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Abstract— Numerous sensor-based applications depend upon
the detection of certain events. The proper operation of these
applications depend on the quality of the information (QoI) that
they receive from their sensor-based event detectors. In this
paper, we establish relationships that tie the QoI attributes of
timeliness and confidence to the operational characteristics of
a sensor system and the events they detect. By building upon
the Neyman-Pearson hypothesis testing procedure, we study the
dependence of these characteristics and attributes on each other
and establishing their theoretical performance boundaries.1

I. INTRODUCTION

With the introduction of autonomous, battery-operated, and
especially wireless communication capable sensing platforms,
sensor-based systems are becoming very powerful and flexible
sources of data that support a wide collection of applications.

Typical sensor-based applications comprise lower-level
sensing modules that take environmental measurements, and
high-level fusing modules that transform these measurements
into useful (in some sense) information that support various
decision making processes [1]. A decision maker will make a
decision (and cause an action), if the information derived from
sensed data indicates that an event of interest has occurred,
e.g., when acoustic or seismic measurements indicate that an
explosion (might) have occurred. In deciding how to proceed,
decision makers take decisions based on the confidence they
place upon the quality of information (QoI) available to them.

Regarding sensor-collected data, the quality of the sensed
data is captured via a collection of attributes that includes [2]:

• timeliness: which describes how timely the data are
provided to be useful to applications;

• accuracy: which describes the level of detail (precision)
in the sensed data;

• reliability: which describe how much confidence can be
placed in the sensed data;

• throughput: which describes the rate at which data are
provided to user-applications;

• cost: which described the cost collecting the sensed data.

1Research was sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation heron.

As sensed data are processed (fused) and raw data turn
into useful and actionable information, the above quality at-
tributes of sensed data affect similar higher-level QoI attributes
(timeliness, accuracy, and reliability), as well as higher-level
concepts, like completeness, relevancy, and usability [3].

To determine whether an event of interest has occurred
sensor measurements are correlated and support a hypothesis
test as to whether the event has occurred or not. The outcome
of this test represents the information derived through the
fusion of the sensed data. The quality of this information can
be captured by how fast this outcome can be made –timeliness
of information–, and the probability of correct detection and
false alarm (i.e, the probability to declare the event has
happened when the opposite is indeed true) –accuracy of or
confidence about the information.

The study of the above hypothesis testing is part of the time-
honored detection theory [4]. With the increased interest in
wireless sensors, the topic of hypothesis testing is experiencing
a resurgence of sorts. For example, recent studies for wireless
sensor systems have looked into centralized, distributed, and
hybrid data fusion architectures and decision making schemes
based on hypothesis testing, where measurements are fused
either locally or remotely or in a combination of the two [5],
[6], [7], as well as collaborative schemes [8] where groups of
sensors first collaborate to “improve” the outcome of their
local fusion prior to fussing centrally the outcomes of the
locally fused data.

Prior studies have focused on system designs and algorithms
that are energy-aware and/or improve the detection capabilities
of the system. While these are certainly key design objectives
for a wireless sensor system, to the best of our knowledge,
prior studies in this area have not yet investigated the fun-
damental relationships and trade-offs that could exist between
the events whose occurrence the sensor system is to detect and
the operational characteristics of the sensing system, namely
its sampling rate. As an example, on the one hand, if sampling
were to occur in accordance to the Nyquist frequency, not
only detection but even a pretty accurate facsimile of the
original signal (the event signature) could be constructed.
On the other hand, when dealing with time-limited signals,
very sparse sampling will result in missing the event entirely.
So, something interesting must be happening for sampling
frequencies in the middle. This observation fact has motivated
this first study on this topic, with an initial contribution
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Fig. 1. A high-level system model.

the discovery of relationships between event detection and
sampling. In view of the prior discussion, an additional interest
and contribution of this study is mapping these relationships
to the QoI attributes of timeliness and confidence.

The paper is organized as: In section II, we present the
system model to be studied. In section III we present our
analysis employing the Neyman-Pearson hypothesis testing
technique. In section we present our numerical results for a
special class of event signatures, and finally we conclude in
section with some concluding remarks.

II. SYSTEM MODEL

Fig. 1 shows a high-level model of the system that we
consider in this study. Specifically, we consider a system
comprising a sensor module that observes “its” environment
in search of an event of interest E, and a fusion module that
process these observations. The outcome of the fusion process
supports a decision maker that decides whether the event E
has occurred or not.

Based on cost and other design considerations, the sensing
and fusion modules may be physically collocated within the
same device or be apart of each other. In either way, the
connectivity cloud in the figure is assumed to represent an
idealized communications path between the two modules and
we will not consider it further in this study.

