
RC24068 (W0610-013) October 3, 2006
Computer Science

IBM Research Report

Sign and Encrypt Any Element in a SOAP Message

Hyen-Vui (Henry) Chung
IBM Software Group
11501 Burnet Road

Austin, TX 78758-3400

Michael McIntosh, Paula Austel
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Masayoshi Teraguchi
IBM Research

1623-14 Shimotsuruma
Yamato 242

Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Sign and Encrypt Any Element in a SOAP Message

Hyen-Vui (Henry) Chung
Senior Software Engineer, WebSphere Architecture and Development
Austin, TX

Michael McIntosh
Senior Software Engineer, IBM Research
Hawthorne, NY

Paula Austel
Senior Software Engineer, IBM Research
Hawthorne, NY

Masayoshi Teraguchi
Researcher, IBM Research
Yamato, Japan

May, 2006

This article describes how to use IBM WebSphere Application Server Version 6.0
(hereafter called Application Server) and IBM Rational Application Developer
(hereafter called Application Developer) to sign and encrypt any element in a SOAP
message using the Web Services Security 1.0 standard (WS-Security). WS-Security is
designed to be flexible and extensible. However, that flexibility and extensibility is a
double-edged sword: it enables security for many message-level scenarios, but adds
significant complexity to the development process. WebSphere Application Server
provides a simple keyword-based mechanism to specify which SOAP message elements
are to be signed and encrypted. Keywords are defined to support the majority of common
usage scenarios for standard message elements. However, SOAP messages frequently
contain non-standard application-defined elements that must also be protected. This
article describes how you can use an XPATH expression with WebSphere Application
Server to sign and encrypt any element in a SOAP message. The article is intended for
Web services application developers who need to secure their SOAP messages using
message-level security.

You should have a good understanding of Java™ programming, XML, XPATH, Web
services and general cryptographic security technology.

Introduction ... 2
WS-Security High-Level Architecture in WebSphere .. 3
WS-Security Deployment Model .. 4

Predefined keywords ... 5
XPATH.. 7

Overview of the sample application.. 7
Run the sample application ... 9
Generate the keys .. 9

Results ... 10
Configure WS-Security constraints for the request generator .. 11

Configure... 12
integrity (digital signature).. 12
Configure Confidentiality (Encryption) .. 18

Configure WS-Security constraints for the request consumer .. 21
Configure required integrity.. 23
Configure required confidentiality .. 28

SOAP message with WS-Security .. 31
Conclusion... 33

Introduction
Web services is an emerging technology for designing and developing loosely coupled,
distributed systems. Web Services Security 1.0 (WS-Security) is an OASIS standard for
message level security using XML encryption, XML signature, and security tokens.

WebSphere Application Server has provided support for WS-Security since release 5.0.2.
WS-Security support in Application Server V5.0.2 and V5.1.x was based on a pre-
standard draft of the specification. The WS-Security 1.0 specification became an OASIS
standard in April 2004, and Application Server V6 supports this version of the standard.
Similarly, Rational Application Developer V5.0.x and V5.1.x support the draft version of
the WS-Security specification, and Rational Application Developer V6 supports both the
draft version and the 1.0 standard.

The OASIS Web Services Security Technical Committee designed the WS-Security
standard to be flexible and extensible. The intent was to provide a standard that
developers could use to secure as many Web services scenarios as possible. However,
flexibility and extensibility comes with a price: complexity. The challenge for vendors
who provide implementations of the WS-Security standard lies in striking a balance
between ease of use and flexibility. The WS-Security implementation in WebSphere
Application Server concentrates on ease of use for the most common usage scenarios,
while enabling more complex usage patterns for more expert users.

This article focuses on how to use Rational Application Developer and WebSphere
Application Server to secure SOAP messages using XML Digital Signature and XML
Encryption. There are two methods in Rational Application Developer for selecting a

SOAP element to be signed and encrypted. One uses a predefined keyword and the other
uses an XPATH expression.

Each of these methods address different requirements. The predefined keyword method
provides an easy way of selecting SOAP elements, like body, securitytoken,
bodycontent, and so on. WebSphere provides a list of keywords that cover the most
frequently signed and encrypted SOAP elements. This method makes it easy to select
SOAP elements, but the trade-off is less flexibility, since the selections are limited to the
predefined keywords.

The XPATH method provides the flexibility to select virtually any SOAP element in a
message. XPATH is a powerful language for XML navigation, but the syntax is cryptic
and complex.

This article covers both the predefined keyword and XPATH methods for selecting
elements for signing and encryption.

