to make three major
observations about the characteristics of programs written in a PGAS program-
ming model: (i) there is strong evidence to support the development of automatic
identification and automatic privatization of local shared data accesses; (ii) the
ability for the programmer to specify how shared data is distributed among the ex-
ecuting threads can result in significant performance improvements; (iii) running
UPC programs on a hybrid architecture will significantly increase the opportuni-
ties for automatic privatization of local shared data accesses.

1 Introduction

Partitioned Global Address Space (PGAS) programming languages offer an attractive,
high-productivity programming model for programming large-scale parallel machines.
PGAS languages, such as Unified Parallel C (UPC) [13], combine the simplicity of
shared-memory programming with the efficiency of the message-passing paradigm.
PGAS languages partition the application’s address space into private, shared-local,
and shared-remote memory. The latency of shared-remote accesses is typically much
larger than that of local, private accesses, especially when the underlying hardware is
a distributed-memory machine and remote accesses imply communication over a net-
work.

In PGAS languages, such as UPC, the programmer specifies which data is shared
and how it is distributed among all processors. When the data distribution is known at
compile time, the compiler can distinguish between local shared data and remote shared



data. This information can be used by the compiler to reduce the time to access shared
data [5, 12].

In this paper we report on our experience with a set of existing UPC benchmarks.
We start from the premise that understanding data sharing access patterns is crucial to
develop high performance parallel programs, especially in a PGAS language. We de-
velop a set of tools to analyze memory behavior, taking advantage of our UPC compiler
and runtime system. We characterize the benchmarks with respect to local and remote
shared memory accesses, and based on these characteristics we make the following
observations:

– Programmers are typically aware of data ownership and make an effort to compute
on local data. However, since the data is declared as shared, it will incur the shared
memory translation cost, unless it is copied to private memory or dereferenced
through private pointers. Requiring programmers to perform both of these actions
would increase the complexity of the source code and reduce the programmer’s
productivity. A more elegant approach is for the compiler to automatically discover
which shared accesses are local and to analyze privatize them.

– PGAS languages offer data distribution directives, such as the blocking factor in
UPC. Most of the time, programmers think in terms of virtual threads and pro-
cessors. To develop portable code, programmers do not necessarily select the best
distribution for a given platform. Again, there is an opportunity for the compiler to
optimize the blocking factor to match the characteristics of the machine. In Sec-
tion 3 we show several examples in which selecting the blocking factor appropri-
ately, the number of remote accesses is reduced significantly.

– A different way to improve the latency of remote accesses, is to exploit emerging
architectures that consist of multi-core chips or clusters of SMP machines – we
call these machines hybrid architectures since they are a combination of shared and
distributed memory. In this case, a combination of compiler and runtime support
can provide an optimal grouping of threads, such that the number of local accesses
is increased. In our experiments we estimate the percentage of remote accesses that
can be localized.

Several programming models have been proposed for hybrid architecture. Tradi-
tionally a combination of OpenMP and MPI has been used to provide efficient commu-
nication between nodes while allowing simple distribution of work within each node [9,
21]. However, presenting two very different programming models, shared memory and
message passing, to the programmer makes coding of large applications very complex.
Beside different data distribution requirements, there are issues of synchronization and
load balancing that need to be managed across programming models.

A popular alternative have been Software Distributed Memory Systems (DSMs),
such as TreadMarks [2], Nanos DSM [15], ClusterOMP [18], etc. In these systems, the
user is presented with a unique programming model – shared memory, and the sys-
tem takes care of maintaining the coherence between images running on distributed
nodes. The coherence is typically maintained at OS page level granularity and differ-
ent techniques have been developed to reduce the overhead [19]. These characteristics
make workloads that have fine-grain sharing accesses and synchronization unsuitable
for DSMs [18].



We believe that PGAS languages are inherently more suitable for hybrid architec-
tures, since they are designed to make the user aware of shared data having different
latencies. We have previously shown that UPC programs can scale to hundreds of thou-
sands of nodes in a distributed machine [5]. In this work we present evidence that UPC
is a suitable language for hybrid architectures, exposing a unique programming model
to the user. We argue that a combination of aggressive compiler optimizations and run-
time system support can efficiently map a wide range of applications to these emerging
platforms.

The remainder of this paper is organized as follows: Section 2 presents an overview
of the compiler and runtime system used to collect the results, as well as a description of
the benchmarks studied. Section 3 presents the experimental results and discusses what
are the issues and opportunities observed. In Section 4 we present the related work and
we conclude in Section 5.

