
RC24075 (W0610-062) October 13, 2006
Computer Science

IBM Research Report

AXIL: An XPath Intermediate Language

Christoph Reichenbach*, Michael Burke, Igor Peshansky,
Mukund Raghavachari, Rajesh Bordawekar

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

*University of Colorado at Boulder

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

AXIL: An XPath Intermediate Language

Christoph Reichenbach∗

〈reichenb@colorado.edu〉
University of Colorado at Boulder†

Michael Burke
〈mgburke@us.ibm.com〉

IBM Research

Igor Peshansky
〈igorp@us.ibm.com〉

IBM Research

Mukund Raghavachari
〈raghavac@us.ibm.com〉

IBM Research

Rajesh Bordawekar
〈bordaw@us.ibm.com〉

IBM Research

October 3, 2006

Abstract

XPath is a central component of many XML-processing languages;
therefore, it is important to process XPath queries efficiently. We de-
scribe AXIL, a functional intermediate language, which allows us to sim-
plify the task of optimising and compiling XPath for efficient execution.
We describe interesting parts of the syntax and semantics of AXIL and
particular design issues which shaped this language, sketch the translation
from XPath into AXIL, and discuss our experience with using AXIL for
an optimising XPath compiler backend.

1 Introduction

XPath 1.0 [CD99] is a language for describing sets of nodes of XML docu-
ments, relative to a given node within the document, the so-called context
node. XPath allows queries such as “./ancestor::*”, which selects all
ancestor nodes of the context node (i.e., the parent of the context node,
the parent of that parent and so on, until the root of the document is
reached), or

./book[./author="Franz Kafka"][last()]

which selects all nodes of name “book” underneath the context node, if
they satisfy two conditions: First, the “book” node must have at least one

∗This work was supported by NSF Career Grant CCR-0133457
†Work performed at the IBM TJ Watson Research Center

1

“author” node containing the text “Franz Kafka”. Second, the “book”
node must be the last node to satisfy this first condition— that is, we
select (at most) one book node, namely the very last one which lists “Franz
Kafka” as an “author” (A more formal account of XPath 1.0 semantics
can be found in [PW99,Wad99]).

In practice, XPath is a central component of many languages with
native support for XML processing [HRS+05,DFF+05,Cla99]. Thus, it is
important to be able to process XPath queries efficiently.

While it is quite possible to compile XPath 1.0 [CD99] queries di-
rectly to native code in one form or another, XPath 1.0 syntax trees leave
much information implicit that is of relevance to compilation, particu-
larly where compiler optimisations are concerned. For example, XPath
predicate expressions’ types can be inferred statically, which allows us to
manifest coercions, freeing the run-time system from the need to detect
these dynamically.

As a more complex example, consider a second query, applied to the
same context node as the one listed above:

./article

To evaluate both queries, the same set of nodes must be traversed, while
filtering according to different criteria. If we know that the results of both
queries are needed, we can optimise their evaluation by taking advantage
of this shared information.

Core XQuery, for example, allows us to split this up into first com-
puting ./* (“get all child nodes”) and then passing the resulting set (or
sequence, in XQuery terms) to two distinct filters, which can be expressed
as XQuery for expressions. While this allows us to re-use the common re-
sult of the query, it does not help us re-use the iteration over the nodes—
we will iterate twice over all child nodes.

A direct translation into and from Core XQuery would also not yield as
efficient code as possible in other instances (e.g., consider the preceding-sibling
and following-sibling axes (Section 4.2.1) select all siblings, then filter
them according to whether they precede or succeed the context node in
document order). A similar criticism could be applied to Wadler’s par-
tial XPath semantics [Wad99], where for example the context position is
computed as the size of the set of all preceding nodes, if we were to use it
as an implementation recipe.

In the following, we describe an intermediate language, AXIL, which
allows us to express the kind of sharing noted above, covers the entirety of
the XPath 1.0 functionality while having fewer constructs than XPath or
Core XQuery, and furthermore is “pure” in a functional sense, allowing us
to easily compile it into lazily (on-demand) or strictly (eagerly) evaluating
code.

We begin by giving the design rationale for AXIL in Section 2, fol-
lowed by its syntax and excerpts of its denotational semantics in Section
3, before discussing our current AXIL-based code generator (in Section
4). Preliminary performance results are presented in Section 5 before
discussing related work in Section 6 and future work in Section 7.

2

2 Language Design Rationale

Our goals in designing AXIL were to simplify compilation, and to allow
(at least) the following optimisations to be expressible:

• Support for expressing sharing not only of values, but also of itera-
tions (loop fusion)

• Support for deforestation [MW92], which allows us to avoid the con-
struction of intermediate node sets

• Support for standard hoisting and partial evaluation optimisations,
such as constant folding

• A choice between strict and lazy evaluation (or a hybrid of both),
allowing us to compile to either form. Both approaches have their
merits— strict evaluation (eager execution) has minimal overhead
and is thus usually more efficient if all results of the resulting node set
are used, whereas lazy evaluation (partial on-demand computation)
can avoid unneeded computations if not all result nodes are asked
for. Also, lazy evaluation uses less memory on large result sets,
which may improve cache behaviour.