As shown in the figure, the sensor takes measurements, or
samples, at discrete times. Let ti ∈ WT represent the time
the sensor takes the i-th measurement and ri the observable
outcome of this measurement; WT = [0, T ] represents the
observation window We assume that during the observation
window WT there are N measurements taken, i.e., we have
an N -dimensional observation space represented by the ob-
servation vector variable rN = {r1, . . . , rN}2. Finally, we
assume that each measurement is corrupted by an additive
noise process; we do not distinguish between different sources
of noise or error in the measurements.

We assume that the event of interest generates a signal
s(t), and let si represent the value of s(t) during a sampling

2We borrow much of our notation from [4].

instance (si = s(ti)). While s(t) can have any profile, of
particular interest in the paper will be events that are transient
in nature, e.g., an explosion whose, say, acoustic energy
s(t) is sampled by an acoustic sensor. Regarding the noise
process, for the numerical results later on, we assume that the
additive noise component to each measurement constitute an
i.i.d. sequence of independent, zero-mean Gaussian random
variables with variance σ2.

III. THE SOLUTION APPROACH

With the set-up described in II, we formulate two hypothe-
ses depending whether the event occurred or not as follows:

H1 : ri = si + ni, i = 1, . . . , N,

H0 : ri = ni, i = 1, . . . , N, (1)

where si and ni are the signal (when present) and noise com-
ponents of the i-th (observable) measurement. Let fA|Hi(·)
represent the probability density of some random variable A
conditioned on the hypothesis Hi, i = 0, 1. From the classical
hypothesis testing analysis, the decision test dependents on the
likelihood ratio of the conditional probabilities [4]:

Λ(RN ) =
frN |H1(RN )
frN |H0(RN )

H1

≷
H0

η, (2)

where RN = {R1, . . . , RN} represents the collection of the
N actual measurements observed; RN should be contrasted
with rN which is a vector random variable for the observed
data. The threshold η in (2) depends on decision test criteria.

The decision test criterion that we have elected to use is
the Neyman-Pearson test, leaving other test options for future
studies. The Neyman-Pearson test maximizes the probability
of correct detection PD, while constraining the probability
of false alarm PF . It uses only conditional probabilities (PD

and PF are conditional probabilities by definition) and avoids
using the usually unown and/or hard to derive a priori probabil-
ities for the hypotheses, like the more popular Bayesian test
criterion uses. Also, the use of the conditional probabilities
actually is pretty pertinent to our QoI study. Specifically,
assuming that action at some higher level takes place only
when the decision maker reports that an event of interest has
occurred, the QoI conveyed by this decision increases the
sooner the report is made relative to the time the event occurs.
It, of course, also increases the higher the probability PD of
correctly detecting the event becomes, while maintaining the
probability of false alarm PF “under control,” i.e., bounded
by a specified false alarm rate PF ≤ α.

With the noise process assumed an i.i.d. Gaussian process,
we can easily calculate the ratio in (2):

Λ(RN ) = exp

{
− 1

2σ2

N∑
i=1

(
(Ri − si)2 −R2

i

)}

= exp

{
1

2σ2

N∑
i=1

si (2Ri − si)

}
.

(3)



Taking the logarithm on both sides of (3) and rearranging
terms, the decision test in (2) becomes:

N∑
i=1

siRi

H1

≷
H0

η? = σ2 ln η +
1
2

N∑
i=1

s2
i . (4)

Note that the decision test depends only on the weighted sum
of the measurements l =

∑N
i=1 siRi; the scalar l represents

the sufficient statistic for this test.
The Neyman-Pearson decision test maximizes the proba-

bility of correct detection PD by setting the false alarm rate
PF at its maximum acceptable value α. According to (4), the
probability of correct detection PD is equal to:

PD = Pr(l ≥ η?|H1) =
∫ ∞

η?

fl|H1(w) dw , (5)

Under hypothesis H1, l is the sum of N independent Gaussian,
random variables with the i-th random variable having mean
s2

i and variance σ2s2
i . Let N(0, 1) represent a normalized

Gaussian random variable, and let ESN
, s2

1 + · · ·+ s2
N , i.e.,

when the signal is indeed present, ESN
is representative of the

energy of the signal measured. Then, the sufficient statistic
l is distributed as a N

(
ESN

, σ
√

ESN

)
random variable, or

equivalently, the random variable y1 = (l − ESN
)/σ
√

ESN

is distributed as a N(0, 1) random variable. Therefore, the
probability of correct detection PD in (5) is given by:

PD = Pr(l ≥ η?|H1) = Pr

(
y1 ≥

η? − ESN

σ
√

ESN

)

= 1− Φ

(
η? − ESN

σ
√

ESN

)
,

(6)

where Φ(·) represents the cumulative distribution of a N(0, 1)
random variable.