2 Environment

In this section we present the environment used for our experiments, and introduce the
terminology that we are using throughout the paper. The experiments were conducted
on a 32-way eServer pSeries 690 machine with 257280 MB of memory running AIX
version 5.2.

2.1 Overview of IBM’s Compiler and Runtime System

For this study, we use a development version of the IBM XL UPC compiler and UPC
Runtime System (RTS). The compiler consists of a UPC front-end that transforms the
UPC-specific constructs into C constructs and calls to the UPC RTS. While the compiler
is capable of extensive optimizations, for the purpose of this study we did not enable
them. The goal is to observe the sharing patterns in the applications and to gage the
possible opportunities for optimizing shared memory accesses.

The RTS contains data structures and functions that are used during the runtime exe-
cution of a UPC program, similar to GASNet [7]. In the RTS we use the Shared Variable
Directory (SVD) to manage allocation, de-allocation, and access to shared objects. The
SVD provides the shared memory translation support and is designed for scalability.
Every shared variable in a UPC program has a corresponding entry in the SVD. The
compiler translates all accesses to shared variables into the appropriate calls in the RTS
to access the values of shared variables using the Shared Variable Directory (SVD).
Given that accessing a shared variable through the SVD may incur in several levels of
indirection — even when the shared access is local — automatic privatization of local
shared accesses by the compiler yields significant performance improvements [5].

2.2 Performance and Environment Monitoring (PEM)

We used the PEM infrastructure [22, 10] to collect information about the shared mem-
ory behavior in UPC benchmarks.



The PEM framework consists of four components: (i) an XML specification for
events, (ii) a tool-set to generate stubs for both event generation and event consump-
tion, (iii) an API that allows event selection and collection, and (iv) a runtime that
implements the API. For this study we created a new XML specification for events
related to allocating and accessing UPC shared variables.

We manually instrumented the UPC RTS using the event generation stubs created
by the PEM tools. These stubs track allocation of shared objects and shared memory ac-
cesses. In each run we logged the following information for each shared-array-element
access: the SVD entry of the shared array being accessed, the thread that owns the array
element, the thread that is accessing the array element and the type of access (load or
store). By recording the thread that owns the element, rather than the shared-memory
domain of the element, we are able to determine how many of the shared accesses
will be local in different machine configurations. The SVD entry for each shared array
provides a unique key that is used to identify each shared array. Each shared-object al-
location was also monitored to record the SVD entry for every shared variable when it
is allocated. This monitoring allows us to manually associate shared accesses in a trace
file (each trace contains the SVD entry of the shared array being accessed) with shared
variables in the source code. This monitoring step could be automated if we modified
the compiler to generate calls to the PEM tools to associate shared variables with SVD
entries. This compiler modification has been left for future work.

Benchmarks were compiled with the UPC compiler and linked with the instru-
mented RTS library. Once the benchmarks were run, the PEM runtime was able to
collect a trace of the events described above. We then implemented a PEM consumer
to process and analyze these traces. This tool collected statistics about the shared array
accesses for each shared array and each UPC thread in a given trace.

2.3 Terminology

In order to facilitate understanding the discussion in the following sections of the paper,
we define the terms below.

– A thread T refers to a UPC-declared thread of execution.
– A processor P is a hardware context for executing threads. Multiple threads can be

executed on one processor3.
– A node is a collection of processors that access a shared and coherent section of the

address space.
– A thread group is a collection of threads that execute in the same node (the software

equivalent of a node).
– A shared-memory domain is the shared memory in a node that is common to a

thread group.
– Each element of a shared array is a shared array element.
– A shared array access is a dynamic memory access to a shared array element.
– A thread T owns an element of a shared array if the location of the element is in

the shared memory pertaining to T (i.e., the element has affinity to T ).
3 Thus a processor may be a context in a hyper-threading processor, or it may be a core in a

chip-multiprocessor architecture, or it may be a stand-alone processor.



– The local shared array elements for a thread T are the array elements that are
located in the shared-memory domain of T . These elements may be owned by T or
may be owned by other threads that are in the thread group of T .

– The remote shared array elements for a thread T are the array elements that are
outside the shared-memory domain of T . These are elements that are owned by
threads outside of the thread group of T .

