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Abstract
As the device shapes keep shrinking, the designs are more sensitive
to manufacturing processes. In order to improve performance pre-
dictability and yield, mask layout uniformity/evenness ishighly de-
sired, and it is usually measured by the feature density withdefined
feasible range in manufacture process design rules. To address the
density control problem, one fundamental problem is how to cal-
culate density accurately and efficiently. In this paper, wepropose
a fast exact algorithm to identify the maximum density for a given
layout. Compared with the existing exact algorithms, our algorithm
reduces the running time from days/hours to a few minutes/seconds.
And it is even faster than the existing approximate algorithms in lit-
erature.

Category: B.7.2 [Integrated Circuits]: Design Aids - Lay-
out; J.6 [Computer Applications]: Computer-Aided Engineering
- Computer-aided design

Terms: Algorithms, Design
Keywords: density, fix-dissection, DFM

1. Introduction
In very deep-submicron VLSI, manufacturing variations have be-
come an important consideration in chip designs [1, 15, 16, 19].
Mask layout uniformity is highly desired in order to improveper-
formance predictability and yield. To evaluate layout planarity, one
major criteria is the feature density, which is defined as theper-
centage of the total feature area on a given layer in a given check
window. Several manufacturing processes, such as CMP (Chemical
Mechanical Polishing), etch, CD (Critical Dimension) control, and
even lithography (implicitly for pitch) [2] are all sensitive to pattern
density such that foundries usually require an effective metal den-
sity to be satisfied, and the density rules are associated with many
process layers including diffusion and thin-ox [3, 6]. Meanwhile,
in order to satisfy density rules, dummy fills are inserted onthe
original layout to balance layout density distribution in order to re-
solve minimum density violations and achieve the evenness control.
Therefore, to address the density control problem (both density rule
checking and dummy fill insertion), one fundamental issue ishow
to calculate density accurately and efficiently.

Given a fixed layout and window size, ideally, we want to iden-
tify the windows with the maximum (minimum) density. In [3, 6],
this problem is defined as “Extremal-Density Window Analysis”.

Extremal Density Window Analysis (EDWA): Given a fixed win-
dow sizeW and aMxN layout withK non-overlap rectangles, find a
WxW density window which has the maximum (minimum) density.

In this paper, we propose an exact and fast algorithm to find
the maximum density window on a given layout. In some cases,

identifying windows whose density is higher/lower than thegiven
density is required. For example, a foundry requires that the density
range should be[15%,85%]. If the density of a window is outside
the range, the window is reported to have the density violation, and
it should be fixed with dummy fills/cheesing holes. With a little
modification of our algorithm, it can be used to identify window
density violations as well. In the rest of the paper, we will focus
on the EDMA problem to find the maximum density windows. The
minimum density window can be handled in the similar way.

In literature, [3, 6] proposed exact algorithms to address EDMA
problems. However, the running time is very long. As shown later
in the experimental result section, the running time is measured by
hours or days. Such a long running time prohibits these algorithms
to be used in real designs. [4, 6] also proposed approximate al-
gorithms such that the difference between the reported maximum
density and the actual maximum density is within the given error
bound. However, the algorithms cannot report the exact maximum
window density, and the running time depends on the given error
bound. The smaller the error bound is, the longer the runningtime.

Due to the lack of efficient density calculation algorithms,most
commercial tools use fix-dissection approach (it is also called sliding-
window approach) to estimate density. In Section 2, we address the
limitation of this approach, and show that only a very small percent
of windows are selected for the density check. In Section 3, we
present density theorems which are the basis of our density calcu-
lation algorithm. Then we propose an exact fast density calculation
algorithm in Section 4. The experimental results are presented in
Section 5, and Section 6 concludes the paper.