When considering an intermediate language, a pure functional design
seems to be a good “rule of thumb”, as we are making all side effects and
implicit value dependencies explicit. For example, Static Single Assign-
ment (SSA) form [CFR+91], commonly used to optimise imperative code,
is essentially a functional language [App98]. Explicit side effects and de-
pendencies allow us to see opportunities for optimisation (and obstacles
of such) more clearly, and to use many standard optimisation techniques
for functional programming languages [App92,Jon88].

In our context, a pure functional design appears to be appropriate,
as pure functional languages yield the same result when evaluated lazily
and when evaluated eagerly. Thus, two of our goals were handled by this
choice.

We chose as primitive types the following:

• D: The type of IEEE 754 double-precision numbers

• S: The type of Unicode character strings

• B ∆
= {true, false}: The type of boolean values

• Node: The type of all nodes

• NodeSet: The type of all sets of nodes

• NCache: The type of all caches of nodesets (isomorphic to NodeSet)

• Node?: The type of all nodes, lifted

All of these types have very concrete representations in practice, the
sole exception being NodeSet, and NCache, for which a large number
of possible implementations was conceivable. Node? represents what pro-
grammers of object-oriented languages would typically interpret as a tree
node: Either a “node object”, or nothing (e.g., null in Java). We found it
useful to distinguish this frequently occurring type from Node, as nothing
requires special handling.

3

2.1 Deforestation

For the purpose of our initial set-based semantics, we interpret NodeSet
as the type of sets of nodes; in practice, we interpret it as a stream or lazy
list. This interpretation allows us to make use of deforestation [MW92].
The idea behind deforestation is to avoid intermediate structures (lists, in
our case) by composing operations performed during repeated recursion in
a way that reduces the number of recursions. For example, an analogous
idea in an imperative language would transform

FOR i := 0 TO length(l) DO

l[i] := l[i] * 2;

FOR i := 0 TO length(l) DO

l[i] := l[i] + 1;

to the semantically equivalent

FOR i := 0 TO length(l) DO

l[i] := (l[i] * 2) + 1;

In [MW92], such optimisations are developed through recursion; to
avoid recursion in our language, we instead used two “standard” higher-
order functions, for which deforestation-derivable rewritings are known:

• filter, which removes all nodes that do not match a certain predicate,
and

• fold, which aggregates values1.

2.2 Common Iterations

To more efficiently support common iterations, we introduced a special
primitive, (⊗), to tag computations over a common NodeSet. We give
the definition of this primitive and explain its usage in Section 3.9.

2.3 Tree Traversals

For expressing traversals over XML trees, we chose primitives which were
present in the DOM [HHW+00] representation of XML trees, plus a rep-
etition construct (the Kleene Star), after observing that all but one axis
(cf. Section 7.2) could be expressed with these in a way that guaranteed
node uniqueness and document order (some of these observations can also
be found in the core XQuery semantics [DFF+05]).

DOM, or tree-structured data in general, is not necessarily an ideal
representation. Consider the XPath query child::node()[42], which
selects the 42nd child of the context node: Such an access takes 43 steps
(getting the first child and 42 iterations of getting the next sibling) in a
tree representation, but only one (checked) array read if XML trees are
represented as arrays. In our design, however, we decided not to rely on a
vector-based representation; applied to such a representation, our design
should be modified.

1Functional programmers will note that filter can be expressed in terms of fold, but only if
list construction is allowed.

4

2.4 Namespaces

AXIL provides no specific facilities to simplify namespace support. How-
ever, given representational support (as provided e.g. by the W3C DOM
representation [HHW+00]), it is easy to provide run-time facilities which
properly deal with namespaces, i.e., which translate namespace prefixes
into the associated namespace URIs. For any given XPath query, any
such association must be known before we begin executing the query, i.e.
they are passed as parameters into the AXIL expression; there, they can
be used directly as part of name comparisons, being compared with the
result of the namespace-uri function.

3 Syntax and Semantics of AXIL

AXIL provides what amounts to a small number of predefined higher-order
functions. To avoid having to worry about the semantics of higher-order
functions in general, we treat them as special constructs. This gives us a
relatively simple type system, with which we begin our exposition. After
explaining our type system, we move on to give syntax and semantics of
the language itself. Note that the semantics we are defining here is com-
pletely set-based; since the data we are dealing with can safely be assumed
to be finite, we need not worry about non-termination and, therefore, do-
main constructions. However, as we will discuss later, set-based semantics
are not the only useful interpretation of the language.

3.1 Syntax of Types

We define AXIL in terms of a standard monomorphic type system, over
the productions defined for the nonterminal T below:

(Ta) ::= B | D | S | Node | Node? | NodeSet

(Tp) ::= (Ta) | (Ta)× (Tp)

(T) ::= (Tp) | (Tp)→ (Tp)

Recall that our primitive types, (Ta), were outlined in Section 2.
Here, the type constructor (×) constructs tuple types, and (→) con-

structs function types; typing rules are given in Figure 1.
Note that certain primitives do benefit from polymorphism; to allow

for this, we introduce special typing rules to deal with them.