The shared keyword is used in UPC to identify data that is to be shared among
all threads. Every shared object has affinity with one, and only one, thread. The pro-
grammer can specify the affinity between shared objects and threads using the blocking
factor. If a shared object Os has affinity with a thread T then T owns Os. In an ideal
UPC program, the majority of shared data accesses are to shared data owned by the ac-
cessing thread. Such a data distribution reduces the amount of data movement between
threads, thereby improving the performance of the program.

2.4 Overview of current UPC Benchmarks

From the NAS suite [3, 4], we selected the CG, MG and IS kernels. These benchmarks
were developed by the UPC group at George Washington University based on the origi-
nal MPI+FORTRAN/C implementation [17]. Each kernel comes with several class sizes
that dictate the input size used by the benchmark. When possible, each benchmark was
run with input classes S, A and B. The memory requirements for class S are the smallest
and for class B are the largest that we could run. Not all the benchmarks could be run
with class B.

CG is a kernel typical of unstructured grid computations. CG uses a conjugate-
gradient method to approximate the smallest eigenvalue in a large, sparse matrix. The
matrix is evenly divided between the processors.

MG uses a multigrid method to compute the solution of the 3D scalar Poisson equa-
tion. The partitioning is done by recursively halving the grid until all the processors are
assigned. This benchmark must be run in K processors where K must be a power of 2.
Communication occurs between iterations by exchanging the borders.

Integer Sort (IS) performs a parallel sort over small integers. Initially the integers
are uniformly distributed.

A Sobel Edge Detection benchmark, written for this study, was also used. The Sobel
operator is a discrete differentiation operator used in image processing. It computes an
approximation of the gradient of the image intensity function. At each point in an image,
the result of the Sobel operator is either the corresponding gradient vector or the norm
of the vector [1].

The remaining UPC NAS Benchmarks have been optimized for access locality
through the use of UPC block memory transfer methods (e.g., upc memget,
upc memput, upc memcpy). These benchmark versions contain a relatively small
number of accesses to shared variables and may not be representative for this study. We
expect to use them as a target that our compiler should strive to achieve by analyzing
naively written UPC programs. 4

4 The LU benchmark does not currently verify when compiled with our compiler and thus was
not included in the study.



3 Results and Discussion

There are four questions that we are interested in answering in this study: (i) What is
the ratio of local to remote shared array accesses? (ii) Of the remote accesses, what is
the subset of threads that own them? (iii) Are there regular patterns in accessing remote
data? (iv) How does the blocking factor used to distribute the shared arrays impact the
ratio of local to remote accesses?

For each of these questions, we will take one of the benchmarks described before
and discuss what are the characteristics that make it display a particular behavior. Given
that the set of benchmarks available in UPC is quite restricted, we hope that our dis-
cussion tying program features to performance characteristics will also serve as a best
practices foundation for UPC programmers.

3.1 Local vs Remote Access Ratio

For the CG benchmark, more than 99.5% of the shared array accesses
are to six shared arrays (independent of the number of threads used to
run the benchmark): send start g, exchange len g, reduce threads g,
reduce send start g, reduce send len g, and reduce recv start g.
The send start g and exchange len g are shared arrays with THREADS ele-
ments that are used in calls to upc memget to move shared data between proces-
sors. They are created with the default (cyclic) blocking factor, where each proces-
sor is assigned one array element in a cyclic fashion. The reduce threads g,
reduce send start g, reduce send len g, and reduce recv start g
are two-dimensional shared arrays of size THREADS*NUM PROC COLS, where
NUM PROC COLS is based on the class size; the arrays use a blocking factor of
NUM PROC COLS. These arrays are used in the conjugate-gradient computation.

Threads access only the elements they own in the reduce recv start g
and reduce threads g shared arrays. For the reduce send len g and
exchange len g shared arrays almost all accesses are to remote array elements. The
local access ratios for send start g and exchange len g vary between threads.
For example, for Class B run with 16 threads, threads 0, 5, 10 and 15 only access local
array elements and the remaining threads access almost exclusively remote elements.

Figure 1(a) shows the distribution of array element accesses vs. ownership for ac-
cesses performed by the CG Benchmark running with Class B input. For thread i, we
record all the threads that own elements accessed by i. We sort the threads in descend-
ing order of the frequency of accesses. The bars in the graph show, for each run, how
many elements were accessed in one of the other threads, averaged over all threads.
For example, when run with 32 threads, about 41% of accesses are local, 19% are to a
remote thread (first owner), 19% to a second second owner, 12% to a third owner and
about 9% to a fourth. This ownership distribution indicates that most of the remote ac-
cesses are confined to a small number of remote threads: even when run with 32 threads
the majority of remote accesses are to at most 4 unique threads. Almost all benchmarks
that we studied exhibit this type of pattern for up to 128 threads. Of the benchmarks we
analyzed, IS is the only one that does not exhibit similar behavior. In IS, approximately
40% of remote accesses are to a large number of threads.
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(b) Blocking Factor = 1

Fig. 1. Threads involved in Remote Accesses for blocking factor of THREADS and for a block-
ing factor of 1 in the CG Class B benchmark.