2. Fix-Dissection Approach
Limitation

A standard practice in the density calculation is to consider only
windows from a fix dissection [5, 7, 8, 9, 10, 11, 12, 13, 14, 17,
18, 20]. In this approach, a layout is partitioned intoM

R x N
R non-

overlappingRxR windows. UsuallyW is multiple times ofR, and
R is called sliding step. Then only windows whose boundaries fall
on theR-grid is checked for density as shown in Figure 1. For
convenience, we call this kind of windows as sliding-window. In
Figure 1, the two blue solid windows are on the grid, and they are
checked for the window density. But the red dash window won’tbe
considered. In this work, we are using square windows, whileour
algorithm is also applicable to general rectangular windows.

Fix-Dissection approach is fast, but it only checks a very limited
number of windows. In thisMxN layout, totally there are(M −
W + 1)x(N−W + 1) windows. WithR-dissection, only(M−W

R +

1)x(N−W
R +1) windows are checked. For example, suppose the lay-

out is 1mmx1mm, and the window size is 20um. Let the minimum
feature unit is 10nm. Then in this case,M = N = 1mm/10nm= 105,
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Figure 1: Fix-dissection approach. The layout is divided bya R-
grid. Only windows (the blue solid windows) whose boundaries
are on the grid are checked for density. Other windows such asthe
red dash window is not checked.

W = 20um/10nm= 2000. So totally there are around 9.6x109 win-
dows. Most industrial applications useR = W/2, then the num-
ber of sliding-windows is less than 1x104. Therefore, only a very
small percent of windows are checked. This may not be a problem
in previous technology nodes, but the non-exact density verifica-
tion will become a significant issue in deep submicron technology
for DFM (Design For Manufacture). Especially, as device shapes
keep shrinking, the minimum feature size will become even smaller,
while the chip size will become larger, the demand on densityac-
curacy will increase. For example, the recent TSMC DFM Data
Kit (DDK) requires an accurate density input for etch/deposit/CMP
depths calculation.
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Figure 2: The two windows in (a) and (b) are onR-grid, and have
the maximum densityD from the fix-dissection approach. The win-
dow in (c) is not a sliding-window, but it has larger density.

Finally, we show that by shrinkingR, the fix-dissection approach
cannot produce the exact density calculation untilR reaches the
minimum feature size.

Lemma 1. If R is larger than the minimum feature size, the fix-
dissection approach cannot guarantee to solve the extremal-density
window analysis problem exactly.

Figure 2 shows a counter example. In Figure 2, suppose the maxi-
mum density of sliding-windows isD, and the two windows in Fig-
ure 2 (a) and (b) reach the maximum densityD. For simplicity, let
the wires long enough such that only x-direction need be considered
in density calculation. Assume there areP wires, and all wires ex-
cept the rightmost green one have the same wire widthz. The right-

most wire has a widthz+R/2. The wire spacing iss=
W−P·z−R/2

P−1 .

Then for the window in (c), its density isP·z+R/2
W > D. This case

shows that shrinkingR in the fix-dissection approach cannot guar-
antee to find the maximum density window.

3. Density Bound
Although fix-dissection approach cannot guarantee to identify the
maximum density window, it provides basic information on density
distribution.

Theorem 1. Any window Win must be fully covered by four
sliding-windows. And the density ofWin satisfies that DWin−DRwin≤
R
W −( R

2W )2, where Dwin is the density of Win, and DRwin is the max-
imum density of the four sliding-windows.

PROOF. Suppose the coordinate of the left bottom corner ofWin
is (x,y). Then it must be covered by four sliding-windows whose
left bottom corners are(⌊ x

R⌋ ·R, ⌊ y
R⌋ ·R), (⌊ x

R⌋ ·R+ R, ⌊ y
R⌋ ·R),

(⌊ x
R⌋ ·R, ⌊ y

R⌋ ·R+R), and(⌊ x
R⌋ ·R+R, ⌊ y

R⌋ ·R+R). As shown in
Figure 3, the red window is fully covered by the four blue windows
in Figure 3 (a), (b), (c) and (d). For convenience, the four windows
are named asWLB, WRB, WLU andWRU, respectively. Also let their
density beDLB, DRB, DLU andDRU. Assume thatu = x−⌊ x

R⌋ ·R
andv = ⌊ x

R⌋ ·R+R−x. Similarly,s= y−⌊ y
R⌋ ·Randt = ⌊ y

R⌋ ·R+
R−y.

