
RC24071 (W0610-043) October 10, 2006
Computer Science

IBM Research Report

Answering Relationship Queries on the Web

Gang Luo, Chunqiang Tang, Ying-li Tian
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

 1

Answering Relationship Queries on the Web

Gang Luo Chunqiang Tang Ying-li Tian
IBM T.J. Watson Research Center

{luog, ctang, yltian}@us.ibm.com

Abstract
Finding relationships between entities on the Web, e.g., the
connections between different places or the commonalities of
people, is a novel and challenging problem. Existing Web search
engines excel in keyword matching and document ranking, but
they cannot well handle many relationship queries. This paper
proposes a new method for answering relationship queries on two
entities. Our method first respectively retrieves the top web pages
for either entity from a Web search engine. It then matches these
web pages and generates an ordered list of web page pairs. Each
web page pair consists of one web page for either entity. The top
ranked web page pairs are likely to contain the relationships
between the two entities. One main challenge in the ranking
process is to effectively filter out the large amount of noise in the
web pages without losing much useful information. To achieve
this, our method assigns appropriate weights to terms in web
pages and intelligently identifies the potential connecting terms

that capture the relationships between the two entities. Only those
top potential connecting terms with large weights are used to rank
web page pairs. Finally, the top ranked web page pairs are
presented to the searcher. For each such pair, the query terms and
the top potential connecting terms are properly highlighted so that
the relationships between the two entities can be easily identified.
We implemented a prototype on top of the Google search engine
and evaluated it under a wide variety of query scenarios. The
experimental results show that our method is effective at finding
important relationships with low overhead.

1. Introduction
A relationship query (RQ) asks for the relationships between

two or more entities [Mah04], e.g., the connections between
different places or the commonalities of people. As mentioned in
[Pra04], answers to RQs are useful for government and military
intelligence analysts, news reporters, financial industry analysts,
historians, biographers, lawyers, detectives, and many other
people. These answers can even help high school students write
homework essays. To encourage research on answering RQs, the
Advanced Research and Development Activity (ARDA)
sponsored an Advanced Question Answering for Intelligence
(AQUAINT) program [AQU05], in which the relationship pilot
focuses on RQs. Also, in the 2005 Text REtrieval Conference
(TREC), a new relationship task was added into the Question
Answering (QA) track [QA05]. To the best of our knowledge, all
such existing efforts focus on traditional document sets rather than
the Web, and so far no known method can provide satisfying
performance [Mah04, TRE05].

Web searchers are often interested in finding relationships
between entities. For example, Mr. Glenn Klausman is a Florida
attorney practicing personal injury law. Suppose one day, Glenn
needs to attend a party and he notices that Dr. John Robert
Schrieffer, a professor at Florida State University, is also invited
to this party. By searching on the Web (e.g., typing John’s name in
Google and reading the returned first result page), Glenn finds out
that John is a Nobel Prize laureate in physics and would like to

chat with him. (John co-invented the BCS-theory of

superconductivity.) To get prepared, Glenn does some background
search on the Web, attempting to find some relationship between
him and John, as this relationship may be a good starting point for
chatting. However, this is not an easy task. Since John is a world
renowned physicist, most web pages about John are related to
physics, about which Glenn does not have much idea. Especially,
this is true for the top several web pages that are returned by a
Web search engine by using John’s name as query keywords. Also,
typing both John’s name and Glenn’s name in a Web search
engine does not help, as there is no web page that mentions both
names. In general, existing Web search engines excel in keyword
matching but they have no good support for this type of RQs.

Actually, a relationship does exist between Glenn and John. On
Sep. 24, 2004, John ran into a car accident, in which several
people were injured (see Sections 2 and 3 for the detailed story).
Recall that Glenn’s expertise is in personal injury law. If Glenn
can find this relationship through a Web search, he may offer

some help to John when they meet on the party.
In this paper, we treat the Web as a huge database and attempt

to find relationships from unstructured documents. We focus on
the most important RQs that ask for the relationships between two
entities E1 and E2. For a RQ, if some web pages mention both
entities and their relationship, finding this relationship may be an
easy task – typing both entities’ keywords in a Web search engine
often leads to those web pages. Alternatively, if the top few web
pages retrieved from a Web search engine for either entity contain
this relationship, the searcher may also be able to find this
relationship quickly. However, if neither of these is the case,
which is not uncommon [Mah04], existing Web search engines
cannot help much in finding the answer. Unless the searcher can
guess the relationship, he usually has to spend a lot of time reading
many web pages related to either entity, hoping that he can
manually discover the relationship. (Note that even if both E1 and
E2 appear on the same web page incidentally, this web page may
still be irrelevant to the relationship between E1 and E2.)

To address this problem, we propose a new method for
answering RQs on the Web. Our method matches web pages for
entity E1 and web pages for entity E2 that are retrieved from a Web
search engine, and then ranks the matched web page pairs. A web
page pair consists of one web page for either entity. The top
ranked web page pairs are likely to contain the relationships
between E1 and E2. In the ranking process, one main challenge is
to effectively filter out the large amount of “noise” (i.e., irrelevant
information) in the web pages without losing much useful
information. To achieve this, windowing around query keywords
is first used to remove some noise from these web pages. Then for
each pair of the web pages, we identify the potential connecting

terms that capture the relationship between E1 and E2 and compute
term weights based on the characteristics of the two web page sets
for the two entities. As a new filtering technique that can reduce
noise from long web pages, all potential connecting terms are
sorted in descending order of their term weights and only the top
potential connecting terms are used to compute the similarity
value between this pair of web pages. The computed similarity

value roughly reflects the likelihood that this pair of web pages

 2

mention some relationship between E1 and E2. Finally, the web

page pairs are sorted in descending order of their similarity values
and the top web page pairs are returned to the searcher. For each
such top web page pair, both the top potential connecting terms
and the query terms are properly highlighted so that the searcher
can easily identify the relationships between E1 and E2.

To the best of our knowledge, this is the first work on
answering RQs on the Web. Our method has the following
advantages. It can find multiple relationships between two entities
simultaneously. It can find important relationships even in the
presence of a lot of “noise.” The quality of search results is
insensitive to parameter changes. It can be implemented either
inside or on top of a Web search engine. In the latter case, it can
be implemented on either the client side or the server side.
Moreover, its interface is user friendly and searchers can keep
using the familiar keyword query interface of Web search engines.
These advantages are verified through a prototype implementation
of our method on top of the Google search engine.

The rest of the paper is organized as follows. Section 2 presents
the details of our method. Section 3 evaluates the effectiveness of
our method under a wide variety of query scenarios. We discuss
related work in Section 4 and conclude in Section 5.

2. Answering Relationship Queries
Consider a RQ that asks for the relationships between two

entities E1 and E2. Because of several reasons, the searcher may
not be able to find desired relationships between E1 and E2 by
using a Web search engine:
(1) The top few web pages retrieved for E1 and the top few web

pages retrieved for E2 do not contain any desired relationship
between E1 and E2.

(2) No web page mentions both E1 and E2 and their relationship.
(3) By typing in a Web search engine a query that contains all

the keywords of E1 and E2, the returned top few web pages do
not mention any desired relationship between E1 and E2. Note
that some of these web pages may either (a) mention some
relationships that are uninteresting to the searcher, or (b) just

happen to incidentally mention both E1 and E2.
(4) No desired relationship exists between E1 and E2.
Our method can work for most situations except (4).

2.1 User Interface
The user interface of our prototype contains two parts: the query

interface and the answer interface. Figure 1 shows the query
interface. It is similar to the traditional keyword query interface of
Web search engines, except that there are two inputs: one for the
keywords of entity E1, and the other for the keywords of entity E2.