5

3.2 Language Syntax

We begin the value syntax with atomic values (i.e., constants and vari-
ables):

(V) ::= (VB) | (VD) | (VS) | (Name) | (V)

(VB) ::= true | false
(VD) ::= 0.0 | 1.0 | . . .

(VS) ::= ε | "foo" | . . .

(Name) ::= a | b | c | . . .

(V) ::= $i | $j | . . .

We explicitly distinguish between XPath-style variables passed in from an
external environment (production (V)), and names defined within AXIL
(production (Name)), as these may be treated differently by AXIL imple-
mentations.

(Mult) ::= + | ∗
(IName) ::= 2 | (Name)

(ISeq) ::= (IName) | (IName), (ISeq)

(Input) ::= (IName) | 〈 (ISeq) 〉
(NKind) ::= Node | Elt | Attr | Text | PI

| Namespace | Comment
(LR) ::= � | � | >

(Fun) ::= (Builtins)

| filter(LR)[ntInput⇒ (Expr)]

| guard(LR)[ntInput⇒ 〈(Expr), (Expr)〉]
| fold(LR)[(Input)⇒ (Expr)](V)

| (Fun) ◦ (Fun)

| (Fun) • (Fun)

| (Fun)(Mult)

| (Fun)⊗ (Fun)

(Expr) ::= (V)

| (Fun) / (Expr)

| [(Expr)]
(Tp)

(Tp)

| (Fun)(Expr)

| let (Input) = (Expr) in (Expr)

6

Here, nonterminal (Fun) describes functions in the intermediate lan-
guage; the production

(Expr) ::= (Fun)(Expr)

then describes function application.
Nonterminal (Builtins) refers to a pre-defined set of function symbols.

We list a representative subset of these in figure 2, along with their types.
Note that none of the omitted functions deals with NodeSets. Since
several XPath 1.0 functions are described in terms of sets of nodes, we
encode these functions in fold constructions (cf. Section 3.8).

Note that function symbols set in parentheses will be used in infix
notation here; thus, we write true ∨ false instead of (∨)(true, false).

3.3 Set-based Denotational Semantics

We now define the various constructions listed in our grammar in terms of
set theory, giving examples for some of the more involved constructions.

Identifying our types with their obvious set-theoretic interpretations,
we define the set of values of our language as

Val
∆
= Node]NodeSet] D] S] B

We will interpret Node? as the subset of NodeSet with no more than
one node (interpreting occurrences of nothing as ∅).

3.3.1 The Interpretation Function

An environment V : Env, where

Env
∆
= (V]Name)→ Val

is a mapping from names to values. This environment initially carries all
bindings for free variables in our expression; later updates are denoted
as V [n 7→ S], with the intended semantics specified by the following two
formulae:

V [n 7→ S](n) = S (1)

x 6= n =⇒ V [n 7→ S](x) = V (x) (2)

Our interpretation function,

J−K : (Expr)× Env→ Val

interprets expressions E : (Expr) in terms of a value environment V :
Env, denoted JEK(V). For simplicity, we shall write JEK, omitting the
environment, if the environment is not relevant for the given context.
In this case, the same environment can be assumed to be applied to all
interpretations in the same context implicitly.

For brevity, we shall omit or only sketch interpretations of some con-
structs we consider obvious.

7

E,n : τ ` n : τ

E ` x1 : τ1 E,n : τ1 ` x2 : τ2

E ` let n = x1 in x2 : τ2

E ` f : τ → Node?

E ` .f : τ → NodeSet

E ` f : τ1 → τ2 E ` x : τ1

E ` fx : τ2

v ∈ S S ∈ {D, B, S}
E ` v : S

(f : t) ∈ Builtins

E ` f : t

E ` s : Node→ NodeSet
E ` s∗ : Node→ NodeSet

E ` s : Node→ NodeSet
E ` s+ : Node→ NodeSet

E ` x1 : τ1 × . . .× τk E,n1 : τ1, . . . , nk : τk ` x0 : τ0

E ` let 〈n1, . . . , nk〉 = x1 in x0 : τ0

E ` s2 : τ1 → τ2 s1 : τ0 → τ1

E ` s2 ◦ s1 : τ0 → τ2

E ` s2 : Node→ τ τ ∈ {Node?,NodeSet} s1 : Node→ Node?