The density difference betweenWinand one of the four sliding-
windows is decided by the metal area in the shadow regions (the
blue region and the red region in Figure 3). The maximum dif-
ference can be reached when one region has no features while the
other region is totally occupied. Therefore, we have

DWin−DLB ≤
W ·u+W ·s−u·s

W2

DWin−DRB ≤
W ·v+W ·s−v·s

W2

DWin−DLU ≤
W ·u+W · t −u· t

W2

DWin−DRU ≤
W ·v+W · t −v· t

W2

SinceDRwin = max{DLB,DRB,DLU ,DRU}, we have

DWin−DRwin≤min{W·(u+s)−u·s
W2 , W·(v+s)−v·s

W2 , W·(u+t)−u·t
W2 , W·(v+t)−v·t

W2 }

Without loss of generality, we assumeu≤ v ands≤ t. Then

min{W·(u+s)−u·s
W2 ,

W·(v+s)−v·s
W2 ,

W·(u+t)−u·t
W2 ,

W·(v+t)−v·t
W2 }=

W·(u+s)−u·s
W2

In short, we getDWin−DRwin≤
W·(u+s)−u·s

W2 .

Next, we prove thatW·(u+s)−u·s
W2 ≤ R

W − ( R
2W )2.

Sinceu+v = R andu≤ v, we getu≤ R
2 . Similarly,s≤ R

2 . Let
u = R

2 −a ands= R
2 −b (a,b≥ 0). Then

W · (u+s)−u·s

W2 =
R−a−b

W
−

1
W2 · (

R
2
−a) · (

R
2
−b)

=
1

W2 · (a+b) · (
R
2
−W)−

a·b

W2 +
R
W

− (
R

2W
)2

We know thatW > R
2 . Therefore, only whena = b = 0, the

maximum value can be reached. Thus we have
W·(u+s)−u·s

W2 ≤ R
W − ( R

2W )2.

Theorem 1 gives the density bound of a window. The next the-
orem states the properties of a maximum density window within
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Figure 3: Any window (the red window) can be covered by four sliding-windows.

a given region. For convenience, we define edge directions ofa
window/rectangle as the clockwise direction.

Theorem 2. Given a region with k rectangles, there exists a
maximum density window that has two adjacent window edges over-
lap two rectangle edges. Furthermore, the overlapped window edges
and rectangle edges are in the same directions.

PROOF. First, we prove that if neither the left nor the right edge
of a maximum density window touches the edges of any rectangles,
then the window density is not changed when the window moves
left/right.

In Figure 4, the blue solid window is a maximum density win-
dow, and no rectangle edges are on the window edge. When the
maximum density window moves left before touching any rectangle
edge, the feature area in the two shadow regions is the same. Other-
wise, suppose the purple dotted window has less density. Since the
shadow region has the same width, only the total height of therect-
angles that cross the left/right edge of the blue window matters. If
the dotted window has less density, we haveh1 +h2 < h3 as shown
in Figure 4 (a). Then the green dash window in Figure 4 (b) has a
density higher than the maximum density sincev·(h1+h2) < v·h3.

(a)

h2

h3

(b)

h1

u u v v

h2

h3h1

Figure 4: The blue solid window has the maximum density. (a)
When the blue window moves left without touching any rectan-
gle edges, the total feature areas in the two shadow regions are the
same. (b) When the blue window moves right without touching any
rectangle edges, the feature areas in the two shadow regionsare the
same.