Figure 1. Query interface.

Figure 2 shows the format of answers we would like to provide

for RQs − web page pairs. Answers to a RQ are organized into one
or more result pages. Each result page contains ten elements. Each
element corresponds to a pair of web pages (P1, P2), where Pi is
related to entity Ei (i=1, 2). In our current approach, Pi is one of
the top web pages returned from a Web search engine when using
the keywords of Ei as query keywords. (In general, Pi can be any
web page related to Ei, regardless of how Pi is obtained.) All the
web page pairs are sorted in descending order of estimated
likelihoods that they contain some relationships between E1 and E2.

(a) high-level answer format (b) element format

Figure 2. Answer interface.

For either i (i=1, 2), an element contains the title Ti, the snippet

(i.e., some words extracted from web page Pi), and the URL of Pi.
These three parts are returned from a Web search engine (such as
Google or Yahoo) when using the keywords of entity Ei as query
keywords. Also, an element contains no more than 15 potential
connecting terms, where connecting terms are words that capture
the relationships between E1 and E2. (The reason for choosing the
number 15 is discussed in Section 2.6.) These potential connecting
terms appear in both P1 and P2 and are sorted in descending order
of estimated likelihoods that they are real connecting terms. When
the searcher clicks title Ti (i=1, 2), Pi is displayed. When the
searcher clicks the entire element, P1 and P2 are displayed
shoulder to shoulder under the list of potential connecting terms.
In either case, both the potential connecting terms and the
keywords of Ei (i=1, 2) are highlighted in Pi using different
highlighting methods. In this way, the searcher can easily discover
the relationships between E1 and E2. (A typical case is that P1
mentions that E1 is related to entity Ec, P2 mentions that E2 is also
related to Ec, and the relationship between E1 and E2 is Ec.) Figure
3 shows an example of the answer to the RQ that is mentioned in
the introduction.

(a) element example

(b) element click-through example

Figure 3. Answer example.

 Relationship Query

keywords

Entity 1 Entity 2

keywords

Element 1

Element 2

…

Element 10

Result Page
1 2 3 4 5 6 7 8 9 10

►
 Next Potential connecting terms

Title 1
Snippet 1
URL 1

Title 2
Snippet 2
URL 2

Attorney Glenn Klausman, Jacobs &
Goodman PA, Altamonte Springs ...
Glenn Klausman has been practicing
plaintiffs Personal Injury Law For
more than 20 years with the Law firm
of Jacobs & Goodman, PA ...
www.jacobsandgoodman.com/Bio/Gl
ennKlausman.asp

county, member, injury, defend, attorney, court, personal, case, serve,
criminal, vehicle, victim, Florida, admit, judge

Archived Story
Judge Jim Herman sent defendant
John Robert Schrieffer to Wasco
State Prison's reception center, where
an expert will determine whether state
prison ...
www.santamariatimes.com/articles/20
05/08/09/news/local/news01.txt

Glenn Klausman

Altamonte Springs, Florida
Associate
phone (407) 788-2949
fax (407) 788-8628
email Email Me

Glenn Klausman has been practicing
plaintiffs personal injury law for
more than 20 years with the law firm
of Jacobs & Goodman, P.A. Prior to
practicing plaintiffs personal injury

law, Glenn Klausman's practice was
primarily criminal defense. Glenn is a
Florida native, born in Miami Beach,
and a graduate of Miami Norland
High School, in 1969 ...

Nobel Prize winner may serve state
prison time
By Quintin Cushner/Senior Staff
Writer
A Nobel Prize-winning physicist who
has admitted to killing one person
when he plowed his speeding car into
a van on Highway 101 near Orcutt
may deserve state prison time, a
Superior Court judge ruled Monday.
Judge Jim Herman sent defendant
John Robert Schrieffer to Wasco
State Prison's reception center, where
an expert will determine whether
state prison, rather than county jail, is
an appropriate place for the 74-year-
old to serve his sentence ...

county, member, injury, defend, attorney, court, personal, case, serve,
criminal, vehicle, victim, Florida, admit, judge

 3

2.2 Overview of Our Approach
Our method can be implemented either inside or on top of a

Web search engine. Here our method is implemented on top of a
Web search engine. In Section 2.7, we discuss the case of
implementing our method inside a Web search engine.

We first obtain web pages for either entity from a Web search
engine (we use Google). Then we match these web pages and
obtain the web page pairs. For each pair of web pages (P1, P2),
where Pi is related to entity Ei (i=1, 2), a similarity value is used to
reflect the likelihood that (P1, P2) mentions some relationship
between E1 and E2. Our method is implemented in the following
steps (find the details of each step in following subsections):
Step 1: For either i (i=1, 2), use the keywords of entity Ei as query

keywords and retrieve from the Web search engine the top Mi web
pages. M1 and M2 are two parameters of our method. Let Si (i=1, 2)
denote the set of top Mi web pages for Ei.
Step 2: Pre-process the web pages in set Si (i=1, 2) to reduce noise.

Step 3: For each pair of web pages (P1, P2), where P1∈S1 and

P2∈S2, identify the potential connecting terms in (P1, P2) and
compute the similarity value between P1 and P2. Recall that
connecting terms capture the relationships between E1 and E2.
Step 4: Sort all the web page pairs in descending order of their
similarity values. Return the top web page pairs to the searcher.

2.3 Step 1: Obtaining Web Pages
For either i (i=1, 2), we use the keywords of entity Ei as query

keywords and retrieve from the Web search engine the URLs of
the top Mi web pages. (Many Web search engines provide their
own APIs [API05] for this purpose.) For each URL, the
corresponding web page is retrieved from the Web. The purpose
of Step 1 is to obtain the important web pages related to either E1
or E2. Important relationships between E1 and E2 are likely to be
embedded in some of those web pages. Later steps attempt to
extract these relationships by analyzing those web pages.
Generally, the larger the numbers M1 and M2, the more likely the
relationships are embedded in some of those web pages. However,
if M1 and M2 are too large, due to noise (i.e., irrelevant

information) in the web pages, it would be difficult to identify the
right web page pairs that mention the relationships between E1 and
E2. Our experiments show that M1=M2=50 is usually sufficient to
discover important relationships between E1 and E2. We also
provide some interface to allow the searcher to change the default
values of M1 and M2 if necessary.

2.4 Step 2: Document Pre-processing
Step 2 employs a pre-processing procedure to reduce noise from

web pages. Let Ki (i=1, 2) denote the set of keywords of entity Ei.

That is, K1∪K2 represents all query keywords. Recall that Si (i=1, 2)

denotes the set of top Mi web pages for Ei. For each web page P in
set Si (i=1, 2), the following operations are performed:
Operation 1: All HTML comments, JavaScript code, tags, and
non-alphabetic characters are removed, as in [HGK+02].
Operation 2: Stemming is performed using the standard Porter
stemmer [Por80].
Operation 3: Stopwords are removed by using the standard
SMART stopword list [SMA06].
Operation 4: Let W denote some predetermined window size. All
query keywords in Ki are identified in web page P. We only keep
those words in P whose distances from a query keyword in Ki are
no more than W words. All other words are thrown away as noise.

Operations 1, 2, and 3 are standard operations in Web
information retrieval. Operation 4 is specific for our purposes, as a
web page P in set Si (i=1, 2) may contain a lot of irrelevant

information. For example, P may contain several pieces of news,

only one of which is related to entity Ei. If no content is dropped
from P, too much noise may remain in P and make later analysis
difficult. On the other hand, it is not desirable to drop too much
content from P at the beginning. Otherwise useful information
may be lost and relationships cannot be discovered.