WS-Security High-Level Architecture in WebSphere
Before we dive into the details of how to use digital signature and encryption support of
WS-Security in Rational Application Developer, it would be beneficial to describe the
high-level architecture.

Some vendors provide WS-Security support through APIs, but IBM WS-Security support
is based on a deployment model. The WS-Security requirements are expressed as security
constraints in deployment descriptors, which are separated from the application business
logic. The deployment descriptors are XML files that describe security constraints. The
application server runtime reads the deployment descriptors and enforces the security
constraints. This programming model is similar to the J2EE model. Both the deployment
descriptor and API –based programming models have their merits and limitations. This
article focuses only on the deployment model and does not discuss in any detail the
differences between these two approaches.

WS-Security processing is declared as security constraints in deployment descriptors
using development tools, such as Rational Application Developer. These security
constraints are separate from the application business logic. There is no industry standard
format for the WS-Security deployment descriptor, but the security constraints are similar
to those defined in the WS-SecurityPolicy language. During SOAP message exchange,
the WS-Security runtime, which is implemented as a global handler in the Web service
engine, intercepts the SOAP message in the outbound message and applies WS-Security
mechanisms based on the security constraints in the deployment descriptor ((a) and (c) in
Figure 1). Similarly, on the inbound message, the WS-Security runtime validates the
security constraints based on the deployment descriptor. For example, if the WS-Security
in the SOAP message satisfies the requirement in the deployment descriptor, then the
SOAP message is dispatched to the target Web Service, otherwise, the SOAP message is
rejected with a SOAP fault ((b) in Figure 1).

Figure 1. High-level architecture overview of WS-Security deployment model

WS-Security Deployment Model
The Application Server deployment model contains two configuration files: the
deployment descriptor and the binding. The deployment descriptor is used to configure
the high-level and platform-independent security constraints similar to WS-
SecurityPolicy. The binding is used to configure platform-specific security constraints for
the specific deployed instance. This section summarizes what you can configure in the
deployment descriptor. We’ll explain the details of the binding configuration in a later
section.

You can configure the following security constraints with Application Developer, as
shown in Figure 1:

For the client outbound (request generator: (a) in Figure 1):
• Integrity (SOAP elements to be signed)
• Confidentiality (SOAP elements to be encrypted)
• Security token (generated for authentication or identity assertion)
• Timestamp

For the Web service inbound (request consumer: (b) in Figure 1):
• Required integrity (SOAP elements should be signed)
• Required confidentiality (SOAP elements should be encrypted)
• Required security token (used for authentication or identity assertion)
• Required timestamp

For the Web service outbound (response generator: (c) in Figure 1):
• Integrity (SOAP elements to be signed)

• Confidentiality (SOAP elements to be encrypted)
• Timestamp

For the client inbound (response consumer: (d) in Figure 1):
• Required integrity (SOAP elements should be signed)
• Required confidentiality (SOAP elements should be encrypted)
• Required timestamp

As described earlier, for integrity and confidentiality, Application Server provides two
types of selection of the SOAP elements to be signed or encrypted: predefined keyword
based selection and XPATH selection.

Predefined keywords
Application Server provides some useful predefined keywords for selecting the common
SOAP elements to be signed or encrypted. The predefined keywords for digital signature
are:

• relatesto: Select the <wsa:RelatesTo> element defined in the Web Services

Addressing (WS-Addressing) specification.
• messageid: Select the <wsa:MessageID> element defined in the WS-Addressing

specification.
• to: Select the <wsa:To> element defined in the WS-Addressing specification.
• action: Select the <wsa:Action> element defined in the WS-Addressing

specification.
• securitytoken: Select all security tokens used for authentication.
• enckey: Select all <ds:KeyInfo> elements used in the <enc:EncyptedKey> elements

or the <enc:EncryptedData> elements.
• dsigkey: Select all <ds:KeyInfo> elements used in the <ds:Signature> elements.
• timestamp: Select the <wsu:Timestamp> element that is the last child of the

<wsse:Security> element.
• body: Select the SOAP body element.

Figure 2 . Keywords for digital signature

The predefined keywords for encryption include the following:

(1) usernametoken: Select the <wsse:UsernameToken> element under the

<wsse:Security> element.
(2) digestvalue: Select all <ds:DigestValue> elements in the <ds:Signature>

element.
(3) bodycontent: Select all child nodes of the SOAP body element.