Similarly, if we move a maximum density window up/down
without touching a rectangle edge, the window density won’tbe
changed. Therefore, we can always find a maximum density win-
dow whose two adjacent edges overlap with two edges of rectan-
gles.

Next, we show that the overlapped window edges and rectan-
gle edges are in the same directions. Suppose no same direction
window/rectangle edge pair overlaps with each other.

In Figure 5, the blue solid windowWin has the maximum den-
sity, and either the left window edge touches a right rectangle edge
(such asC), or the right window edge touches a left rectangle edge
(such asE andF). But no rectangles likeA or B exist. We define:

Hl : total height of rectangles crossing the left window edge;
Hr : total height of rectangles crossing the right window edge;
Tl : total height of rectangles whose right edge touches the left

window edge;
Tr : total height of rectangles whose left edge touches the right

window edge.
For the example in Figure 5,Hl = hd, Tl = hc, Hr = hg and

Tr = he+ hf . When the window moves left or right with a stepu
without touching any new rectangle edges, we get two new win-
dows as shown in Figure 5. One is the purple dotted windowWinl
and the other is the green dash windowWinr .
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Figure 5: Assume that rectanglesA andB do not exist. Rectangle
C, E andF have an edge overlapping with a window edge. But the
directions are different.

Also let D, Dl andDr be the density ofWin, Winl andWinr ,

respectively. Then we getD−Dl = (Hr−Hl−Tl )·u
W2 , andD−Dr =

(Hl−Hr−Tr )·u
W2 . SinceD has the maximum density, we have

(Hr −Hl −Tl ) ·u

W2 ≥ 0 ⇒ Hr ≥ Hl +Tl

and
(Hl −Hr −Tr) ·u

W2 ≥ 0 ⇒ Hl ≥ Hr +Tr

ThereforeTl = Tr = 0. This contradicts our assumption that at least
one rectangle edge touches a window edge. Similar proof applies
for y-direction.



4. Density Calculation Algorithm
In this section, we propose an algorithm to solve the EDWA prob-
lems. The algorithm is based on the two theorems. We first outline
the whole algorithm, then detail explanations are presented for each
step. For convenience, we use a triple to represent a square region.
For example,(x,y,B) refers to aBxB region whose left bottom cor-
ner is at(x,y).

Algorithm DensityCalculation(M, N, W, R, Rects)
1. m= M/R; n = N/R;
2. err = R/W− (R/2W)2;
3. Rmap= Build Rect Map(R, Rects);
4. For each grid tile (iR, jR, R)
5. Calculate the tile density Rgrid[i][ j ];
6.
7. For each region (iR, jR, W−R)
8. Calculate the region density Rcenter[i][ j ];
9.
10. For each region (iR, jR, W)
11. Calculate the window density Rwin[i][ j ];
12.
13. U = max{Rwin[i][ j ]};
14. For i = 0 to m−2
15. For j = 0 to n−2
16. dmax= max{Rwin[i][ j ], Rwin[i +1][ j ],

Rwin[i][ j +1], Rwin[i +1][ j +1]};
17. if(dmax+err > U)
18. U = Detail Density (iR, jR,R,Rcenter[i +1][ j +1]);
19. Output U ;

In Density Calculation,M andN are thex andy dimension of
the given layout.W is the window size, andR is the sliding step.
Rectsrecords all rectangles in the given layout.

4.1 Data Preparation
The algorithm starts from a fix-dissection density calculation with
a sliding stepR. After setting up amxn grid, we define a center-
window as a sliding-window with a window size(W − R). As
shown in Figure 6 (a), the blue solid window is a sliding-window,
and the red dotted window is a center-window. For each grid tile,
we calculate its density, and store the results in a 2D arrayRgrid.
Based onRgrid, it is easy to get the center-window density and
sliding-window density, and the values are saved in the 2D array
Rcenterand Rwin, respectively. Since each center-window is a
part of a sliding-window, the center-window density calculation
does not need extra running time. At the same time, the max-
imum sliding-window densityU is derived. Lines 1∼ 13 finish
these preparations.