Benchmark UPC Threads
Percentage of Local Shared Accesses
1 TpG 2 TpG 4 TpG 8 TpG 16 TpG

CG Class B

4 50.2 83.4 - - -
8 45.6 72.8 90.9 - -
16 41.1 68.3 86.4 90.9 -
32 40.8 59.5 78.2 90.6 93.8

IS Class S

2 50.0 - - - -
4 25.1 50.0 - - -
8 13.2 25.2 50.1 - -
16 7.6 13.7 25.7 50.5 -
32 6.2 9.3 15.2 27.1 51.4

MG Class S

2 74.8 - - - -
4 62.2 74.8 - - -
8 55.4 62.3 74.9 - -
16 52.3 56.0 62.3 74.9 -
32 50.6 52.9 56.1 62.5 75.0

Sobel Easter (BF 1)

2 26.68 - - - -
4 23.3 60.0 - - -
8 21.7 56.7 76.7 - -
16 20.8 55.0 73.3 85.0 -
32 20.4 54.1 71.7 81.7 89.2

Sobel Easter (Max BF)

2 93.2 - - - -
4 89.7 93.2 - - -
8 87.7 89.7 93.2 - -
16 86.2 87.7 89.7 93.2 -
32 84.3 86.2 87.7 89.7 93.2

Table 1. Local accesses as a percentage of total shared accesses as a function of the number of
UPC threads and the number of threads per group (TpG).



Table 1 shows the number of local accesses as a percentage of the total number of
shared accesses for each benchmark run with the number of threads and the number
of threads per group (TpG) specified. In most of these benchmarks, a large number of
accesses are local (more than 40%) even when there is a single thread in each thread
group. From these accesses, the ones in CG, MG and Sobel are mostly easily detected
by the compiler. Therefore, they can be privatized to avoid the overhead of translation
through the SVD.

The results in Table 1 indicate that as the benchmarks are run with more threads
per group, the percentage of local shared accesses increases. These results highlight the
benefit of running UPC programs on architectures that have multiple processors in each
share-memory domain. For the CG and Sobel benchmarks, an overwhelming majority
(more than 90%) of the accesses become local when run with a thread group consisting
of 50% of the running threads. Even the IS benchmark, which exhibits irregular shared-
access patterns improves significantly as the size of the thread groups is increased. In
the case the compiler fails to identify and privatize these additional local accesses, the
performance will still improve because it is not necessary to send messages between the
accessing thread and the owning thread in order to exchange shared data.

3.2 Remote Data Access Patterns

An important factor in deciding the mapping of threads to processors in a hybrid ar-
chitecture is the access patterns to remote data. This pattern depends on the algorithm
used for solving the problem. Here we present evidence that, for a number of algorithms
used in scientific computations, the patterns are quite regular and therefore amenable to
optimization.

In Figure 2 we capture the actual pattern of data exchange between threads for the
CG Benchmark running the class B input. We assume the threads are cyclically dis-
tributed and we compute the distance between two threads as the number of threads
separating them in a ring distribution (thread 0 comes after thread N-1). A distance of
zero represents accesses to local data. In these error-bar plots the circles are the average
number of accesses to a remote thread. The error bars are the standard deviations. For
the 32-way CG, we know from Figure 1(a) that most remote accesses occur to 4 other
threads. In this figure, we observe that those threads are actually the immediate neigh-
bors, that is, the threads at distances -2, -1, 1, and 2. Most of our other benchmarks
show a similar behavior, again, the exception being IS, where the remote accesses are
relatively uniformly spread throughout all threads. This access distribution in IS (inte-
ger sorting) occurs because each thread owns a set of buckets and a random set of keys
that need to be sorted. The behavior of the IS benchmark class S with 2 to 128 threads
is shown in Figure 3.

The scatter plot in Figure 4(a) displays the distribution of local and remote accesses
performed by each thread in the CG benchmark running with 16 threads and with class
B input. The size of each point is proportional to the number of accesses performed by
the accessing thread to shared array elements that are mapped to the owner thread. The
colors highlight the local accesses.