E ` s2 • s1 : Node→ τ

E ` x1 : τ1 τ1 ∈ {NodeSet,Node, B, S, D} τ2 ∈ {B, S, D}
E ` [x1]τ1

τ2
: τ2

E,n : Node, i : D ` x1 : B δ ∈ {�,�, >}
E ` filterδ[〈n, i〉 ⇒ x1] : NodeSet→ NodeSet

E,n : Node, i : D ` t : B E,n : Node, i : D ` e : NodeSet δ ∈ {�,�, >}
E ` guardδ[〈n, i〉 ⇒ 〈t, e〉] : NodeSet→ NodeSet

E,n : Node, i : D, o : τ ` x1 : τ E ` v : τ δ ∈ {�,�, >}
E ` foldδ[〈n, i, o〉 ⇒ x1]v : NodeSet→ τ

E ` f : Node→ NodeSet E ` n : τ → NodeSet

E ` f / n : τ → NodeSet

E ` f : τ1 → τ2 E ` g : τ1 → τ3

E ` f ⊗ g : τ1 → τ2 × τ3

Figure 1: Typing and type inference rules for AXIL expressions. The envi-
ronments E used here follow the usual notational convention; note that for
all variables passed into an AXIL expression the environment needs to be pre-
initialised with the variable’s type. The set Builtins contains all initial function
definitions and their type judgements.

8

remove-duplicates : NodeSet→ NodeSet
cache : NodeSet→ NCache

stream : NCache→ NodeSet
cachesize : NCache→ D

concat : S× S→ S
starts-with : S× S→ B

contains : S× S→ B
substring-before : S× S→ S
substring-after : S× S→ S

substring : S× D× D→ S
string-length : S→ D

normalize-space : S→ S
translate : S× S× S→ S

floor : D→ D
ceiling : D→ D
round : D→ D

not : B→ B

get-attr-node : S×Node→ Node?

get-attr : S×Node→ S
� : Node→ Node

id : S→ Node?

local-name : Node→ S
namespace-uri : Node→ S

name : Node→ S
test[(NKind)] : Node→ B

. : Node? → NodeSet

(≡B) : B× B→ B
(≡D) : D× D→ B
(≡S) : S× S→ B
(<) : D× D→ B
(≤) : D× D→ B
(≥) : D× D→ B
(>) : D× D→ B
(+) : D× D→ D
(−) : D× D→ D
(·) : D× D→ D
(/) : D× D→ D

(%) : D× D→ D
(∨) : B× B→ B
(∧) : B× B→ B

↑ : Node→ Node?

← : Node→ Node?

→ : Node→ Node?

↙ : Node→ Node?

↘ : Node→ Node?

↓A : Node→ NodeSet
↓N : Node→ NodeSet

� : Node→ Node?

(⊗) : (τ0 → τ1)× (τ0 → τ2)→ (τ0 → τ1 × τ2)
(�) : NodeSet×NodeSet→ NodeSet

order� : NodeSet→ NodeSet
order� : NodeSet→ NodeSet

nub : NodeSet→ NodeSet

Figure 2: An excerpt of the set Builtins of function symbols paired with their
types (33 names were omitted). Note that function symbols written in paren-
theses will be written in infix notation.

9

3.4 Semantics of let and variables

The purpose of a let construct is to bind a name to a value. We use this
construction in three cases:

• To bind names to subexpressions which have been hoisted during an
optimisation phase,

• To give a name to a subexpression which has been identified as a
common subexpression during optimisation, and

• To deconstruct tuples (which arise by use of the ⊗ operator, de-
scribed below).

The semantics of this construction (for single name bindings) are as
follows:

Jlet n = S in EK(V)
∆
= JEK(V [n 7→ JSK(V)])

i.e., we evaluate S, bind the name n to the result, and proceed to evaluate
E with this new name binding. The deconstructing let binding for tuples
can be defined analogously.

3.4.1 Semantics of Arrows

Arrows represent our navigational primitives:

• ↑ (n): Select the parent node of n, if present

• → (n): Select the next sibling (next-greater sibling in document
order) of n, if present

• ↙ (n): Select the first child (least child in document order) of n, if
present

Arrows← and↘ have analogous meanings. Note that all arrows may
fail to return a result; in that case, their result is ∅. Otherwise, it is the
singleton containing the result.

For attribute and namespace nodes, we use the primitives ↓A and ↓N ,
respectively, which yield the set of all attribute nodes of n (↓A (n)), or
the set of all namespace nodes of n (↓N (n)).

Another navigational primitive, though visually not an arrow, is �(n),
which selects the root node of the document to which n belongs.

3.5 Semantics of Composition

Function composition (◦) is quite standard. However, we also often have
to compose a Node?-yielding function with a computation which requires
a Node as input; this is expressed by •.

Jf ◦ gK ∆
= λx.JfK(JgK(x))

Ja • bK ∆
= λn.{n′′|n′ ∈ JbK(n), n′′ ∈ JaK(n′)}

It is worth pointing out that • is precisely the monadic bind operation
on the monad of partiality: If the first function (a) yields no result, we skip

10

the second function (b) and immediately yield nothing (or equivalently
an empty set, if the second function yields a NodeSet— recall that we
interpret both concepts identically).

As an example, consider ↑ • ↑: This function implements the XPath
expression parent::*/parent::*, yielding no result if either no parent
exists, or if no grandparent exists (“if the parent has no parent”).