To calculate the density of a region is a basic operation in this
algorithm, and its first step is to identify rectangles whichhave
overlap with the region. Therefore, we build a rectangle mapto
speed rectangle searching. For the givenMxN layout, claim a two-
dimension arrayRmap[M/R,N/R], the elements ofRmapare a
rectangle id list. For any rectanglerect, suppose(xl ,yl ) and(xh,yh)
are the left bottom corner and the right upper corner of the rectan-
gle, respectively. Thenrect will be recorded inRmap[⌊xl/R⌋..⌊xh/R⌋,
⌊yl /R⌋..⌊yh/R⌋]. Figure 7 shows an example. Figure 7 (a) gives a
layout with 14 rectangles. Figure 7 (b) is theRmap. Rmap[i][ j ] is a
rectangle id list.

The algorithm BuildRect Map is summarized as follows.R is
the original sliding step, andRectsis the rectangle list.
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Figure 6: (a) Illustration ofRgrid, RcenterandRwin. (b) Suppose
the maximum sliding-window density ofRwin[1][1], Rwin[1][2],
Rwin[2][1], andRwin[2][2] is larger thanU . Then the blue region
(1,1,W + R) is selected for further density analysis. The center-
window Rcenter[2][2] is shared by the four sliding-windows.
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Figure 7: (a) A layout with 14 rectangles (b) The corresponding
Rmap

Algorithm Build RectMap(R, Rects)
1. Initialize Rmapas Rmap[i][ j ] = NULL
2. For each rect in Rects
3. For ii = ⌊xl /R⌋ to ⌊xh/R⌋
4. For j j = ⌊yl /R⌋ to ⌊yh/R⌋
5. Insert rect into Rmap[ii ][ j j ];

According to Theorem 1, we know that any window can be
covered by four sliding-windows, and its density is boundedby
dmax(the maximum density of the four sliding-windows) pluserr
(R/W− (R/2W)2). Therefore, ifdmax+ err ≤ U , it means that
any window inside the region that is covered by the four sliding-
windows cannot have a density larger thanU , and we do not need
consider those windows any more. This step helps to prune many
regions so that we only need focus on certain areas which will
be handled by DetailDensity. In Figure 6 (b), suppose the max-
imum value ofRwin[1][1], Rwin[1][2], Rwin[2][1], andRwin[2][2] is
larger thanU , then the blue region is selected for DetailDensity.
Meanwhile, the center pink region is shared by these four sliding-
windows, andRcenter[2][2] is fed into DetailDensity as an input.

4.2 Density Calculation
In this section, we present algorithms to identify the maximum den-
sity window in a given region. The main idea is to recursivelyapply
the fix-dissection approach with smaller sliding steps. Foreach dis-
section, we can further prune regions based on Theorem 1. When
the region size is small enough, we will call ExactDensity algo-
rithm to report a maximum density window in the given region.



Algorithm Detail Density(X, Y, B, centerdens)
1. If (B+W < DSIZE)
2. Then U = Exact Density(X, Y, B, centerdens);
3. Return U ;
4.
5. R̄= B/k
6. For i = 0 to 2k
7. For j = 0 to 2k
8. if(i == k and j == k)
9. then Rdens[i][ j ] = centerdens;
10. continue;
11. region.xl = Region Point(X, i, R̄);
12. region.yl = Region Point(Y, j , R̄);
13. region.xh = Region Point(X, i +1, R̄);
14. region.yh = Region Point(Y, j +1, R̄);
15. Calculate regiondensity Rdens[i][ j ];
16.
17. Calculate center-window density Cdens[i][ j ] (1≤ i, j ≤ k);
18. Calculate sliding-window density Wdens[i][ j ] (0≤ i, j ≤ k);
19.
20. err = R̄/W− (R̄/2W)2;
21. For i = 0 to k
22. For j = 0 to k
23. dmax= max{Wdens[i][ j ], Wdens[i +1][ j ],