Figure 3. Keywords for encryption

<soap:Envelope xmlns:soap=“”>
<soap:Header>

<wsse:Security xmlns:wsse=“…”>
<wsse:UsernameToken>

…
</wsse:UsernameToken>
<enc:EncryptedKey xmlns:enc=“…”>

…
</enc:EncryptedKey>
<ds:Signature xmlns:ds=“…”>

…
<ds:DigestValue>…</ds:DigestValue>
…

</ds:Siganture>
</wsse:Security>

</soap:Header>
<soap:Body>

<Ping xmlns="http://xmlsoap.org/Ping">
…

</Ping>
</soap:Body>

</soap:Envelope>

(1)

(2)

(3)

<soap:Envelope xmlns:soap=“”>
<soap:Header>

<wsse:Security xmlns:wsse=“…”>
<wsse:UsernameToken>

…
</wsse:UsernameToken>
<enc:EncryptedKey xmlns:enc=“…”>

…
</enc:EncryptedKey>
<ds:Signature xmlns:ds=“…”>

…
<ds:DigestValue>…</ds:DigestValue>
…

</ds:Siganture>
</wsse:Security>

</soap:Header>
<soap:Body>

<Ping xmlns="http://xmlsoap.org/Ping">
…

</Ping>
</soap:Body>

</soap:Envelope>

(1)

(2)

(3)

<soap:Envelope xmlns:soap=“”>
<soap:Header>

<wsa:RelatesTo xmlns:wsa=“…”>…</wsa:RelatesTo>
<wsa:MessageID xmlns:wsa=“…”>…</wsa:MessageID>
<wsa:To xmlns:wsa=“…”>…</wsa:To>
<wsa:Action xmlns:wsa=“…”>…</wsa:Action>
<wsse:Security xmlns:wsse=“…”>

<wsse:UsernameToken>
…

</wsse:UsernameToken>
<enc:EncryptedKey xmlns:enc=“…”>

…
<ds:KeyInfo xmlns:ds=“…”>…</ds:KeyInfo>
…

</enc:EncryptedKey>
<ds:Signature xmlns:ds=“…”>

…
<ds:KeyInfo>…</ds:KeyInfo>
…

</ds:Siganture>
<wsu:Timestamp xmlns:wsu=“…”>

…
</wsu:Timestamp>

</wsse:Security>
</soap:Header>
<soap:Body>

<Ping xmlns="http://xmlsoap.org/Ping">
…

</Ping>
</soap:Body>

</soap:Envelope>

(1)
(2)
(3)
(4)

(5)

(6)

(7)

(9)

(8)

<soap:Envelope xmlns:soap=“”>
<soap:Header>

<wsa:RelatesTo xmlns:wsa=“…”>…</wsa:RelatesTo>
<wsa:MessageID xmlns:wsa=“…”>…</wsa:MessageID>
<wsa:To xmlns:wsa=“…”>…</wsa:To>
<wsa:Action xmlns:wsa=“…”>…</wsa:Action>
<wsse:Security xmlns:wsse=“…”>

<wsse:UsernameToken>
…

</wsse:UsernameToken>
<enc:EncryptedKey xmlns:enc=“…”>

…
<ds:KeyInfo xmlns:ds=“…”>…</ds:KeyInfo>
…

</enc:EncryptedKey>
<ds:Signature xmlns:ds=“…”>

…
<ds:KeyInfo>…</ds:KeyInfo>
…

</ds:Siganture>
<wsu:Timestamp xmlns:wsu=“…”>

…
</wsu:Timestamp>

</wsse:Security>
</soap:Header>
<soap:Body>

<Ping xmlns="http://xmlsoap.org/Ping">
…

</Ping>
</soap:Body>

</soap:Envelope>

(1)
(2)
(3)
(4)

(5)

(6)

(7)

(9)

(8)

Application Server provides a list of predefined keywords for most commonly used
SOAP elements in a SOAP message. The predefined keywords provide a fast and easy
way for specifying the SOAP elements for digital signature and encryption. This may be
all you need in most scenarios. Later in this article, we’ll provide a sample of how to use
keywords to sign and encrypt the SOAP body and SOAP body content, respectively.

 XPATH
Predefined keywords may not satisfy all scenarios; for example, signing and encrypting
custom SOAP headers or signing or encrypting only parts of headers or the SOAP body.
For that reason, WebSphere also provides another mechanism for selecting SOAP
elements for digital signature and encryption. The alternative mechanism is to use
XPATH language to select SOAP elements.

The XPATH language is a W3C standard for addressing parts of an XML document. It is
flexible and powerful, but the language syntax is complex.