Intuitively, Operation 4 attempts to make a tradeoff between
noise reduction and omission of useful information. We assume
that the most useful information is typically centered on query
keywords and use windowing to obtain this information. Our
experiments in Section 3 show that this assumption works well in
practice and a good value for the window size W is usually
between 25 and 35.

Our method treats all the web pages in set Si (i=1, 2) equally
regardless of their original ranks provided by the Web search
engine in Step 1. In general, the relevant web pages that mention
the relationships between entities E1 and E2 may be ranked low by
the search engine. Our goal is to boost the ranks of these relevant
web pages so that they can appear early in the answers that are
provided to the searcher. How to better utilize the original ranks
provided by the search engine is left for future work.

2.5 Step 3: Computing Similarity Values
After pre-processing the two web page sets S1 and S2, we use

them to find the relationships between entities E1 and E2. For each

pair of web pages (P1, P2), where P1∈S1 and P2∈S2, we compute a
similarity value that reflects the likelihood that (P1, P2) mentions
some relationship between E1 and E2. Also, for each word t that
appears in both P1 and P2, we compute a term weight that reflects
the likelihood that t captures the relationship between E1 and E2.

Following the convention of information retrieval literature
[BR99], we define vocabulary as the set of all the distinct words.
A term is a word. Moreover, we define connecting terms as terms
that capture the relationships between entities E1 and E2 [Mah04].
When weights are properly assigned, terms with larger weights are
more likely to be connecting terms.

We propose an enhanced version of the state-of-the-art Okapi

formula [RWH98, Sin01] to compute both term weights and the
similarity values of web page pairs. We first give a brief summary
of Okapi. In Okapi, both documents and queries are represented as
vectors. Each element of a vector is the weight of a term in the
vocabulary. Terms that are important to a document are assigned
large weights. Terms that do not appear in the document have
weights zero. The relevance between a document D and a query Q
is computed as the inner product of D’s vector and Q’s vector.

The intuition behind Okapi is that the more times a term t
appears in a document D and the fewer times t appears in other
documents (i.e., the less popular t is in other documents), the more
important t is for D. Also, the effect that longer documents have
more words needs to be compensated by normalizing for
document lengths.

Consider a query Q and a document set S. For each term t in the

vocabulary and a document D∈S, Okapi uses the following
formulas:
(f1) term frequency (tf) weight

}]/)1[(/{)1(11 tfavdldlbbktfkwtf +×+−+= ,

(f2) inverse document frequency (idf) weight
)]5.0/()5.0ln[(++−= dfdfNwidf

,

(f3) query term frequency weight

)/()1(33 qtfkqtfkwqtf ++= ,

(f4) term weight
qtfidftft wwww ××= ,

 4

(f5) ∑
∈

=
QDt

tQD wscore
,

,
.

Here tf is t’s frequency (i.e., number of occurrences) in D, qtf is t’s
frequency in Q, N is the total number of documents in S, df is the
number of documents in S that contain t, dl is the length of D in
bytes, and avdl is the average length (in bytes) of all the
documents in S. b, k1, and k3 are three predetermined constants.

Typically, as suggested in [Sin01], b=0.75, 21 1 ≤≤ k , and

10001 3 ≤≤ k .

For each document D∈S, Okapi defines its score (i.e., the
degree of relevance for answering query Q) as in equation f5. This
score is the sum of term weights of all the terms that appear in
both D and Q.

For RQs, we deal with two web page sets rather than one

document set and one query. Thus, we modify Okapi to compute
the similarity value between two web pages, where either web
page comes from a different set. (Note that a query can be treated
as a document [BR99]. A web page is also a document.) Our idea

is to replace (D, Q) with (P1∈S1, P2∈S2) and exploit the symmetry
between the two web page sets S1 and S2. At a high level, our
method reuses equation f1, drops f3, and changes f2, f4, and f5
into f2', f4', and f5', respectively.
(f2') revised idf weight)]5.0/()5.0ln[(++=′ dfNwidf

,

(f4') revised term weight
),max(2,1,2,1, idfidftftft wwwww ′′××=′ ,

(f5') ∑
∈

′=
Ctop

PPt

tPP wsim
21

21

,

,
.

The rationale of changing the idf weight from equation f2 to f2'
is as follows. Okapi deals with one large document set while we
have two small web page sets: S1 and S2. If a term t appears in a

large number of web pages in S1 and S2 (e.g., 2/Ndf >), Okapi

computes a negative idf weight for t, which is not desirable for our
purpose. Note that in a traditional large document set, this problem
is not likely to occur. However, in our case, all the web pages in
the small set Si (i=1, 2) are on the same topic Ei and thus some
popular terms related to Ei may appear in a large portion of these
web pages. To avoid running into this negative value problem, we

drop the term df− and re-define the idf weight as in equation f2',

which is similar to the traditional idf weight)/ln(dfNwidf = that

is described in [BR99].
Although Okapi and our method use similar formulas to

compute the tf weight and the idf weight, they use different ways
to compute the global statistics: the number N of documents, the
average document length avdl, and the document frequency df. In
Okapi, these global statistics are computed on the entire document
set. In our method, for either i (i=1, 2), we compute a set of global
statistics (Ni, avdli, dfi) on the web page set Si. Consider a pair of

web pages (P1, P2), where P1∈S1 and P2∈S2. For each term t in the
vocabulary and either Pi (i=1, 2), we use (Ni, avdli, dfi) to compute
a tf weight

itfw ,
 and an idf weight

iidfw ,
′ . In this way, we can

capture various characteristics of S1 and S2 that reflect different
properties of the two entities E1 and E2.

Our way of computing the term weight (equation f4') is
different from that in Okapi (equation f4). Each common term t
that is shared by web pages P1 and P2 is a potential connecting
term. It carries some information about the likelihood that some
relationship between entities E1 and E2 is mentioned in (P1, P2).
We need to compute the term weight, or the contribution of t to
the similarity value of (P1, P2). This term weight also reflects the

likelihood that t is a real connecting term. Just like the intuition
behind Okapi, the more times t appears in Pi (i=1, 2), the more
important t is for (P1, P2). Hence, both

1,tfw and
2,tfw should

appear in our term weighting formula, say by multiplying them
together.

However, it is not fair to just say that the fewer times t appears
in the other documents in sets S1 and S2, the more important t is
for (P1, P2). The reason is as follows. Recall that one intuition
behind Okapi is that popular terms are unimportant terms. That is
for the case of a single document set. In our case, there are two
web page sets: S1 and S2. If a term t is popular in one web page set
(e.g., S1) but not in the other (e.g., S2), t is likely to be highly
correlated with E1 but not a generally popular term. That is, t is
likely to be an important connecting term in the web page pair (P1,
P2). In general, as long as t is unpopular in one of the two sets S1
and S2, t is likely to be an important connecting term in (P1, P2).
To take this into consideration, our term weighting formula uses

),max(2,1, idfidf ww ′′ rather than
2,1, idfidf ww ′×′ , and the term weight

is re-defined as in equation f4'. Note that S1 and S2 are symmetric
in our case. This requires our term weight computation formula to
be symmetric with respect to 1 and 2. Equation f4' fulfills this
requirement.

Now we find all the common terms that are shared by web
pages P1 and P2. These common terms are potential connecting
terms. They are sorted in descending order of

tw′ ’s, i.e., the

estimated likelihoods that they are real connecting terms.