Wdens[i][ j +1], Wdens[i +1][ j +1]};
24. if(dmax+err > U)
25. U = Detail Density(iR̄, jR̄, R̄, Cdens[i +1][ j +1]);

In Detail Density,X andY are the coordinates of the left bottom
corner of the input region.B is the original sliding step, and̄R is the
new sliding step.k is a pre-defined division factor such thatR̄= B

k .
Lines 5∼ 18 calculate sliding-window density. RegionPoint is to
get the four corners of a grid tile. The grid tile is illustrated as
Figure 8 (c) and the details will be presented in Section 4.2.2. Lines
20∼ 25 prune regions based on Theorem 1.

4.2.1 Region Properties
As we notice that all regions processed by DetailDensity have a
size less than 2Wx2W. Therefore, for any inputLxL (L < 2W)
region, we have the following observations:

1. L = W +B.

2. All WxW windows inside this region share a(2W−L)x(2W−
L) area, which is in the center of the region. Furthermore, the
density of this area iscenterdens.

3. The left bottom corner of anyWxW window must fall in the
BxB area on the left bottom corner of the region.

4. The number of sliding-windows within this region is(k+1)2.

In Figure 8 (a), the center green area is covered by anyWxW
window inside theLxL region. And the left bottom corner of all
windows must be within the pink area including the boundaries.
If the sliding step isR̄, then the total number of grid points inside
the pink area is(B

R̄
+ 1)2, i.e., (k+ 1)2. In other words, there are

(k+1)2 sliding-windows in the given region.

4.2.2 Region Partition
The main idea of DetailDensity is to recursively apply the fix-
dissection approach with smaller sliding steps. The running time
of the fix-dissection approach is closely related to:

(1) the number of rectangles to be checked for each tile;
(2) the number of tiles.
To reduce the number of rectangles to be checked for each tile,

we draw onRmap. With the help ofRmap, we only need check a
few rectangle lists instead of traversing all rectangles. For example,
if a tile is (x,y,H). Then we only need check the rectangle lists reg-
istered inRmap[⌊ x

R⌋.. ⌊
x+H

R ⌋, ⌊ y
R⌋..⌊

y+H
R ⌋], whereR is the initial

sliding step.
When we apply the fix-dissection algorithm, the region is parti-

tioned into L
R̄

x L
R̄

tiles as the grid in Figure 8 (b). From the region
property (2), we know that the center green area is shared by all
sliding-windows. Therefore, it is not necessary to divide this area
into tiles. Instead, the whole green area should be treated as one
tile. Furthermore, the density of this center area is already calcu-
lated in the last dissection when the sliding step isB, and the value
is input to the new dissection ascenterdens. Since the center area
takes a large percent of a sliding-window,centerdenshelps save
a lot of rectangle-tile overlap checking. For example, in Figure 8
(b), L/B = 8. The center area takes more than half of the whole
region, while we only need calculate the density of the tilesalong
the boundaries.

Meanwhile, the left bottom corner of sliding-windows can only
fall in the pink region. It is not necessary to calculate density for
grids Gi (i = 1, ..,12) separately as shown in Figure 8 (b). There-
fore, these twelve tiles can be merged, and be treated as one tile as
G[2,3] in Figure 8 (c). In this way, the number of tiles is reduced
from 256 in Figure 8 (b) to 24 in Figure 8 (c). For a general case, if
the size of the whole region isW +B, then the number of tiles can
be reduced from(W+B

R̄
)2 to ( 2B

R̄
+1)2 = (2k+1)2. k is a given con-

stant. Thus only a constant number of tiles need to be checkedfor
a given region at each dissection. In the algorithm DetailDensity,
Regionpoint is to get the coordinates of these tiles. Once the tile
region is identified, its density can be easily derived.