Application Server also provides XPATH support to select the parts of SOAP message
for digital signature and encryption. The XPATH support1 for selecting part of the SOAP
message doesn’t support full XPATH specification, but only node-set selection. For
example, the following XPATH expression selects the SOAP body element. Of course,
you can select the same SOAP body element with the predefined body keyword for
digital signature feature described in the previous section. As you can see, the XPATH
expression is much more complex than the predefined keyword. The sample in this article
describes how to select the content of a custom SOAP header for encryption.

/*[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/' and
local-name()='Envelope']/*[namespace-
uri()='http://schemas.xmlsoap.org/soap/envelope/' and local-
name()='Body']

Overview of the sample application
This article provides a sample to demonstrate the following:

• Using the predefined keyword body for signing and signature validation of the SOAP

body and using the predefined keyword bodycontent for encrypting and decrypting
the SOAP body content.

• Using XPATH expression to select a custom SOAP header and the SOAP header
content for signature and encryption, respectively.

The sample application is a simple ”Hello, World” Web service that sends a SOAP
message with a custom header (TestHeader). The Web service client is implemented as a
Web client and the Web service implementation is a Servlet Java Bean. In this sample,
we’d like to:

1 Don’t confuse this with the XPATH reference for digital signature.

• Sign the SOAP body using the predefined keyword body and
• Sign the TestHeader using the XPATH expression:

/*[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/' and
local-name()='Envelope']/*[namespace-
uri()='http://schemas.xmlsoap.org/soap/envelope/' and local-
name()='Header']/*[namespace-uri()='http://com.ibm.hvc.example1' and
local-name()='TestHeader']

• Encrypt the SOAP body content using predefined keyword bodycontent and
• Encrypt the TestHeader content using the XPATH expression:

/*[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/' and
local-name()='Envelope']/*[namespace-
uri()='http://schemas.xmlsoap.org/soap/envelope/' and local-
name()='Header']/*[namespace-uri()='http://com.ibm.hvc.example1' and
local-name()='TestHeader']/node()

The following is a sample SOAP message without security:

Figure 4 . Sample unsecured SOAP message

Following is an overview of the steps. More details are provided in the subsequent
sections:

1. Generate the keys for digital signature and encryption. The sample uses different sets

of keys for digital signature and encryption.
2. Configure the WS-Security constraints for the request generator (client outbound)
3. Configure the WS-Security constraints for the request consumer (Web service

inbound)

You can use a Web service you have already developed, or download the sample
application provided with this article.

Run the sample application
Download the sample application and run it, as described below. The sample application
has been tested on WebSphere Application Server 6.0.2.

1. Copy the key stores to the ${USER_INSTALL_ROOT}/etc/ws-security/hvc

directory, where ${USER_INSTALL_ROOT} is the profile directory.
2. Deploy the sample application EAR file (SignEncryptAnyElement.ear).
3. Start the sample application.
4. Bring up a Web browser. The client URL is http://localhost:9080/SayHelloClient/.
5. Click OK to send a Web service request. You can change the port to redirect the

request to a network monitor to capture the SOAP message; for example, TCPMON.

Generate the keys
The sample uses a self-signed certificate for digital signature. You can easily extend this
to use a CA-issued certificate for digital signature. There are a few tools available to
generate a self-signed certificate. In this case, we’re using the keytool provided by the
Java Development Toolkit for generating the keys for digital signature and encryption.

1. Generate an RSA key pair for digital signature. The alias of the key is john, and DN

is CN=John Smith, OU=Development, O=ACME, L=OneCity, ST=OneState,

C=US. The password is johnsmith in the sender key store sendersigner.jks,
and the store password is signer.

keytool -genkey -alias john -keyalg RSA -validity 365 -keystore
sendersigner.jks -storepass signer -dname "CN=John Smith,
OU=Development, O=ACME, L=OneCity, ST=OneState, C=US" -keypass
johnsmith

2. Export the public certificate of alias john and import it into the receiver trust store.

This is used by the receiver to validate the trust of the public certificate. If you use a
CA-issued certificate, you need to import the CA public certificate into the trust store
instead.
a. Export john public certificate to a file john.cert:

keytool -export -alias john -keystore sendersigner.jks -storepass
signer -file john.cert

b. Import john public certificate in file john.cert into the receiver trust store

(receivertruststore.jks). It is very important that you make sure the
certificate is authentic. The certificates in the trust store are trusted by the
receiver.

keytool -import -alias john -keystore receivertruststore.jks -
storepass truststore -file john.cert