Finally, for each pair of web pages (P1, P2), where P1∈S1 and

P2∈S2, their similarity value is computed as in equation f5'. This
similarity value is the sum of the contributions of the top C
potential connecting terms. It is an approximation to the likelihood
that some relationship between entities E1 and E2 is mentioned in
(P1, P2). Note that this computation considers only the top C
potential connecting terms rather than all the potential connecting
terms. We propose this filtering technique to reduce noise in long
web pages. In general, those potential connecting terms with small
weights

tw′ are unlikely to be real connecting terms. A pair of long

web pages (Pl1, Pl2) are likely to share a large number of common
terms (possibly with small weights

tw′), even if (Pl1, Pl2) does not

mention any relationship between E1 and E2. If all the potential
connecting terms are considered, due to the large number of such
terms, (Pl1, Pl2) is likely to have a large similarity value. This is
misleading. In contrast, in the case of a traditional document set S

and a query Q, for each document D∈S, Q is always the same.
Hence, this filtering technique is unnecessary in Okapi.

In practice, if C is too small, the computed similarity value
cannot capture enough useful information. On the other hand, if C
is too large, a lot of noise may be introduced into the computed
similarity value. Our experiments in Section 3 show that a good
value for C is usually between 20 and 30.

2.6 Step 4: Sorting Web Page Pairs
After computing the similarity values, all the web page pairs are

sorted in descending order of their similarity values, i.e., the
estimated likelihoods that they mention some relationships
between entities E1 and E2. The top ten web page pairs are
returned to the searcher in the first result page. For each web page
pair (P1, P2), the common terms of P1 and P2 are sorted in
descending order of their weights

tw′ , i.e., the estimated

likelihoods that they are real connecting terms. The top 15
common terms (if there are so many common terms) are displayed
as potential connecting terms.

 5

As mentioned in Section 2.1, when the searcher views the entire
web page Pi (i=1, 2), both the query keywords in set Ki that are not
in the stopword list and the 15 potential connecting terms are
highlighted in Pi. In general, the relationship between E1 and E2 is
likely to be mentioned somewhere close to those terms. This
highlighting can facilitate the searcher to find the relationship.
Also, not all the common terms of P1 and P2 are highlighted, as
there may be too many such terms and highlighting all of them
will get the searcher overwhelmed. The number 15 is an empirical
number. We find that 15 is usually sufficient for highlighting
useful potential connecting terms without overwhelming the
searcher with too much information.

2.7 Discussions
The above descriptions show how to implement our method on

top of a Web search engine. More efficiently, our method can be
implemented inside a Web search engine if the search engine code
is accessible. For example, Step 1 (obtaining web pages) can be
performed locally, as the Web search engine has a local copy of all
the web pages. Also, Operations 1, 2, and 3 of Step 2 (document
pre-processing) can be done beforehand for all the web pages.
Then there is no need to repeat these operations for each
individual RQ.

Currently, we only consider a few parameters. There are many
additional parameters that could be included, such as web page
titles, weighting schemes for font sizes, and link information. Our
goal is not to exhaustively search the entire parameter space.
Rather, a reasonable set of parameters are chosen to demonstrate
that our general methodology is promising and can achieve good
performance in many cases. How to use additional parameters to
improve the effectiveness of our method is left for future work.

Our current method works for answering RQs on the Web. It
may also work for answering RQs on traditional document sets. A
thorough investigation of this issue is left for future work. In
Section 3, to show that our general methodology is promising, we
provide an example of applying our techniques to the problem of
finding relationships in two document sets, where the concept of
RQ is generalized.

In summary, our approach has the following advantages (see
Section 3 for details):
(1) It can find multiple relationships between two entities

simultaneously with low overhead (typically less than one
second). For example, each returned top web page pair may
mention a different relationship.

(2) It can find important relationships even in the presence of a
lot of “noise.”

(3) The quality of search results is insensitive to the parameter
values used in our method within reasonable ranges.

(4) It can find different kinds of relationships, such as
commonalities, differences, contrasts, direct connections, and
indirect connections.

(5) It can be implemented either inside or on top of a Web search
engine. In the latter case, it can be implemented on either the
client side or the server side.

(6) Its interface is user friendly. Searchers can keep using the
familiar keyword query interface of Web search engines.

(7) It can be the basis for extracting exact answers to RQs,
regardless of whether the exact answers are short answers or
long answers. Here the short answer means that the exact
answer is composed of one or a few sentences in a web page
pair. The long answer [BMS04] means that the exact answer
is composed of one or a few paragraphs in a web page pair,
or even the entire web page pair (e.g., detailed news report).

3. Experimental Results
We have implemented a prototype of the proposed techniques

on top of the Google search engine [Goo05]. Currently, there is no
standard benchmark for answering RQs on the Web. The RQs
used in AQUAINT [AQU05] and TREC [QA05] are for
traditional document sets. We have conducted extensive
experiments with those RQs. Since the Web contains much more
information than traditional document sets and existing Web
search engines excel in keyword matching, the answers for most
of those RQs can be easily found on the Web by typing both
entities’ keywords in a Web search engine.

Based on the examples in AQUAINT and TREC [AQU05,
QA05] as well as experience that we learned through interviews
with Web searchers, we built our own set of RQs for
experimentation – a total of 30 examples that are classified into
various scenarios. (Note that only 25 RQs were used for the
relationship task in TREC 2005.) The detailed results of seven
examples from five representative scenarios and the average
results for all the 30 examples are provided. According to our
prototyping experience, detailed results are necessary to help the
reader get clear insight into many important issues (e.g., how
queries and results look like, how meaningful the results are, when
and why our techniques succeed or fail). None of the 30 examples
can be well handled by existing Web search engines (including
Google). All our experiments were performed between Sep. and
Dec. 2005. According to our tests, the precise query form (e.g.,
whether quotation mark is used) has minor impact on the found
relationships. In this section, we only present the results for the
most basic query form (without quotation mark). As the Web and
Google search results keep changing over time, our results may
have minor changes while the found relationships will remain
roughly the same.

In this section, Pi, j denotes the jth web page that is retrieved
from the Google Web search engine for entity Ei (i=1, 2). Each
web page pair is represented in the format in Figure 4. (Example 7
is an exception, where there is no concept of URL.) The default
parameter values used in our method are as follows: M1=M2=50
(the number of top web pages retrieved from a Web search engine
for an entity), W=30 (the window size used in document pre-
processing), k1=1.2 (the parameter in the tf weight computation
formula), and C=20 (the number of top potential connecting terms
considered in computing the similarity value of a web page pair).
The effect of various parameter values on the answer quality is
discussed in Section 3.2.

Figure 4. Web page pair format.

3.1 Examples
Scenario I: Relationship between People

Example 1 (Nobel Example)

This is the example mentioned in the introduction. Glenn
Klausman, the lawyer, would like to find out the relationship
between himself and John Robert Schrieffer, the Nobel Prize
laureate. In this experiment, the keywords for entity E1 are Glenn

Klausman. The keywords for entity E2 are John Robert Schrieffer.
Figure 3 shows the returned first web page pair),(28,21,1 PP .

Recall that
28,2P is the 28th web page retrieved from Google for

entity E2. The top few potential connecting terms include injury

Potential Connecting Terms

URL 1

Web Page 1

URL 2

Web Page 2

 6

and court. They provide a good hint for the relationship between
Glenn and John. From this web page pair, Glenn can easily find
out that John once ran into a car accident.

Note that Web search engines make mistakes in certain cases.
For example, not all top 50 web pages that Google retrieved for
entity E1 are related to attorney Klausman (such as
www.library.uiuc.edu/rex/erefs/bronzetablets/1960s.htm). Our
method can automatically filter out such noise and find the right
information. Moreover, in a relevant top web page pair that
contains the desired relationship between the two entities, one or
both web pages may be originally ranked low (e.g., 28th in this
example) by the Web search engine. Our method is able to boost
the rank of relevant web pages.