4.2.3 Exact Maximum Density Calculation
Given a region(X,Y,L) (L < 2W), we want to find a window with
the maximum density. The total number of windows within thisre-
gion is (L−W + 1)2. For example, ifL = 2,200 andW = 2,000,
there are 40,401 windows. Still, the searching spacing is pretty
large. On the other hand, from Theorem 2, we know that at least
one maximum density window has its two adjacent edges overlap
with two rectangle edges, and the window/rectangle edge pair has
the same direction. This motivates us to focus on the windowssat-
isfying these conditions so that the searching space can be signifi-
cantly reduced.

In Figure 9 (a), the window satisfies all the above requirements.
The left window edge overlaps the left edge ofR5 andR6, and the
upper window edge touches the upper edge ofR1. On the other
hand, although the left and upper window edge in Figure 9 (b) also
overlap with an edge ofR5, R6 andR1, their directions are different.
The left window edge overlap with the right edge ofR5 and R6,
and the upper window edge overlap with the bottom edge ofR1.
Therefore, this kind of windows dose not satisfy the criteria. In
Figure 9 (c), none of the window edges touch any rectangle edges,
and this window won’t be considered.

As we notice that the region sizeL is always less than 2W. In
section 4.2.1, we know that all windows inside such a region share
the center(2W − L)x(2W − L) area. Therefore, we do not need
consider the rectangles inside the center area, and get its density
from the inputcenterdensinstead. Furthermore, the window edge
distribution has its own range. For the left window edge, itsx-
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Figure 9: (a) The left and upper edges of the window overlap with a
left rectangle edge and an upper rectangle edge. (b) A windowhas
two adjacent edges overlapping with two rectangle edges. But the
rectangle/window edges have different directions. (c) A window
has no edge overlapping with any rectangle edges.

coordinate must fall in the range[X,X +(L−W)]. Therefore, we
only need record the left rectangle edges satisfying this constraint.
If the x-coordinate of a left rectangle edge is larger thanX +(L−
W), no feasible window matches this rectangle edge with its left
window edge. We have similar constraints for the right, upper and
bottom window edges.

Figure 10 shows an example. In Figure 10 (a), there are 14 rect-
angles in the givenLxL region. The center(L−2B)x(L−2B) area
is shared by all windows inside the region. Since the left window
edge can only fall within the first column, we only need consider
the left edge ofR1, R5 andR6 as the blue and green lines in Fig-
ure 10 (b). Although the right edges ofR5 andR6 are also within
the first column, they are not considered. Similarly, only the upper
edge ofR1, the right edge ofR10 andR13, and the bottom edge of
R14 are selected. When two of these edges are selected, e.g., the
upper edge ofR1 and the right edge ofR10, one window is fixed as
shown in Figure 10 (c), and this window satisfies all the constraints.
Therefore, for each selected edge, a dotted line is created as shown
in Figure 10 (d). The distance between an edge and the correspond-

ing dotted line isW. In this way, we set up a grid over the given
region, and all windows that satisfy the constraints have their edges
on this grid. The solid red dots in Figure 10 (d) are the possible
locations for the left bottom corner of a window. In this example,
we only need check 20 windows. The algorithm is summarized as
follows. X andY are the coordinates of the left bottom corner of the
given region.B is the sliding step of the previous dissection, and
centerdensis the density of the center area.