3. Generate an RSA key pair for encryption. The alias of the key is dev2, and the DN is

CN=dev2, OU=Development, O=ACME, L=OneCity, ST=OneState, C=US. The
password is dev2receiver in the receiver key store receiver.jks, and the store
password is receiver.

keytool -genkey -alias dev2 -keyalg RSA -validity 365 -keystore
receiver.jks -storepass receiver -dname "CN=dev2, OU=Development,
O=ACME, L=OneCity, ST=OneState, C=US" -keypass dev2receiver

4. Export the public key of alias dev2, which is in the public certificate and import it
into the sender key store. The sender uses the public key of dev2 to encrypt the
message.
a. Export dev2 public certificate to a file dev2.cert:

keytool -export -alias dev2 -keystore receiver.jks -storepass
receiver -file dev2.cert

b. Import dev2 public certificate in file dev2.cert into the sender key store

(sender.jks):

keytool -import -alias dev2 -keystore sender.jks -storepass
sender -file dev2.cert

Note that the expiration of the sample keys in the sample application is ten years, but in
real life applications, you may want to have a shorter expiration for security reasons. You
can also generate new keys using the script file provided with this article.

Results
The following key stores are created after this step:

Key store Content Purpose
sendersigner.jks John Smith public

(certificate) and private
keys

Client uses John Smith
private key to sign the SOAP
message

Sender.jks Dev2 public (certificate)
key

Client uses Dev2 public key
to encrypt the SOAP message

receiver.jks Dev2 public (certificate)
and private keys

Web service uses Dev2
private key to decrypt the
message

receivertruststore.jks John Smith public
(certificate) key

Web service uses the trust
store to verify trust of the
signer certificate

Configure WS-Security constraints for the request
generator
This section describes how to configure the WS-Security constraints and bindings for the
request generator (client outbound request), which defines what WS-Security constraints
apply to the client outbound SOAP message. This section assumes you have already
developed your application using Rational Application Developer4.

The WS-Security editors for constraints and bindings are tabs in the Web Deployment
Descriptor (for Web-based client).

1. Open the Web Deployment Descriptor in the Project Explorer of the J2EE
perspective by double-clicking the web.xml file of the Web application (the
example Web service client is a Web-based client), as shown in Figure 5:

Figure 5 . Open the Web Deployment Descriptor of the Web-based Web service client

2. Open the WS-Security constraints editor by clicking the WS Extension tab and

the bindings editor by clicking the WS Binding tab, as shown in Figure 6:

4 You can also use Application Server Toolkit to configure the WS-Security constraints and bindings.

Figure 6 . Open the WS Extension and WS Binding editors

Configure integrity (digital signature)
The XML digital signature standard is a complex specification, which is reflected in the
number of steps required to enable digital signature. First, you need to define what to sign
(integrity security constraints) and then define the binding information, such as the token
generator to send the public key of the signer as a X509 binary security token, the key
locator to locate the signer key, the key information for the security token reference, and
signature information (signature algorithm, digest method and transform).

To configure integrity, complete the following steps:

1) Define the integrity constraints (what to sign) in the WS Extension tab.

• In the WS Extension editor, select Request Generator configuration ->
Integrity, then click Add.

• Specify int for Integrity Name.
• Specify 1 for Order (sign first, then encrypt).
• In the Message Parts field, specify two parts to be signed in this integrity

constraint: the SOAP body using the predefined keyword body, and the
TestHeader using the following XPATH expression:

/*[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/'
and local-name()='Envelope']/*[namespace-
uri()='http://schemas.xmlsoap.org/soap/envelope/' and local-
name()='Header']/*[namespace-uri()='http://com.ibm.hvc.example1'
and local-name()='TestHeader']

Figure 7. Configure integrity

2) Next, define the binding information for integrity (digital signature). Open the
bindings editor in the WS Binding tab by clicking Security Request Generator
Binding Configuration.

• Select Token Generator and click Add to create an X509 Token Generator

(x509) to send the public certificate of the signer CN=John Smith,

OU=Development, O=ACME, L=OneCity, ST=OneState, C=US.
• Leave the Security token field blank, because the token is not a standalone token

for authentication, but is used for digital signature.

Figure 8. Generate token

3) Select Key Locators and click Add to create a key locator (or signer) to locate the

private key of the signer CN=John Smith, OU=Development, O=ACME, L=OneCity,

ST=OneState, C=US.