Example 2 (Lomet Example)

Arthur Ciccolo is the head of search technology at IBM Thomas
J. Watson Research Center. David Lomet is the manager of the
database group at Microsoft Research. Suppose Arthur will attend
a conference and he notices that David will attend the same
conference. Assume that Arthur does not know David and would
like to chat with him. To get prepared, Arthur does some
background search on the Web, attempting to find some
relationship between him and David. In this experiment, the
keywords for entity E1 are Arthur Ciccolo. The keywords for
entity E2 are David Lomet.

Table 1 shows the returned first web page pair),(5,248,1 PP . The

tenth, eleventh, and twelfth potential connecting terms are related
to IBM T.J. Watson Research Center. From this web page pair,
Arthur can easily find out the relationship between him and David
– they both have worked at IBM T.J. Watson Research Center.

Table 1. Returned first web page pair of Example 2.

Now suppose we replace Arthur Ciccolo with Jennifer Chu-
Carroll, a Research Staff Member at IBM T.J. Watson Research
Center. That is, the keywords for entity E1 become Jennifer Chu-

Carroll. In this case, the top four web page pairs are mainly about
paper collections and conferences that are irrelevant to the
relationship between Jennifer and David. Only from the fifth web
page pair (www.naacl.org/elections/jc-2005.html,
www.ccs.neu.edu/colloquium/lomet.html), Jennifer can find out
that both she and David have worked at IBM T.J. Watson
Research Center.

Many web pages that Google returns for Jennifer are noisy and
contain little information about her (e.g., conference PC name list).
Consequently, the case of Jennifer is more difficult than the case
of Arthur and the found relevant web page pair is ranked lower.

Scenario II: Relationship between Places

Example 3 (Yorktown Example)

Suppose Mary gets two job offers, one at Yorktown Heights,
NY, and another at Shorewood Hills, WI. To decide which job

offer to accept, Mary would like to compare these two places and
see which place she likes more. In this experiment, the keywords
for entity E1 are Yorktown Heights. The keywords for entity E2 are
Shorewood Hills.

Table 2 shows the first web page pair),(21,231,1 PP , which

provides some useful comparison (population, latitude, and
businesses) between Yorktown Heights and Shorewood Hills.

Table 2. Returned first web page pair of Example 3.

Table 3 shows the second web page pair),(19,246,1 PP , which

gives a comparison of the weather condition between Yorktown
Heights and Shorewood Hills.

Table 3. Returned second web page pair of Example 3.

Table 4 shows the other useful web page pairs in the top ten
web page pairs.

Table 4. Returned other useful web page pairs of Example 3.

web page pair URLs of the web page pair relationship

third

),(9,21,1 PP
(www.city-data.com/city/Yorktown-
Heights-New-York.html, www.city-
data.com/city/Shorewood-Hills-
Wisconsin.html)

detailed
comparison

eighth

),(24,213,1 PP
(www.sublet.com/area_rentals/NewYor
k/YorktownHeights_Rentals.asp,
www.rentspeed.com/cities/WI_Shorew
ood+Hills_Wisconsin.aspx)

apartment
rental

tenth

),(28,28,1 PP
(www.homegain.com/local_real_estate/
NY/yorktown_heights.html,
www.realestate.com/cityengine/WI/Sho
rewood%20Hills.html)

real estate

In this example, each of the above mentioned five web page
pairs identifies a different relationship or comparison between
Yorktown Heights and Shorewood Hills. That is, our method can
find multiple relationships between two entities simultaneously.
All the information is useful to Mary.

… Facts & Statistics
Place Name: Yorktown Heights …
Population: 7,690 (1990)
Location: Westchester County, New
York (NY), United States …
Latitude: 41°16'N
Longitude: 73°46'W ...
IBM's T. J. Watson Research Center
is located here …

Columbia, press, gazetteer, university, America, related, symbol, seat, …

… Facts & Statistics
Place Name: Shorewood Hills …
Population : 1,680 (1990)
Location: Dane County, Wisconsin
(WI), United States …
Latitude: 43°04'N
Longitude: 89°27'W ...
At W end of Univ. of Wis.
Campus …

reference.allrefer.com/gazetteer/Y/Y0
1318-yorktown-heights.html

reference.allrefer.com/gazetteer/S/S1
0841-shorewood-hills.html

Yorktown Heights, New York
(10598) Weather
Updated: 856 AM EDT FRI SEP 2
2005 ...
Today...Mostly sunny. Highs in the
mid 80s. Northwest winds 5 to 10
mph ...
Saturday...Mostly sunny. Highs in the
lower 80s. Northwest winds 5 to 10
mph ...

clear, wind, forecast, EDT, SEP, weather, mph, partly, cloudy, night, …

Shorewood Hills, WI Weather
Forecast
3:22 PM CDT THU SEP 1 2005 …
FRIDAY - Mostly sunny. Highs in
the upper 70s. Northwest winds 5 to
15 mph …
SATURDAY - Partly cloudy. Highs
in the upper 70s. North winds up to 5
mph ...

weather.allrefer.com/new-
york/yorktown-heights.html

www.city-data.com/forecast/w-
Shorewood-Hills-Wisconsin.html

… Arthur C. Ciccolo IBM Thomas
J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532
(ciccolo@us.ibm.com). Mr. Ciccolo
is a Department Group Manager in
the Research Division of IBM and co-
leader of the IBM Institute for Search
and Text Analysis ...

award, IEEE, paper, chair, committee, work, serve, patent, speaker, Watson,
IBM, Thomas …

… DAVID LOMET has been a
senior researcher and manager of the
Database Group at Microsoft
Research, Redmond, Washington
since 1995. ... Earlier, he was a
researcher at the IBM Thomas J.
Watson Research Center in
Yorktown ...

www.research.ibm.com/journal/sj/43
3/brodeaut.html

www.ccs.neu.edu/colloquium/lomet.h
tml

 7

Example 4 (Hartlepool Example)

Hartlepool is a North Sea port in the United Kingdom. The
Three Gorges region is a scenic area along the Yangtze River in
China. Suppose Philip is a government intelligence analyst. He
notices that a terrorist organization is collecting information about
Hartlepool and Three Gorges. Philip would like to find out
whether there is some connection between these two places, as this
connection may provide clue to identifying the target that the
terrorist organization is planning to attack. In this experiment, the
keyword for entity E1 is Hartlepool. The keywords for entity E2
are Three Gorges.

Table 5. Returned fourth web page pair of Example 4.

The top three web page pairs are not very useful. Table 5 shows

the fourth web page pair),(49,217,1 PP . Note that both
17,1P and

49,2P are originally ranked low by Google. Although the relevant

connecting term, station, is ranked low in all the potential
connecting terms, Philip can find out from this web page pair that
there is a nuclear power station in Hartlepool and the world’s
largest hydropower station (dam) is in Three Gorges. Namely both
places have important objects (nuclear power station and dam), the
destruction of which can lead to a disaster. Quite likely, the
terrorist organization is studying these two objects and sees which
one it would like to attack.

Note that Example 3 (Yorktown Example) and Example 4
(Hartlepool Example) are rather different. The two places in
Example 3 have only loose connections. In contrast, the two
places in Example 4 have much stronger connections. Our method
is self-adaptive and can find desired relationships for both
examples.