3.5.1 Semantics of Exponentials

The Kleene Plus (and Kleene Star) are used to compute the transitive
(and reflexive) closure of a function. Formally,

Jf∗(n)K ∆
=

[
i∈N

JfKi(JnK)

Jf+(n)K ∆
=

[
i∈N\{0}

JfKi(JnK)

where

f0(n)
∆
= n

f i(n)
∆
= f(f i−1(n))

In practice, we use them exclusively for arrows. For example,

→+ (n)

computes all right siblings of n (and thus effectively implements the
following-sibling axis). Combined with composition, we can imple-
ment the child axis as

→∗ • ↙
It is also possible to nest exponentials— using this, we can describe the
descendant-or-self axis as

(→∗ • ↙)∗

The observant reader may have noticed that these expressions would
not typecheck in the type system outlined before. According to Figure 1,
any function f an exponential is applied to must have a type

f : Node→ NodeSet

Thus, for type-correctness, we must lift the result with the . construction,
which semantically acts as the identity; we chose to omit this detail to
simplify our initial explanation. The reason for this restriction is not
evident from our set-theoretical semantics, but may become clear to the
reader when considering that a compiler would typically want to interpret
Node?s very differently from NodeSets.

11

3.5.2 Semantics of Other Nodeset Operations

Two other operations over NodeSets are required in certain situations.
NodeSet composition is straightforward:

JS1 � S2K
∆
= JS1K ∪ JS2K

To understand the need for our second primitive, note that path com-
position cannot be implemented by straightforward function composition:

(/→)∗ ◦ (/→)∗

not only does not typecheck (since (/ →)∗ : Node → NodeSet) but
also cannot be assigned a useful meaning: Since the right-hand side of
the function composition computes a set of nodes but the left-hand side
expects a single node, we need to explain more precisely what is supposed
to happen in this kind of composition. Thus, we define a third composition
operator:

J(f / S)(n)K ∆
= {Jf(n)K|n ∈ JS(n)K}

The operator / thus allows us to expand a node set in a pointwise
fashion.

Note that the following useful equality holds:

f / (.g) = f • g

Three other built-in functions, order�,order� and nub, which rep-
resent sorting in reverse document order, sorting in document order, and
duplicate removal (respectively) are trivial in set-based semantics and can
thus be treated as instances of the identity function.

3.6 Semantics of filter

Our navigational primitives are sufficient for indiscriminately traversing
over XML trees. However, they give us no means of expressing node tests
or predicates. For this purpose, we use filter, which is parameterised by
a predicate and applies this predicate to all nodes of a node set passed
to it, eliminating all nodes which fail the predicate. For example, we can
now express ./book as the following construction2:

filter>[〈n, 2〉 ⇒ name(n) = “book”]
◦((.→)∗• ↙)

The second line simply describes “get-all-children”, but the first line
expresses our filter construction. First, note our predicate, which is the
entire expression in brackets:

[〈n, 2〉 ⇒ name(n) = “book”]

2For proper semantics, we must also test for the correct node type. We omit this test for
brevity.

12

Since the predicate needs to be parameterised by the node we are analysing,
we first bind the node to a name, “n” in our example, as expressed in the
tuple to the left of the double arrow. Here, the tuple also contains a “2”:
We can optionally bind a name to our current position within the node
set (which is useful e.g. if we want to pick precisely the 23rd node), and
if this information is of use to us, we must specify a name here. “2”
indicates that we do not care about this information (which is a useful
hint for compilation).

Also note the exponent attached to filter: This may be > (as in our
example), which indicates that the order in which the input node set is
processed is irrelevant, or one of � and �, which indicates a request to
iterate through the nodes in document order or in reverse document order
(respectively). As mentioned before, we can bind a name to our current
position in the node set— however, this position is meaningless unless we
specify such an order, and we disallow this binding if our iteration order
is >.

To describe the semantics of filter (and fold), we need to define an
auxiliary function, pickδ(−) : NodeSet → Node, which retrieves the
“next” element out of the node set in the prescribed order. Its definition
employs the Axiom of Choice in the case of δ = >, which we denote by a
function choice : NodeSet→ Node:

pick�(S) = inf�(S)

pick�(S) = sup�(S)

pick>(S) = choice(S)

where inf� and sup� yield the singleton containing the least element in
document order or the greatest element in document order (respectively),
if any such element exists, and ∅ otherwise.

In the next step, we will make use of a function D(−) : N → D which
maps natural numbers to their closest equivalents in D; this step is nec-
essary since an infinite subset of N cannot be represented in D, but we
would still like to provide positional information as accurately as possible.