Figure 9. Create key locator signer

4) Select Key Information and click Add to create security token reference (STR) key
information (strref). Note that the Token field is the token generator name x509
created in step 2; the Key locator field is the name of the key locator created in step 3
which is signer, and the Key name field is the signer CN=John Smith,

OU=Development, O=ACME, L=OneCity, ST=OneState, C=US.

Figure 10. Create STR key information

5) Select Signing Information and click Add to define the signing information (int).

Note that the Key information element is the name of the key information created in
step 4, which is strref.

Figure 11. Define signing information

6) Next, link the int signing information created in step 5 with the int security

constraints defined in step 1. Make sure the int signing information created in step 5
is selected, then select Part References and click Add to add a part reference (int).
Note that the Integrity part field in the Part Reference dialog is int, the integrity
name you created in step 1. For this example, use the default digest method
algorithm.

Figure 12. Add part reference

7) Finally, define the transform algorithm for the int part reference created in step 6.

Make sure the int part reference is selected, then select Transforms and click Add
to create the transform algorithm (int). For this example, use the default transform.

Figure 13. Define transform algorithm

Configure Confidentiality (Encryption)
To configure confidentiality, or encryption, you need to first define what to encrypt
(confidentiality security constraints), and then define the binding information, such as the
key locator to locate the public key to encrypt, key identifier key information, and
encryption information (that is, data and key encryption algorithms).

To configure confidentiality, complete the following steps:

1. Define the confidentiality constraints (what to encrypt) in the WS Extension tab. In

the WS Extension editor, select Request Generator configuration ->
Confidentiality, then click Add.
• For Confidentiality Name, specify conf.
• For Order, specify 2 (sign then encrypt).
• In the Message Parts field, specify two parts to be encrypted in this

confidentiality constraint: the SOAP body content using the predefined keyword
bodycontent, and the TestHeader content using the following XPATH
expression:

/*[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/'
and local-name()='Envelope']/*[namespace-
uri()='http://schemas.xmlsoap.org/soap/envelope/' and local-
name()='Header']/*[namespace-uri()='http://com.ibm.hvc.example1'
and local-name()='TestHeader']/node()

Figure 14. Configure integrity

2. Select Key Locators and click Add to create the key locator (conf) to locate the
public key of the receiver CN=Dev2, OU=Development, O=ACME, L=OneCity,

ST=OneState, C=US. The public key is used to encrypt the shared key automatically
generated by the WS-Security runtime.

Figure 15. Create key locator conf

3. Select Key Information and then click Add to create KEYID (Key Identifier) key
information (keyid). Note that no Token field is required, the Key locator field is
the name of the key locator created in step 2 (conf), and the Key name field is the
receiver CN=Dev2, OU=Development, O=ACME, L=OneCity, ST=OneState, C=US.

Figure 16. Create key information keyid

4. Finally, you need to create the encryption information. Select Encryption

Information, then click Add to create encryption information (conf). The Data
encryption method algorithm is AES (128 bits), the Key encryption method
algorithm is RSA, the Key information name is keyid, which you defined in Step
3, and the Confidentiality part is conf, defined in step 1.

Figure 17. Create encryption information

Configure WS-Security constraints for the request
consumer
This section describes how to configure the WS-Security constraints and bindings
requirements for the request consumer (Web service inbound request). The WS-Security
of the inbound SOAP message must meet the security constraints defined, otherwise the
SOAP message is rejected with a SOAP fault. For example, if the security constraints
define that the SOAP body must be signed and the inbound SOAP message body is not
signed, the request is rejected and a SOAP fault is returned. This section assumes you
have already developed your application and are using Rational Application Developer5.

The WS-Security editors for constraints and bindings are tabs in the Web services editor.

1. Open the Web Service editor in the Project Explorer of the J2EE perspective by
double-clicking the webservices.xml file of the Web application. The example
Web service is implemented as Servlet Java Bean:

5 You can also use Application Server Toolkit for configuring the WS-Security constraints and bindings.

Figure 18. Open the Web service editor for the Web service

2. Open the WS-Security constraints editor from the Extensions tab and the

bindings editor from Bindings Configuration tab, as shown in the following:

Figure 19. Open the Extensions and Bindings editors

Configure required integrity
The number of steps for configuring required integrity is similar to the steps to configure
integrity in the request generator configuration. First, you define what is required to be
signed and then define the binding information, such as trust anchors, token consumer to
validate the signer’s public key as X509 binary security token, key locator to locate the
public key for signature validation, key information for security token reference, and
signature information (signature algorithm, digest method and transform requirement).