Figure 4(a) shows that when a blocking factor of THREADS is used the majority of
shared memory accesses are clustered along the diagonal. Every access on the diagonal
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Fig. 4. Distribution of shared accesses for blocking factor of THREADS and for a blocking
factor of 1 in the CG Class B benchmark running with 16 threads. The darker markers on the
diagonal are local accesses, while the lighter colored markers are remote accesses. The size of
the marker denotes the number of accesses, the larger, the more accesses.

is a local access (accessing thread equals the owning thread) while accesses near the
diagonal indicate the accessing and owning threads are in close proximity to each other
(in terms of thread distance). This observation provides strong support for running the
benchmark on a hybrid machine where threads are mapped to thread groups based on
their distance from each other. For example, on a hybrid machine with thread groups of
size four, threads 0 through 3 are mapped to one node, threads 4 through 7 are mapped
to a second node, etc.,.

3.3 Effects of Blocking Factor

To illustrate the effect the blocking factor, the CG benchmark was modified to create
the reduce threads g, reduce send start g, reduce send len g, and
reduce recv start g arrays with a blocking factor of 1. Figure 1(b) shows the
number of unique threads involved in remote accesses while the scatter plot in Fig-
ure 4(b) shows the distribution of local and remote accesses. These figures emphasize
the importance of using an adequate blocking factor to increase the number of shared
accesses that are local and thus candidates for privatization. When compared with the
plot in Figure 4(a), we see the selection of blocking factor is even more important for
hybrid architectures.

In the NAS MG Benchmark, we observed a high percentage of remote accesses for
the two shared arrays sh u and sh r. These two shared arrays contain the original and
residual matrices used in the multigrid computation. They are relatively small arrays
(for class S their size is 6*THREADS) and they are distributed using a blocking factor
of 6. Figure 5(a) shows the index frequency histogram for the sh u array when run
with input class S on 4 threads. The height of the bars indicate the number of accesses
to a specific index. The colors denote the ownership of the shared data being accessed.
From this histogram we see that the majority of accesses are to indices 20, 21, 22 and
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Fig. 5. MG class S array access index frequency using original blocking factor. Color denotes
ownership.

23. However, because a blocking factor of 6 was used to distribute the array, all of
these indices map to thread 3. When run with the original blocking factor there were
approximately 12.5% local accesses to sh u. By manually modifying the source code
to use the default blocking factor of 1, the number of local accesses increased to 99.4%.
The index frequency histogram using a blocking factor of 1 is shown in Figure 5(b).
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Fig. 6. Distribution of shared accesses for blocking factor of 1 and blocking factor of
MAX BLOCK = (ROWS*COLUMNS)/THREADS for the Sobel benchmark running with 32
threads.

Figure 6 illustrates the effect of different blocking factors on the Sobel benchmark.
The Sobel benchmark performs a stencil computation where the eight neighbors of
an array element are used to compute a new value. Thus chosing the largest possible
blocking factor, such that the eight neighbours of a give array element are local (for
most array elements) proves to be the best strategy.



4 Related Work

This is the first performance study to provide an empirical measurement of the distribu-
tion of thread ownership of the accesses performed by each thread in UPC benchmarks.
This data allows the community to both identify the opportunities for optimization of
data accesses in UPC and to estimate the potential gains that such optimizations may
yield.

Several research groups have investigated the performance of UPC and compared
with other languages. El-Ghazawi and Cantonnet found that both the Compaq UPC
1.7 Compiler on the Compaq AlphaServer SC produced code that was slower than,
but competitive with, the code produced for MPI versions of the NAS parallel bench-
marks [17]. In their study the UPC codes were modified by hand to convert all local
shared accesses into private accesses.

The performance study by Cantonnet et al. provides strong support to improving the
code generation for local shared accesses in UPC[8]. Not only did they measure the high
overhead of such accesses in current compilers, they also demonstrated, through hand-
optimization, that significant performance gains can be obtained by privatizing such
accesses. By manually privatizing local shared accesses and prefetching remote data in
the Sobel Edge Detection benchmark they were able to obtain nine times speedup for
a 2048×2048 image and results showing very-high parallel efficiency with speedup al-
most linear on the number of processors. In cluster architectures formed by many multi-
processor nodes the potential for improvement in performance may be even higher than
these experiments indicate. Similarly Chen et al. found that if local shared accesses
were privatized in the Berkeley UPC compiler, a simple vector addition application
would see an order of magnitude speedup [11].