We are now ready to define filter:

filterδ[〈n, i〉 ⇒ P](S)
∆
= F (S, 1)

where

F (∅, c) ∆
= ∅

F (S, c)
∆
= let e = pickδ(S)

S′ = F (S \ {e}, c + 1)
in C(S′, e, JP [n←[e,

i←[D(c)]K)

C(S′, e, true)
∆
= S′ ∪ {e}

C(S′, e, false)
∆
= S′

13

3.7 Semantics of guard

Guard is a generalisation of both filter and /: The operation filters all
incoming nodes, but rather than yielding nodes which succeed in the test,
it returns the union of all nodesets generated from these nodes.

guardδ[〈n, i〉 ⇒ 〈P, E〉](S)
∆
= F (S, E, 1)

where

F (∅, E, c)
∆
= ∅

F (S, E, c)
∆
= let e = pickδ(S)

S′ = F (S \ {e}, c + 1)
in C(S′, JE[n←[e,

i←[D(c)]K,
JP [n←[e,

i←[D(c)]K)

C(S′, E, true)
∆
= S′ ∪ E

C(S′, E, false)
∆
= S′

3.8 Semantics of fold

fold, which functional programmers also know as reduce or foldl (for “fold-
left”), allows a value to be aggregated over a node set. For example, the
XPath sum function can be implemented follows:

fold>[〈n, 2, o〉 ⇒ o + [n]Node
D](0.0)

(here, [n]Node
D is an explicit coercion from a Node to a D, which works

as described for singleton node sets in the XPath semantics).
In this example, we will return 0.0 whenever the NodeSet passed to

this construction is empty. Otherwise, we will, for each node, evaluate
the body once; during the first iteration, o is bound to 0.0, afterwards it
is bound to the result of the previous iteration, and finally the result of
the last iteration is returned.

Note that > and 2 have the same meanings as for filter before.
fold also commonly arises when performing comparisons over node

sets. In this case, XPath specifies existential semantics: If the specified
condition holds for any element of the node set, the entire condition is true.
We can e.g. express our earlier predicate [./author="Franz Kafka"] as
follows:

fold>[〈n, 2, o〉 ⇒ o ∨ ([n]Node
S ≡S “Franz Kafka”)](false)

◦filter>[〈n, 2〉 ⇒ name(n) ≡S “author”] ◦ ((.→)∗• ↙)

Formally, we can give the semantics of fold as

foldδ[〈n, i, o〉 ⇒ f](v)(S)
∆
= R(v, S, 1)

14

where

R(v1, ∅, c)
∆
= v1

R(v1, S, c)
∆
= let e = pickδ(S)

v2 = J[n←[e,
i←[D(c),
o←[v1]K

v3 = R(v2, S \ {e}, c + 1)
in v3

3.9 Semantics of ⊗
The ⊗ construction allows us to express common traversal. First, observe
its trivial definition, which is reminiscent of the categorial product:

(f1 ⊗ f2)(S)
∆
= 〈f1(S), f2(S)〉

Semantically, ⊗ seems to add nothing. However, consider ⊗ being
applied e.g. to two filter constructions: In this case, it will expect one
NodeSet as input, and yield the result of applying both filter construc-
tions to the same set. Since this can be implemented by having the bodies
of both filters test the same same node in sequence, only one iteration over
the node set is needed— we use this intuition as a justification to make
this class of common traversals explicit through the ⊗ operator. As con-
crete example, consider two queries, ./book and ./article, which we can
translate into

filter>[〈n, 2〉 ⇒ name(n) = “book”]
◦((.→)∗• ↙)

and
filter>[〈n, 2〉 ⇒ name(n) = “article”]

◦((.→)∗• ↙)

We can now merge these two queries into

(filter>[〈n, 2〉 ⇒ name(n) = “book”]
⊗ filter>[〈n, 2〉 ⇒ name(n) = “article”])

◦((.→)∗• ↙)

and deconstruct them via let.

3.10 Node-Caches

We use Node caches, type NCache, to represent cached nodesets. Gen-
eration for such nodesets is enforced to avoid multiple iterations over the
same nodeset. Semantically, the only nodeset operations are cache and
stream, which are defined as

(stream ◦ cache) s = s

and cachesize, which is

(cachesize ◦ cache) s = #s

15

In practice, cachesize is a very efficient function to compute the cardinality
of the nodeset represented by a node cache; of course, its efficiency comes
at the price of first representing the nodeset as a cache.

3.11 List-based semantics

While set semantics give a good intuition for the intended meaning of the
language, a model which more closely captures implementation issues is
provided by list-based semantics. As these are more involved, we will only
briefly sketch them here; in general, they are analogous to the set-based
semantics but require two additional primitives (which we listed in Figure
2, but did not explain before):

• nub: Eliminates duplicates in a given node stream while preserving
its order

• orderδ: Orders a given node stream in document order (δ =�) or
reverse document order (δ =�).

The list semantic description of exponentials, however, deserves some
mention here (using list comprehension and ++ for list concatenation):

Jf∗Kl(n)
∆
= [n] ++ [n′′|n′ � JfKl(n), n′′ � f∗(n′)]

An interesting property of these semantics is that in the case of nested
exponents, e.g.

((.←)∗• ↙)∗

they yield a depth-first pre-order traversal, which in turn gives us doc-
ument order for this important case. To see this, observe that every
returned list element of the inner exponent ((. ←)∗) is returned to the
outer exponent (into its n′); the outer exponent then immediately recurses
on it (in n′′ � f∗(n′)).