To configure required integrity, complete the following steps:

1. Define the required integrity constraints (what needs to be signed) in the Extensions

tab. In the Extensions editor, select Request Consumer Service Configuration
Details ���� Required Integrity, then click Add.
• Specify int for the Required Integrity Name.
• In the Message Parts field, specify two parts required to be signed: the SOAP

body using the predefined keyword body, and the TestHeader using the
following XPATH expression:

/*[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/'
and local-name()='Envelope']/*[namespace-
uri()='http://schemas.xmlsoap.org/soap/envelope/' and local-
name()='Header']/*[namespace-uri()='http://com.ibm.hvc.example1'
and local-name()='TestHeader']

Figure 20. Configure required integrity

2. To define the binding information for required integrity, open the Bindings editor in

the Bindings Configuration tab by selecting Request Consumer Binding

Configuration Details.

3. Select Trust Anchor and click Add to create the trust anchor configuration the name
trust and the trust store ${USER_INSTALL_ROOT}/etc/ws-
security/hvc/receivertruststore.jks.

Figure 21. Configure trust anchor

4. Select Token Consumer and click Add to create an X509 Token Consumer (x509)

to validate the public certificate of the signer CN=John Smith, OU=Development,

O=ACME, L=OneCity, ST=OneState, C=US.

• Leave the Security token field blank, because this is not a standalone token for

authentication, but is used for digital signature.
• Specify trust in the Trust anchor reference field.
• In the jaas.config name field, specify system.wssecurity.X509BST, which is

one of the predefined JAAS login configuration names.

Figure 22. Create token consumer

5. Select Key Locators, then click Add to create a key locator (int) for locating the

signer public certificate CN=John Smith, OU=Development, O=ACME, L=OneCity,

ST=OneState, C=US in the SOAP message. Note that the Key locator class field is
com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator, which locates the
key with the X509 certificate embedded in the received incoming SOAP message.

Figure 23. Create key locators

6. Select Key Information, then click Add to create security token reference (STR) key

information (strref). Note that the Token field is the token generator name x509
created in step 4, the Key locator field is the name of the key locator created in step 5
(int), and the Key name field is not required.

Figure 24. Create key information

7. Select Signing Information, then click Add to define the signing information (int).

Note that the Key information element field is strref, the key information created
in step 6.

Figure 25. Define signing information

8. Link the int signing information created in step 7 with the int security constraints

defined in step 1. Make sure the int signing information created in step 7 is selected,
then select Part References, and click Add to add a part reference (int). Note that
that the RequiredIntegrity part field int, which is the Required Integrity name
created in step 1. In this example, use the default digest method algorithm.

Figure 26. Add part reference

9. Finally, define the transform algorithm for the int part reference created in step 8.

Make sure the int part reference is selected, then select Transforms and click Add

to create a transform algorithm. Use the default transform algorithm.

Figure 27. Define transform algorithm

Configure required confidentiality
To configure required confidentiality, you must first define which part is required to be
encrypted, then define the binding information, such as the key locator to locate private
key to decrypt, key identifier key information, and encryption information (like data and
key encryption algorithms).

To configure required confidentiality, complete the following steps:

1. Define the Required Confidentiality constraints (which part is required to be

encrypted) in the Extensions tab. In the Extensions editor, select Request Consumer
Service Configuration Details -> Required Confidentiality, then click Add.
• Specify conf for the Required Confidential Name.
• In the Message Parts field, specify two parts that are required to be encrypted:

the SOAP body content using the predefined keyword bodycontent and the
TestHeader content using the following XPATH expression:

/*[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/'
and local-name()='Envelope']/*[namespace-
uri()='http://schemas.xmlsoap.org/soap/envelope/' and local-
name()='Header']/*[namespace-uri()='http://com.ibm.hvc.example1'
and local-name()='TestHeader']/node()

Figure 28. Configure required confidentiality

2. Select Key Locators, then click Add to create a key locator (conf) to locate the
private key of the receiver CN=Dev2, OU=Development, O=ACME, L=OneCity,

ST=OneState, C=US to decrypt the shared key that is used to decrypt the encrypted
data.

Figure 29. Create key locator

3. Select Key Information, then click Add to create KEYID (Key Identifier) key

information (keyid). Note that no Token field is required, the Key locator field is
the name of the key locator created in step 2 (conf), and the Key name field is the
receiver CN=Dev2, OU=Development, O=ACME, L=OneCity, ST=OneState, C=US.