Through a similar procedure, it can be found that the false
alarm probability PF is equal to:

PF = Pr(l ≥ η?|H0) =
∫ ∞

η?

fl|H0(w) dw

= 1− Φ

(
η?

σ
√

ESN

)
.

(7)

According to the Neyman-Pearson decision test, the false
alarm rate is set at its upper bound value α, which implies
from (7) that:

η? = σ Φ−1(1− α)
√

ESN
. (8)

Substituting η? in (6) with (8) yields:

PD = 1− Φ

(
Φ−1(1− α)−

√
ESN

σ

)
. (9)

According to (9), PD depends on a measure of the signal-to-
noise ratio (SNR) (

√
ESN

/σ). Specifically, as it would have
been expected, PD increases with SNR. Since N(min{si})2 ≤
NS

2

N ≤ ESN
≤ N(max{si})2, where SN represents the
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Fig. 2. A simple two sample set-up.

average value of the N (uncorrupted) signal samples, (9)
results in:

α ≤ 1− Φ

(
Φ−1(1− α)− SN

√
N

σ

)

≤ PD ≤ 1− Φ

(
Φ−1(1− α)−

max{1≤i≤N}{si}
√

N

σ

)
.

(10)

The bounds in (10) capture the amount of variability of the
probability of detection PD when compared to a signal that
would had the same (constant) value during the observation
interval. Notice that the upper and lower bounds coincide when
max{si} = SN , i.e., when the signal, actually its measured
samples, have no variability.

Studying the limiting behavior of PD, we observe that when
SN

√
N → ∞ with N , e.g., when the average value of the

samples remains bounded away from 0 uniformly with respect
to N (i.e., when SN ≥ δ > 0 for all N larger than some
N0), then PD increases towards 1 with increasing N . Notice
that the latter condition does not hold true when the signal
is time-limited and the sampling rate is upper bounded by
a positive number. Finally, when the measurement-dependent
portion of (9) and (10) becomes infinitesimally small, e.g.,
when the noise variance σ increases, PD reduces toward α.

IV. QOI AND DETECTION PERFORMANCE

In this section, we use the expressions for PD and PF from
section III to study the impact of system and signal parameters
on the QoI attributes of timeliness and accuracy.

For simplicity, but without lack of insigthtfulness, in this
paper, we consider the simple set-up shown in Fig. 2. Specifi-
cally, we assume a time decaying, transient signal representing
a transient event. We assume that two measurements are taken
at times t1 and t2 that are T > 0 time units apart. If the event
had indeed occurred, then in the absence of any measurement
noise, the measurement values would have been h and θT h,
respectively; if h = 1, we may consider that the measurements
are normalized with respect to the first measured value. The
parameter θT represents the decay of the signal over the
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“observation” interval T . Since we assume that the signal,
when present, is decaying with time, θT decreases with T
with θ0 = 1 and θ∞ = 0.

Before proceeding further with the analysis, we feel the
need to provide an additional interpretation of Fig. 2. While
this initial study looks only on two measurements, in the
grand scene of things, these two measurements may represent
the first and second, the first and last, etc., measurements
from a collection of multiple measurements. Thus as part
of this simple(r) case study, we also search for any hints
of relationship that may exist between the decaying-value
measurements and the frequency of sampling (shown in the
figure via the inter-sample intervals T , T ′, T ′′, etc.), and
how these may reflect upon the QoI information attributes of
interest.

For this set-up, the probability of detection is given by, see
(9):

PD = 1− Φ
(

Φ−1(1− α)− h

σ

√
1 + θ2

T

)
, (11)

which shows that PD dependents on the “primary” SNR
component (h/σ), i.e., the SNR component due to the first
measurement only. The impact of the additional measurement
is through the term

√
1 + θ2

T . It follows that as long as the
noise variability σ is normalized relative to first sample value
h, we can assume that h = 1 without lack of generality.

Fig. 3 shows the test signals that we use in this analysis.
The exact form of the signals is immaterial at this stage, but
we have nevertheless selected them to cover a wide range of
shapes of interest. We have a “reference” signal that decays
linearly, s(t) = 1 − t, over its lifespan of duration 1, and
a collection of signals that decay symmetrically around the
reference signal: s(t) = 1 − tn for the signal above the
reference signal and s(t) = (1 − t)n for the signals below
the reference one; note that in either case when n = 1, we
obtain the reference signal. We also mark in the figure time
instances, like T = 0.25, 0.5 and 1.0, that the second sample
is taken. We will refer to the signals above the reference
as the slow-decaying, strong signals, while those below the
reference signal as the fast-decaying, weak ones; the parameter
n represents the decay parameter.
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For the class of signals in Fig. 3, the probability of detection
in (11) becomes:

PD(T ) = 1− Φ

(
Φ−1(1− α)−

√
2

σ

√
1 + Tn

(
Tn

2
− 1
))

,

= 1− Φ
(

Φ−1(1− α)− 1
σ

√
1 + (1− T )2n

)
,

(12)

for the fast- and slow-decaying signals, respectively. Of course,
when n = 1 the two expressions in (12) coincide.