Scenario III: Relationship between Companies

Example 5 (Bank Example)

Union Bank of Switzerland is a major bank in Switzerland. It is
known that some criminals deposit their money in Swiss banks. St.
Petersburg Real Estate Holding Co. is a Germany-based company
that buys real estates in St. Petersburg, Russia. Suppose Philip is a
government intelligence analyst. Based on some financial
transaction evidence, he suspects that there are some connections
between St. Petersburg Real Estate Holding Co. and Union Bank
of Switzerland. Philip would like to find out the connections. In
this experiment, the keywords for entity E1 are St. Petersburg Real

Estate Holding Co. The keywords for Entity E2 are Union Bank of

Switzerland. (Note that the bank name and the company name are
only used for illustration purposes rather than implying a fact.)

Using the keywords of Union Bank of Switzerland, the top 50
web pages returned from Google are all about the bright side of
Union Bank of Switzerland, e.g., bank merge information. Since
Philip is only interested in “dirty” relationships, he cannot
discover any desired relationship between St. Petersburg Real
Estate Holding Co. and Union Bank of Switzerland by only using
the keywords of Union Bank of Switzerland.

Not being discouraged, Philip gives it a second try. He changes
the keywords for entity E2 to Union Bank of Switzerland scandal
by adding the word “scandal.” Now Philip can get access to some

dark side of Union Bank of Switzerland. (Note that existing Web
search engines cannot use the keywords for both entities E1 and E2
to find desired relationships between E1 and E2, irrespective of
how those keywords are chosen.)

Table 6. Returned first web page pair of Example 5.

Table 6 shows the first web page pair),(45,215,1 PP . The top two

potential connecting terms are related to money laundering crime.
From

15,1P , Philip finds out that St. Petersburg Real Estate

Holding Co. is involved in money laundering for Columbia drug
lords. From

45,2P , Philip finds out that Union Bank of Switzerland

is a partner with BCCI (Bank of Credit and Commerce
International), and BCCI is involved in money laundering for
Columbia drug cartels. Hence, there is an indirect relationship
between St. Petersburg Real Estate Holding Co. and Union Bank
of Switzerland – both of them are directly or indirectly connected
to money laundering for Columbia drug cartels.

Scenario IV: Relationship between Institutes

Example 6 (CMU Example)

Table 7. Returned first web page pair of Example 7.

… One year ago, the 660-kilometre-
long reservoir of the Three Gorges
Project, the world's largest
hydropower station, was successfully
filled with water ...

village, resident, population, county, total, sport, project, schedule, …

… A nuclear power station of the
advanced gas-cooled reactor (AGR)
type was opened near Hartlepool in
the 1980s and is scheduled for
decommissioning by 2014 ...

www.chinadaily.com.cn/english/doc/
2004-07/15/content_348413.htm

en.wikipedia.org/wiki/Hartlepool

Microsoft Research Redmond,
Washington ...
Research Units:
Algorithms and Theory
Human-Computer Interaction
Machine Learning, Adaptation and
Intelligence
Multimedia and Graphics
Search, Retreival and Knowledge
Management
Security and Cryptography
Social Computing
Software Development
Systems, Architectures, Mobility, and
Networking ...

trn, category, deeper, LLC, aspect, reserve, cover, …

Carnegie Mellon University (CMU)
Pittsburgh, PA ...
Research Units:
School of Computer Science
Information Networking Institute
Robotics Institute
Department of Electrical &
Computer Engineering (ECE) …
CyLab
Data Storage Systems Center
The Sage Visualization Group
Human-Computer Interaction
Institute
Advanced Multimedia Processing Lab
Natural Language Processing
SPIRAL ...

www.trnmag.com/Directory/Query_R
esults/Corporate/Microsoft_Research
_Computing.html

www.trnmag.com/Directory/Query_R
esults/University/Carnegie_Mellon_U
niversity_Computing.html

Caught in the center of a Germany-
wide money-laundering investigation
is a St. Petersburg real estate
company ...
But a German prosecutor told
Germany's Der Spiegel magazine in
Monday's edition that the raids were
part of a two-year investigation into
SPAG, or the St. Petersburg Real

Estate Holding Co. ...
SPAG was singled out in the German
foreign intelligence investigation as a
company suspected of laundering
funds for Russian criminal gangs and
Colombian drug lords …

launder, crime, prosecutor, investigation, traffick, criminal, money, arm,
indictment, intelligence, fine, drug …

… The bank also had friends in high
places in the U.S. … Over the years,
BCCI was involved with:

• Drug cartels. As early as 1985, the
U.S. Drug Enforcement
Administration (DEA) and the IRS
found that BCCI was involved in
laundering heroin money, with
numerous branches in Colombia to
handle accounts for the drug cartels ...
Arkansas investment banker Jackson
Stephens in 1987 worked out
Harken’s debts by getting $25 million
financing from Union Bank of

Switzerland (UBS), a partner with
BCCI ...

www.cdi.org/russia/johnson/7187-
11.cfm

www.alternet.org/election04/20268/

 8

Suppose Anton graduated from the Computer Science
Department of Carnegie Mellon University (CMU) and is
currently a researcher at Microsoft Research (MSR). He will go
back to CMU to recruit new employees for MSR. On that trip,
Anton will meet with a few faculty members at CMU. To get
prepared, Anton would like to find out the common interests (e.g.,
research areas) between MSR and CMU. In this experiment, the
keywords for entity E1 are Microsoft Research. The keywords for
entity E2 are Carnegie Mellon University computer science.

Table 7 shows the first web page pair),(11,239,1 PP , which

provides a detailed list of computer science research areas in MSR
or CMU. Links to the corresponding research units are provided,
and some of the CMU research units are not easily accessible from
the homepage of School of Computer Science at CMU.

Scenario V: Relationship between Document Sets

Example 7 (Paper Example)

The following example shows that our techniques are not
limited to answering RQs on the Web. Here we demonstrate the
generality of our techniques by applying them to traditional
document sets. No entity exists in this example. Rather, we are
interested in finding relationships in two document sets and the
concept of RQ is generalized.

Suppose Cathy is a manager at a research lab. She recently
becomes interested in the database area because of the nature of
some on-going projects in her team. Cathy would like to see
whether there is any collaboration opportunity between her team
and the database research community. However, neither Cathy nor
people in her team are familiar with the database area. To make
this up, Cathy plans to send the best matching people in her team
to attend the SIGMOD'05 conference. Cathy has two document
sets: S1 and S2. S1 is the collection of papers written by people in
her team. S2 is the collection of 84 papers published in
SIGMOD'05.

By matching documents in S1 with documents in S2, our
techniques can help Cathy find the best matching people in her
group. The concrete method is as follows. Without loss of
generality, we assume that Cathy’s group works on operating
system and the document set S1 is the collection of 49 papers
published in OSDI'04 (Symposium on Operating Systems Design
and Implementation) and SOSP'03 (ACM Symposium on
Operating Systems). On one hand, the paper title alone does not
contain enough information, and the entire paper may introduce
too much noise. On the other hand, the title and the abstract often
give a good summary of the content in the paper. Hence, for each
paper in S1 or S2, instead of using the entire paper, only the title
and the abstract are used. All the papers in S1 and S2 are used.
Since we are not retrieving web pages from the Web, there is no
need to perform Step 1 (obtaining web pages) and Operation 1 in
Step 2 (document pre-processing). Also, Operation 4 in Step 2 is
omitted, as no entity exists in this case. Everything else remains
the same, as described in Section 2.

Table 8 shows the first document pair, which matches an
overlay network paper with a sensor network paper. The identified
potential connecting terms show that both papers are related to
data streaming and networking. Actually, the multicast approach
(one point to multiple points) used in overlay network can be
regarded as the reverse procedure of the aggregation approach
(multiple points to one point) used in sensor network. Cathy can
send the authors of the overlay network paper to SIGMOD'05,
with a particular interest in data streaming in sensor networks.

Table 8. Returned first document pair of Example 7.