4 Code Generation from AXIL

Since the semantics of AXIL are pure (in a functional sense), both strict
and lazy implementations of the language are conceivable. Our current
implementation is strict; it generates nested loop code from a graph rep-
resentation of AXIL. In this graph representation, multiple uses of the
same value are made explicit to allow memoisation. Furthermore, we
have eliminated all occurrences of (◦) and (•) and, instead, use explicit
name bindings, i.e. the AXIL expression (.→)∗• ↙ becomes (essentially)

λn.(λm. . (→ (m)))∗(↙ (n))

In XJ, which provides the context for our current implementation, it is
possible for XPath query results to be immediately coerced to a primitive
type; in particular, coercions of queries on attribute node sets filtered
by name are common. We import all coercions into the actual AXIL
representations, which allows us to perform optimisations on them during
a later re-writing phase— in this particular example, the re-writing allows

16

us to reduce the (rather complex) AXIL expression to a single function
evaluation.

Other re-writings simplify AXIL terms; for example, our current back-
end implements the −+ exponent by expanding any expression f+ to the
equivalent of f∗ / f .

Also, fold and filter constructions are not annotated with ordering con-
straints in our current representation; the reason for this is that they
need not sort their inputs. However, they may be annotated with early-
termination predicates, which allow us to re-write the previous fold exam-
ple (3.8) as follows:

fold>

24 〈n, 2, o〉 ⇒
yield [n]Node

S ≡S “Franz Kafka”
until [n]Node

S ≡S “Franz Kafka”

35 (false)

◦filter>[〈n, 2〉 ⇒ name(n) ≡S “author”] ◦ ((.→)∗• ↙)

These early termination annotations (which we omitted in our previous
exposition for brevity, as they are not required for the set-based semantics)
are essential for efficiency. In the above, both occurrences of the predicate
would share their code and only be evaluated once.

5 Comparison and Results

To evaluate the usefulness of AXIL for immediate code generation, we
implemented it as part of the XJ [HRS+05] compiler, together with a
prototype backend which evaluates AXIL queries strictly. XJ currently
(v1.1) uses the Xalan DOM implementation to represent XML trees; our
AXIL implementation reflects this.

To compare our performance, we ran our implementation on three
micro-benchmarks and one XJ sample program, and compared results
with XJ v1.1, XJ using the XPath engine of Xalan for query evalua-
tion, and a manual implementation of all benchmarks (listed as “Man-
ual DOM”) which we had manually fine-tuned to the specific problem at
hand. All versions were run on Sun’s JDK 1.5.0, build 64, running on
GNU/Linux on top of a single-CPU 2.4 GHz Intel Pentium 4 machine
with 2GB of memory on a document of about 215 nodes. All queries were
executed at least 200 times, with the first 100 runs being discarded in an
attempt to minimise caching and JITting artifacts.

As shown in Figure 3, our AXIL performance is reasonably close to the
performance of our hand-optimised code. Our implementation has to deal
with some overhead caused by XJ semantics which we cannot eliminate
without more sophisticated program analyses, causing some of the over-
head observed in this figure. While more analyses will be required before
a final judgement can be made, our prototype system seems to perform
well enough to make it practical; in particular, it performs consistently
better than the existing XJ v1.1 evaluation system.

17

Benchmark Xalan XJ v1.1 AXIL Manual DOM
./country 9.9s 0.037s 0.024s 0.021s
descendant-or-self::node() 27.8s 4.27s 0.68s 0.46s
./country[@population >= 1000000]

[position() > (last() div 2)]
23.8s 0.36s 0.084s 0.047s

Mondial >24h 40.7s 5.7s 3.6s

Figure 3: Performance of a prototype AXIL-based compiler backend for XJ

6 Related Work

Translating XPath into other “intermediate” languages for the purpose
of optimisation or compilation has previously been done in [Pan04], who
translated XPath queries into SQL queries, and by Helmer and Kanne
[HKM02], for the Natix XML database. As noted by the latter, pipelining–
which corresponds to our deforestation process– is highly important in
computing results efficiently (by avoiding intermediate results). Unlike
our work, both systems directly apply databases for query processing.
Core XQuery [DFF+05] is also an intermediate language, statically typed
and with explicit coercions, but captures far more than XPath 1.0, while
(as argued previously) not allowing some traversal merges to be expressed.
In general, AXIL can be thought of as being at a slightly lower level than
core XQuery.

Among non-XPath alternative query languages, XAL [FHP02] also
uses a functional scheme with higher-order constructions, specifically also
with a Kleene-star “meta-operation”, though they rely on a “projection”
operation to filter nodes by name and kind, rather than relying on a
general-purpose filter operation.

7 Future Work

To validate the usefulness of AXIL, further optimisation steps will need to
be implemented on it. For example, we do not currently have a satisfactory
scheme for the elimination of sorting and duplicate removal primitives,
though we hope to adopt Hidders and Michiels scheme from [HM03].