Figures 4 – 6 show the probability of detection PD as
various system and signal parameters vary. Fig. 4 shows how
PD behaves as a function of the primary SNR component
(h/σ) for various values of false alarm rate α, when the second
sample is taken at time T = 0.5. We consider a fast- and a
slow-decaying signal both with a decaying parameter of n = 2.
First of all, we notice that when SNR=0, PD = α as discussed
at the end of section III. Again as previously discussed, and
expected, PD approaches to 1 when SNR increases. It is
interesting to notice that the higher the false alarm rate α the
higher the probability of detection becomes. This again is to be
expected, since when we always decide in favor of hypothesis
H1, then we always detect the event correctly (PD = 1) but
at an unreasonably false alarm rate (PF = 1).

Fig. 5 shows how PD behaves as a function of T , the time
that the second sample is taken, when α = 10−3, n = 2, and
for various SNR values. The figure reveals how much better
the confidence on the detection result becomes the “stronger”
the second measurement is relative to the first, which happens
the closer the second measurement is taken to the first one.
In other words, the figure captures how the timeliness of
the detection decision impacts the confidence on the decision
taken. We see that for the faster-decaying signal no substantial
improvement is made in PD when T > 0.5 (even when n is
just 2). This fact becomes even more prominent the smaller the
SNR becomes. The PD for the slower-decaying signal behaves
more favorably with T , with the difference in PD between the
slower- and faster-decaying becoming more prominent with
increasing SNR, which is expected since the higher the SNR,
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the more “elbow-room” exists for improvement. Note that for
each value of the SNR, the curves start from the same point
at T = 0 and monotonically decline diverging initially but
eventually converge to the same point when T = 1. This
behavior can easily be explained due to the shape of the curves
considered, see Fig. 3.

Finally, Fig. 6 shows how PD behaves as a function of n,
the decaying parameter, when α = 10−3, SNR=2, and for
various values of T . Recall that when n = 1, the fast- and
slow-decaying signal coincide and hence the corresponding
pairs of curves start at the same value of PD. However, they
quickly diverge from each other, as the second measurement
of the slow-decaying signal becomes more and more equal
to the first measurement, while for the fast-decaying signal
the second measurements hardly “registers” with increasing
n, something that becomes even more prominent the later the
second measurement is taken, i.e., as T also increases. As
expected, the left and right convergence points in the SNR=2
curve in Fig. 5 coincide with the upper and lower convergence
levels for PD in Fig. 6.

V. CONCLUDING REMARKS

In this paper, we have made a first attempt to discover
and quantify relationships between: (a) the characteristics of

events that a sensor system tries to detect; (b) the operational
characteristics of the sensor system; and (c) the attributes
the capture the quality of the information that the sensor
system provides to its users. Starting with classical detection
theory analysis, we have extended that work to derive simple,
elegant, and insightful analytical formulaethat are applicable
to a large number of signal profiles. To gain an even deeper
understanding on these relationships, we have applied the
formulae to a broad family of decaying signal profiles and
studied a simple, but non-trivial subcase comprised of two
measurements.

The performance trends revealed in our analysis are not
unexpected. The results basically show that the stronger the
signal is the higher the probability of detection becomes. There
is nothing surprising with this observation and we dare to
say that if something out of the ordinary were shown during
our analysis, then either our analysis or our intuition would
have been at fault. The benefit from this analysis though
is not merely to confirm our intuition but to provide for
he first time simple, fully quantifiable insights for how the
signal characteristics, e.g., its decaying time parameter, and the
system operational parameters, e.g., the sampling rate, impact
the quality of the information produced by a sensor system. In
a sense, our work captures the theoretical limits for the QoI
of a sensor-based detector system parameterized on the events
that the detector tries to detect.

In closing, this study reveals how our confidence on the
event detector changes as new samples are incorporated in the
decision making process. While related, this study is distinct
from traditional sequential detection procedures for, under our
analysis assumptions, the amount in detection improvement
with each new sample datum is exactly quantified. This
facilitates the development of stopping rules for sampling to
be made other than reaching a predetermined event detection
threshold, for example, a stopping rule may be reflective of
the “accumulated” confidence and timeliness QoI attributes.
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