The second, third, fourth, and sixth document pairs match the

overlay network paper with the following four data stream papers,
respectively: RPJ: Producing Fast Join Results on Streams through
Rate-based Optimization, Sampling Algorithms in a Stream
Operator, Conceptual Partitioning: an Efficient Method for
Continuous Nearest Neighbor Monitoring, and Holistic
Aggregates in a Networked World: Distributed Tracking of
Approximate Quantiles. The authors of the overlay network paper
may also be interested in these four data stream papers.

The fifth document pair matches a network monitoring paper
(Ksniffer: Determining the Remote Client Perceived Response
Time from Live Packet Streams) with a data stream paper
(Sampling Algorithms in a Stream Operator). Both papers are
related to data streaming. If budget permits, Cathy may also send
the authors of the network monitoring paper to SIGMOD'05, with
a particular interest in data streams.

For all the 30 examples we used in our experiments, desired
relationships can be found in the returned top ten web page pairs.
For 24 of these 30 examples, desired relationships can be found in
the returned top three web page pairs. The detailed results of the
other 23 examples are similar to those of the seven examples
presented above and omitted due to space constraints. The average
results for all the 30 examples can be found in Section 3.2.

Overhead of Our Method

Recall that as mentioned in Section 2.7, our method can be
implemented more efficiently inside a Web search engine. In this
case, Operations 1, 2, and 3 of Step 2 (document pre-processing)
can be done beforehand for all the web pages. Step 1 (obtaining
web pages) is necessary irrespective of which method is used to
answer RQs. Hence, the additional overhead of our method is
Operation 4 of Step 2 (windowing), Step 3 (computing similarity
values), and Step 4 (sorting web page pairs). According to our
measurements on an IBM ThinkPad T40 PC with one 1.6GHz
processor, 1GB main memory, one 75GB disk, and running the
Microsoft Windows XP operating system, this additional overhead
is always less than one second in all the examples.

3.2 Sensitivity Analysis of Parameter Values
There are several important parameters in our method. In this

section, we evaluate the impact of parameter values on the quality
of answers by a set of experiments. In each experiment, we varied
the value of one parameter while keeping the other parameters

Tributaries and Deltas: Efficient and
Robust Aggregation in Sensor
Network Streams
Abstract
Existing energy-efficient approaches
to in-network aggregation in sensor
networks can be classified into two
categories, tree-based and multi-path-
based, with each having unique
strengths and weaknesses. In this
paper, we introduce Tributary-Delta,
a novel approach that combines the
advantages of the tree and multi-path
approaches by running them
simultaneously in different regions of
the network ...

tree, network, algorithm, item, rate, factor, efficient, simultaneously, stream,
data, …

Bullet: High Bandwidth Data
Dissemination Using an Overlay
Mesh
Abstract
In recent years, overlay networks
have become an effective alternative
to IP multicast for efficient point to
multipoint communication across the
Internet. Typically, nodes self-
organize with the goal of forming an
efficient overlay tree … In this paper,
we target high-bandwidth data
distribution from a single source to a
large number of receivers.
Applications include large-file
transfers and real-time multimedia
streaming ...

 9

Figure 5. Average score vs. M 1 =M 2 .

0.6

0.8

1.0

1.2

1.4

1.6

25 50 75 100
M 1 =M 2

av
er

ag
e

sc
o

re

Figure 6. Average score vs. W .

0.8

1.0

1.2

1.4

1.6

10 20 30 40 50 60

W

av
er

ag
e

sc
o

re

Figure 7. Average score vs. k 1 .

0.6

0.8

1.0

1.2

1.4

1.6

0.5 1 1.5 2 2.5 3
k 1

av
er

ag
e

sc
o

re

Figure 8. Average score vs. C .

1.0

1.2

1.4

1.6

10 20 30 40 50

C

av
er

ag
e

sc
o

re

unchanged. (The case of M1 and M2 is an exception, where the
values of two parameters are changed simultaneously.)

For each RQ, a score is calculated to evaluate the quality of the
returned web page pairs. This score is defined as the sum of
reciprocal ranks of relevant web page pairs in the returned top ten
web page pairs [RLF02], where relevant web page pairs contain
desired relationships between the two entities and are manually
identified. For example, if in the returned top ten web page pairs,
the first, second, and eighth web page pairs are relevant ones, the
score would be 625.18/12/11 =++ . As mentioned in [RLF02],

this score is a reasonable measure of ranking method performance,
as it favors relevant web page pairs that are ranked higher while
also giving appropriate weights to lower ranked relevant web page
pairs. Also, this score considers the possibility that multiple
relationships exist between the two entities and thus multiple
relevant web page pairs may be found simultaneously.

Recall that we have 30 examples in total. The average score for
the RQs in these 30 examples is a single-value indicator of the
performance of the ranking method. In each experiment, the
average score is reported to show the sensitivity of our method to
the changed parameter.

M1 and M2 (Number of Retrieved Top Web Pages)

The first experiment concerns M1 and M2, the numbers of top
web pages retrieved from a Web search engine for both entities
(Step 1). The default values of M1 and M2 are 50. We varied
M1=M2 from 25 to 100. Figure 5 shows the impact of M1=M2 on
the average score. (Note: to make figures in Sections 3.2 and 3.3
more readable, the y-axis does not always start from zero.) In
general, when M1 and M2 are too small, there may not be enough
web pages to discover useful information. When M1 and M2
become larger, more web pages are retrieved from the Web search
engine. This may lead to the discovery of more useful information.
On the other hand, this also has the danger of not being able to
discover any useful information in the returned top few web page
pairs, as more web pages introduce more noise and thus make the
web page pair ranking process more difficult. Choosing

M1=M2=50 is usually sufficient for discovering important
relationships between two entities without making the ranking
process too difficult.

W (Window Size)

The second experiment concerns W, the window size used in
document pre-processing (Operation 4 of Step 2). The default
value of W is 30. We varied W from 10 to 60. Figure 6 shows the
impact of W on the average score. When W=25 or W=35, the
answers are basically the same as that when W=30. In general,
when W is too small, useful information in the web pages may get
lost. When W is too large, a lot of noise may remain in the web
pages. The safe range for W is between 25 and 35. If W is outside
of this safe range, the answer quality will degrade.

k1 (Parameter in the tf Weight Computation Formula)

The third experiment concerns k1, the parameter in the tf weight
computation formula (Step 3). The default value of k1 is 1.2. We
varied k1 from 0.5 to 3. Figure 7 shows the impact of k1 on the
average score. When k1=1 or k1=1.5, the answers are basically the
same as that when k1=1.2. In other words, the safe range of k1 is
between 1 and 1.5, which is smaller than the range of [1, 2] that
was reported in [Sin01].

C (Number of Top Potential Connecting Terms)

The fourth experiment concerns C, the number of top potential
connecting terms considered in computing the similarity value of a
web page pair (Step 3). The default value of C is 20. We varied C
from 10 to 50. Figure 8 shows the impact of C on the average
score. When C=30, the answers are basically the same as that
when C=20. In general, when C is too small, not enough useful
information is captured in the computation process of similarity
values of web page pairs. When C is too large, a lot of noise may
be introduced into that computation process. The safe range for C
is between 20 and 30.

In summary, each parameter has a not-very-small safe range.
That is, the answer quality is insensitive to parameter changes.
However, when the parameter value is outside of this safe range,
the answer quality will degrade.

3.3 Influence of Individual Techniques
Our method uses the following key techniques:

(1) Technique 1: Use windowing in document pre-processing
(Operation 4 in Step 2).