Figure 30. Define key information

4. Finally, create the encryption information. Select Encryption Information, then

click Add to create the encryption information (conf). The Data encryption method
algorithm is AES (128 bits), the Key encryption method algorithm is RSA, the
Key information Name is keyid, defined in step 3, and the Required
Confidentiality Part is conf, defined in step 1.

Figure 31. Create encryption information

5.

SOAP message with WS-Security
You can specify a port other than 9080 to redirect the request to a network traffic monitor
to capture a SOAP message secured with the WS-Security constraints.

In the captured SOAP message below, you can see that the SOAP body and TestHeader
are signed and the SOAP body content and the TestHeader content are encrypted.

<soapenv:Envelope ……">
<soapenv:Header>

<wsse:Security xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
soapenv:mustUnderstand="1">

<wsse:BinarySecurityToken xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0#Base64Binary" ValueType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"
wsu:Id="x509bst_2">MIIC……joZQ==</wsse:BinarySecurityToken>

<EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-

1_5"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<wsse:SecurityTokenReference>
<wsse:KeyIdentifier ValueType="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509SubjectKeyIdentifier">59FYdEaWcm2ey3HNZyY8Rq0oE5w=</wsse:KeyIde
ntifier>

</wsse:SecurityTokenReference>
</ds:KeyInfo>
<CipherData>
<CipherValue>LfLr……yK4Q=</CipherValue>

</CipherData>
<ReferenceList>
<DataReference URI="#wssecurity_encryption_id_3"/>
<DataReference URI="#wssecurity_encryption_id_4"/>

</ReferenceList>
</EncryptedKey>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
<ec:InclusiveNamespaces xmlns:ec="http://www.w3.org/2001/10/xml-

exc-c14n#" PrefixList="wsse ds xsi soapenc xsd soapenv "/>
</ds:CanonicalizationMethod>
<ds:SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<ds:Reference URI="#wssecurity_signature_id_0">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-

c14n#">

<ec:InclusiveNamespaces
xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="xsi
soapenc xsd p239 wsu soapenv "/>

</ds:Transform>
</ds:Transforms>
<ds:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>Jmo/XVjmpblCmHGsAlAlhRb2tb4=</ds:DigestValue>

</ds:Reference>
<ds:Reference URI="#wssecurity_signature_id_1">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-

c14n#">
<ec:InclusiveNamespaces

xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="hvc xsi
soapenc xsd wsu soapenv "/>

</ds:Transform>
</ds:Transforms>
<ds:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>bPotI7bz9g3eTPwwN8pGFcK8yBI=</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>pyiq……Y980=</ds:SignatureValue>
<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#x509bst_2" ValueType="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"/>
</wsse:SecurityTokenReference>

</ds:KeyInfo>
</ds:Signature>

</wsse:Security>
<hvc:TestHeader xmlns:hvc="http://com.ibm.hvc.example1"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd" wsu:Id="wssecurity_signature_id_1">

<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
Id="wssecurity_encryption_id_4"
Type="http://www.w3.org/2001/04/xmlenc#Content">

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>

<CipherData>
<CipherValue>W9Q+……9Kpw==</CipherValue>

</CipherData>
</EncryptedData>

</hvc:TestHeader>
</soapenv:Header>
<soapenv:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="wssecurity_signature_id_0">

<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
Id="wssecurity_encryption_id_3"
Type="http://www.w3.org/2001/04/xmlenc#Content">

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>

<CipherData>
<CipherValue>7qH0……i9hA==</CipherValue>

</CipherData>
</EncryptedData>

</soapenv:Body>
</soapenv:Envelope>

Conclusion
WebSphere Application Server supports the WS-Security 1.0 standard and the signing
and encryption of any SOAP element within the message. There are two methods
available for selection of elements to be signed and encrypted. The keyword-based
method is easy to use and supports most common usage scenarios. The XPATH method,
while more complex, allows you to select elements not supported by keywords to be
signed and encrypted. Using these two methods, you can secure virtually any SOAP
element in the SOAP message.

Note that the Signature element is not encrypted in this sample. The Basic Security
Profile recommends encryption of the Signature element for a simple SOAP message,
such as the one in this sample. You can use the following XPATH expression in the
Confidentiality on the client side and RequiredConfidentiality on the service side to
encrypt the Signature element:

/*[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/' and
local-name()='Envelope']/*[namespace-
uri()='http://schemas.xmlsoap.org/soap/envelope/' and local-
name()='Header']/*[namespace-uri()='http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd' and
local-name()='Security']/*[namespace-uri()='
http://www.w3.org/2000/09/xmldsig#' and local-name()='Signature']