7.1 Complete Schema types

Some optimisations require more type information than we currently pro-
vide. Consider, for example, a document which consists of “book” ele-
ments, which in turn contain (exclusively) “author” elements, which have
no element children of their own. When asked to search for all books
in the document, an overeager programmer might specify the query as
.//book, asking for a recursive traversal of the entire tree— which would
clearly touch far more nodes than necessary. With enough type informa-
tion, however, we could infer that the query need not descend and can be
expressed as the AXIL equivalent of ./book.

18

7.2 The preceding Axis

Almost all XPath axes can be represented concisely with the primitives
developed previously— the sole exception to this is the ordering of the
preceding axis, which we represent as

order� ◦ (←∗ • ↘)∗/←+ / ↑∗

Here, an explicit ordering operation is required, if the result of the opera-
tion needs to be ordered (i.e., if the result or a node set derived from the
result is passed into a fold or filter which makes use of its index parameter).

While the ←+ / ↑∗ fragment does generate its results in reverse doc-
ument order, as desired, the fragment (←∗ • ↘)∗ does not: In order to
achieve this, we would need a post-order depth-first traversal, but our
semantics for −∗ yield a pre-order traversal. We currently use the above,
inefficient solution, as the preceding axis is not used very frequently in
our experience; to provide a more satisfactory solution, a new exponential
primitive would be required.

8 Conclusion

AXIL is an XPath intermediate language suitable for a number of optimi-
sations. Being a pure functional language, it can be compiled both into
strict and into lazy code, or into a hybrid of both. We have described
the syntax and relevant parts of the AXIL language, given a rationale
for its current form, and sketched its current prototype implementation,
implemented within the XJ compiler. Initial performance results seem to
indicate that XJ is suitable for efficient compilation, though more analyses
will need to be performed before a conclusion can be drawn.

References

[App92] Andrew W. Appel. Compiling with Continuations. Cambridge
University Press, 1992.

[App98] Andrew W. Appel. SSA is Functional Programming. ACM
SIGPLAN Notices, 33(4):17–??, 1998.

[CD99] James Clark and Steve DeRose. XML Path Lan-
guage (XPath), Version 1.0. W3C Recommendation,
http://www.w3.org/TR/xpath, 1999.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Weg-
man, and F. Kenneth Zadeck. Efficiently Computing Static
Single Assignment Form and the Control Dependence Graph.
ACM Transactions on Programming Languages and Systems,
13(4):451–490, October 1991.

[Cla99] James Clark. XSL Transformations (XSLT) Version 1.0. W3C
Recommendation, http://www.w3.org/TR/xslt, 1999.

[DFF+05] Denise Draper, Peter Fankhauser, Mary Fernández, et al.
XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Working
Draft, http://www.w3.org/TR/xquery-semantics, 2005.

19

[FHP02] Flavius Frasincar, Geert-Jan Houben, and Cristian Pau.
XAL: An Algebra For XML Query Optimization. In Xiao-
fang Zhou, editor, Thirteenth Australasian Database Confer-
ence (ADC2002), Melbourne, Australia, 2002. ACS.

[HHW+00] Arnaud Le Hors, Philippe Le Hégaret, Lauren
Wood, et al. Document Object Model (DOM)
Level 2 Core Specification. W3C Recommendation,
http://www.w3.org/TR/DOM-Level-2-Core, 2000.

[HKM02] Sven Helmer, Carl-Christian Kanne, and Guido Moerkotte.
Optimized Translation of XPath Expressions into Algebraic
Expressions Parameterized by Programs Containing Naviga-
tional Primitives. In Proceedings of the International Con-
ference on Web Information Systems Engineering (WISE),
2002.

[HM03] J. Hidders and P. Michiels. Avoiding Unnecessary Order-
ing Operations in XPath. In Proceedings of the 9th In-
ternational Workshop on Database Programming Languages
(DBPL), Potsdam, Germany, 2003.

[HRS+05] Matthew Harren, Mukund Raghavachari, Oded Shmueli,
et al. XJ: Facilitating XML Processing in Java. In 14th In-
ternational World Wide Web Conference (WWW2005). ACM
Press, 2005.

[Jon88] Simon L. Peyton Jones. The Implementation of Functional
Programming Languages. Prentice-Hall, 1988.

[MW92] Simon Marlow and Philip Wadler. Deforestation for Higher-
Order Functions, 1992.

[Pan04] Tadeusz Pankowski. Processing XPath expressions in re-
lational databases. In P. van Emde Boas, J. Pokorny,
M. Bielikova, and J. Stuller, editors, SOFSEM 2004: Theory
and Practice of Computer Science, pages 265–276. Springer-
Verlag, 2004.

[PW99] Philip Wadler. A formal semantics of patterns in XSLT.
Markup Technologies, 16, 1999.

[Wad99] Philip Wadler. Two semantics for XPath.
http://homepages.inf.ed.ac.uk/wadler

/topics/xml.html, 1999.

20