(2) Technique 2: Use),max(2,1, idfidf ww ′′ in the term weighting

formula (Step 3).
(3) Technique 3: Only consider the top C potential connecting

terms in computing the similarity value of a web page pair
(Step 3).

(4) Technique 4: For either i (i=1, 2), compute a set of global
statistics (Ni, avdli, dfi) on the web page set Si (Step 3).

In this section, we discuss the influence of individual techniques
on the answer quality. We performed a set of experiments. In each
experiment, we dropped a single technique while keeping the
other techniques unchanged. When Technique 1 is not used, all the
words are kept in web pages. When Technique 2 is not used,

2,1, idfidf ww ′×′ is used in the term weighting formula (Step 3). When

Technique 3 is not used, all the potential connecting terms are
considered in computing the similarity value of a web page pair.

When Technique
4 is not used, we
compute only
one set of global
statistics (N, avdl,

df) on S1∪ S2.
Figure 9 shows

the impact of the
used techniques
on the average Figure 9. Average score vs. used techniques.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

all techs no Tech 1 no Tech 2 no Tech 3 no Tech 4 baseline

av
er

ag
e

sc
o

re

 10

score. In this figure, “tech” stands for technique. “No Tech i” (i=1,
2, 3, 4) represents the case that Technique i is not used. Baseline
represents the case that none of the four techniques is used. All
techniques in our method are necessary. If any of them is not used,
the quality of the answers will degrade. Techniques 1 and 3 are
more important than Techniques 2 and 4 in the sense that they
have a larger impact on the answer quality. Also, the performance
of our method is much better than that of the baseline.

4. Related Work
To the best of our knowledge, [Mah04, TRE05] are the only

published work on answering general RQs. They focus on
traditional document sets rather than the Web. The method
proposed in [Mah04] has some limitations when working with
web pages on the Web. For example, that method first forms a
query Q that contains both entities’ keywords and uses Q to
retrieve 25 documents from a search engine. In the case of a Web
search engine, this often leads to the situation that either no
document is returned or all returned documents are related to a
single entity. Moreover, that method cannot discover useful but
non-obvious information in the documents, as in the document
preprocessing step, that method only keeps the top sentences that
are most similar to Q. The same limitations also exist for the
methods proposed in [TRE05]. In bioinformatics, [Sma05, Sri04]
used domain-specific knowledge and the MEDLINE biomedical
literature database to find relationships between two biomedical
entities. However, those methods proposed in [Sma05, Sri04] do
not work for general RQs.

[DH99, HGK+02] proposed a set of techniques for finding web
pages that are similar to a given web page. Essentially, this is to
find those web pages that are on the same topic as the given web
page. In our case, we need to retrieve web pages that are on
different topics (i.e., related to different entities) and make
connections between these web pages. Therefore, those techniques
proposed in [DH99, HGK+02] cannot be used directly for our
purpose.

[HGK+02] uses windowing around anchor texts to find web
pages that are similar to a given web page. In our method,
windowing around query keywords is used.

[TKS00] proposed a set of techniques for finding terms that are
correlated to one or more query terms. However, those found
terms may not be strongly connected to the entire query. In our
case, we need to find connecting terms that are strongly connected
to both entities in the RQ. Also, just having those terms is far from
being able to answer RQs.

Our work provides web page pairs and potential connection
terms as hints to the searcher. The searcher needs to further
analyze these hints to find exact answers to RQs, while such an
analysis is often easy for human beings. In contrast, in question
answering [May04], exact answers to queries are usually provided
to the searcher directly. Since artificial intelligence is generally a
hard problem, no satisfying question answering techniques
currently exist for RQs.

In the database literature, [FLM98] surveyed SQL-style query
languages for the Web. However, none of these languages
supports RQs. Also, [SY00] proposed extracting database
relations from the Web, which are different from the relationships
discussed in this paper.

5. Conclusion
We believe that we are among the first to study the problem of

answering relationship queries on the Web. We proposed a
method that matches top web pages retrieved for individual

entities and automatically identifies the connecting terms. To
effectively filter out the large amount of noise in the web pages
without losing much useful information, we do windowing around
query keywords, compute term weights based on the
characteristics of the two web page sets, and only use the top
potential connecting terms to compute the similarity values of web
page pairs. Our experiments with a prototype implementation on
top of the Google search engine show that our method is often
effective at finding important relationships in a noisy environment
with low overhead. The quality of search results is insensitive to
parameter changes. Also, our method has a friendly user interface
and can facilitate a wide range of searchers to explore the Web
more efficiently.

References
[API05] http://www.google.com/apis (Google APIs), 2005.
[AQU05] http://www.itl.nist.gov/iaui/894.02/projects/aquaint (AQUAINT),
2005.
[BMS04] S. Blair-Goldensohn, K. McKeown, and A.H. Schlaikjer.
Answering Definitional Questions: a Hybrid Approach. New Directions in
Question Answering 2004: 47-58.
[BR99] R.A. Baeza-Yates, B.A. Ribeiro-Neto. Modern Information
Retrieval. ACM Press/Addison-Wesley, 1999.
[DH99] J. Dean, M.R. Henzinger. Finding Related Pages in the World
Wide Web. Computer Networks 31(11-16): 1467-1479, 1999.
[FLM98] D. Florescu, A.Y. Levy, and A.O. Mendelzon. Database
Techniques for the World-Wide Web: a Survey. SIGMOD Record 27(3):
59-74, 1998.
[Goo05] http://www.google.com (Google), 2005.
[HGK+02] T.H. Haveliwala, A. Gionis, and D. Klein et al. Evaluating
Strategies for Similarity Search on the Web. WWW 2002: 432-442.
[Mah04] D. Mahler. Holistic Query Expansion Using Graphical Models.
New Directions in Question Answering 2004: 203-214.
[May04] M.T. Maybury. New Directions in Question Answering. AAAI
Press, 2004
[Mit97] T.M. Mitchell. Machine Learning. McGraw Hill, 1997.
[Por80] M.F. Porter. An Algorithm for Suffix Stripping. Program 14(3):
130-137, 1980.
[Pra04] J. Prange. Making the Case for Advanced Question Answering.
Keynote Speech to Pragmatics of Question Answering Workshop at
HLT/NAACL 2004.
[QA05] http://trec.nist.gov/data/qa/t2005_qadata.html (QA Collections of
TREC), 2005.
[RLF02] D.R. Radev, K.Libner, and W. Fan. Getting Answers to Natural
Language Questions on the Web. JASIST 53(5): 359-364, 2002.
[RWH98] S.E. Robertson, S. Walker, and M. Hancock-Beaulieu. Okapi at
TREC-7: Automatic Ad Hoc, Filtering, VLC and Interactive. TREC 1998:
199-210.
[Sin01] A. Singhal. Modern Information Retrieval: A Brief Overview.
IEEE Data Eng. Bull. 24(4): 35-43, 2001.
[Sma05] N.R. Smalheiser. The Arrowsmith Project: 2005 Status Report.
Discovery Science 2005: 26-43.
[SMA06] SMART Stopword List. http://www.lextek.com/manuals/
onix/stopwords2.html, 2006.
[Sri04] P. Srinivasan. Text Mining: Generating Hypotheses from
MEDLINE. JASIST 55(5): 396-413, 2004.
[SY00] N. Sundaresan, J. Yi. Mining the Web for Relations. Computer
Networks 33(1-6): 699-711, 2000.
[TKS00] P. Tan, V. Kumar, and J. Srivastava. Indirect Association:
Mining Higher Order Dependencies in Data. PKDD 2000: 632-637.
[TRE05] http://trec.nist.gov/pubs/trec14/t14_proceedings.html.
TREC 2005 Proceedings (relationship task in the QA track).