Berlin et al. compared the time required for a private local access and for a shared
local access [6]. The smallest difference between these two accesses was in the SGI
Origin 2000 (the private access was 7.4 times faster). In a 64-node Compaq AlphaServer
cluster with four ES-40 processors per node with an earlier version of the Compaq UPC
compiler, they found that a private access was 580 times faster than a local shared access
in the same processor, and was 7200 times faster than a shared access to an address
mapped to another processor in the same node. Later versions of that compiler have
reduced this overhead, but these staggering numbers speak to the need to improve the
identification and privatization of local-shared accesses.

In a comparative study between UPC and Co-array Fortran, Coarfa et al. found that
in both languages, bulk communication is essential to deliver significant speedup for the
NAS benchmarks [12]. They also point out that references to the local part of shared
array through shared pointers is a source of inefficiency in UPC. They suggest that the
way to work around this inefficiency is for UPC programmers to use private C pointers
to access the local part of shared objects. We propose a more elegant two-pronged
solution: (1) an optimizing UPC compiler may modify the blocking factor to improve
the number of local accesses for a given machine configuration; and (2) the compiler
should automatically convert shared accesses to the local part of a shared array into
private local accesses.

The analysis required for the privatization of local shared accesses finds parallel
in the analysis of array accesses in loop nests in the modified version of Parascope by



Dwarkadas et al. [16]. Their goal is to inform the runtime system that it does not need to
detect accesses to shared data. Their compiler-time analysis allows the runtime system
to prepare for the shared accesses ahead of time. In UPC the analysis will be able to
simply replace the shared access with a simple pointer-based access.

Zhang and Seidel developed the UPC STREAM benchmark [23]. Their experimen-
tal study also found the overhead of accessing local sections of a shared array through
shared accesses to be significant. They also report on an empirical comparison between
an implementation of UPC over MPI and Pthreads from Michigan Technological Uni-
versity, the first commercial UPC compiler from Hewlett-Packard, and the Berkeley
UPC compiler.

The issue of identifying shared accesses that are local arises in UPC because of a
language design decision that makes the physical location of the memory referenced
transparent to the programmer. Other languages, such as Co-Array Fortran [20] expose
the distinction between local and remote accesses at the language level and thus they
compilers do not have to deal with the privatization of local shared accesses.

Barton et al. describe a highly scalable runtime system based on the design of a
shared variable directory [5]. They also describe the optimization of the upc forall
loop, local memory accesses, and remote update operations implemented in the IBM
XL UPC Compiler [14].

Intel has recently announced Cluster OpenMP that support OpenMP programs run-
ning on a cluster of workstations [18]. A licensed version of TreadMarks [2] is used
for the runtime system to manage the movement of shared data between nodes. The
OpenMP specification has been extended to include the sharable directive, used to
identify variables shared among threads. A sharable equivalent to malloc has also been
added to support dynamic shared data.

A mixed-mode programming model for hybrid architectures has been explored by
several groups. In this mixed-mode model, MPI is used to communicate between nodes
while OpenMP is used to parallelize work within a node. Smith and Bull conclude that
this mixed-mode programming model is well suited for some applications but warn
it is not the best solution for all parallel programming problems [21]. A programmer
should understand the nature of the application (load balancing characteristics, parallel
granularity, memory limitations from data replication and general MPI performance)
before attempting to use the mixed-mode model.

5 Conclusions

We started this detailed study of data access patterns in UPC from the premise that
understanding these patterns will allow us to estimate the potential of several compiler
optimizations. Indeed, we find that the number of local accesses that are identifiable by
the compiler is quite high in the set of benchmarks that we studied. Privatizing these
accesses automatically will remove a significant source of overhead while keeping the
code portable and simple to understand.

In addition, we observed that, contrary to the intuition that the largest blocking
factor is always better for improving locality, there are cases in which a blocking factor



selected based on the access pattern provides more benefit. We are working on a solution
to the problem of finding the best blocking factor for an application.

And finally, we have shown that even considering a naive mapping of threads to
processors in a hybrid architecture, there is tremendous potential to increase the perfor-
mance of applications because of better data locality. We are confident that through a
combination of compiler and runtime optimization the performance of PGAS languages
such as UPC can be on-par with traditional high performance MPI+OpenMP codes. At
the same time, PGAS programming models are a more elegant solution to the problem
of programming hybrid architectures when compared with mixed programming models,
such as combinations of MPI with OpenMP.
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