Algorithm Exact Density(X, Y, B, centerdens)
1. For all rectangles rect in the given region
2. If rect.xl ∈ [X,X +B], add rect.xl to Llist;
3. If rect.xh ∈ [X +W,X +W +B], add rect.xh to Rlist;
4. If rect.yl ∈ [Y,Y+B], add rect.yl to Blist;
5. If rect.yh ∈ [Y+W,Y +W +B], add rect.yh to Ulist;
6.
7. Setup a grid based on Llist, Rlist, Blist and Ulist;
8.
9. Calculate density for each grid tile except the center tile;
10. Set the density of the center tile as centerdens;
11.
12. For each grid point (i, j) in the region (X,Y,B)
13. WinDens= density of the window whose left bottom

corner is on grid[i][ j ];
14. If (Windens> U)
15. U = Windens;
16. Return U ;

When ExactDensity is called, the region size is very close to the
window size. So the number of rectangle edges within the boundary
tiles is very limited, which means that the grid size in ExactDensity
won’t be big. Therefore, only a small amount of windows need to
be checked, and this guarantees a short running time.

REMARK In this paper, we focus on identifying the maximum
density window. In reality, we may also want to find regions whose
density is larger than the given density bound. By changingU to the
given density bound, our algorithm can be used to serve this task as
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well.

5. Experimental Results
We implemented our algorithm in C on an AIX workstation (1.2GHz)
with 2GB memory. The test cases are derived from industry de-
signs. For comparison purpose, we also implemented the two algo-
rithms in [6]. One is ALG3 which is the fastest exact algorithm in
[6]. The other is “Multilevel Density Analysis” (MDA) whichis an
approximate algorithm and it terminates when the reported density
is within an error bound of the actual maximum density. We setthe
error bound as 2%. Table 1 summarizes the layout dimension and
the number of rectangles in each test case. Table 2 and 3 show the
test results with two window sizes 24um and 32um, respectively.
The algorithm starts with a sliding step ofW

4 , and set the recursive
partition factork = 4. For ALG3, although it can identify the exact
maximum density window, the running time is very long, measured
by hours or days. Such a long running time is not acceptable inreal
designs. We killed the tests when the running time was longerthan
24 hours. (To verify the correctness of our implementation,we also
finished the test caseTest3. When the window size was 32um, it
took more than 2 days to finish.) On the other hand, the algorithm
MDA is fast, but it cannot find the exact maximum density, and the
running time will increase with smaller error bounds. For all test

Table 1: Test casess
Testcase Layout Area (um2) #rectangles

Test1 576x576 191,967
Test2 576x576 360,799
Test3 512x512 449,828
Test4 1248x1216 762,412
Test5 512x512 1,375,605
Test6 992x992 3,106,559
Test7 992x992 4,632,445
Test8 992x992 5,033,242
Test9 1216x1216 5,287,136
Test10 992x992 5,583,589

cases, our algorithm can report the exact maximum density, and its
running time is even shorter than that of MDA.

One big advantage of our algorithm is that it fully utilizes the
results from previous iterations. For each region processed by De-
tail Density or ExactDensity, the center area gets its density infor-
mation directly from the previous iteration, and this savesa lot of
computations. Especially, when the sliding step becomes smaller,
the percentage of the center area dominates the whole region, and
the rectangles falling on the boundaries are very limited. The MDA
[6] also adopts the recursive partition approach. But in each itera-
tion, a region is partitioned into smaller tiles with a finer grid, and
the density calculation has to be called for each grid tile. None of
the previous density calculation can be reused.

Table 2: Test results with a window size 32um
ALG3[6] MDA[6] ( err ≤ 2%) Our Alg

Test Max CPU Max CUP Max CPU
Dens (s) Dens (s) Dens (s)

Test1 57.54% 22027 58.41% 300 57.54% 2
Test2 42.83% 83254 43.26% 224 42.83% 4
Test3 28.99% 51h 30m 29.32% 170 28.99% 42
Test4 84.48% 46231 85.52% 821 84.48% 3
Test5 - > 24h 19.61% 197 19.35% 110
Test6 - > 24h 56.33% 136 55.57% 39
Test7 - > 24h 47.95% 687 47.34% 195
Test8 - > 24h 26.93% 138 26.64% 73
Test9 - > 24h 86.88% 135 85.90% 15
Test10 - > 24h 39.30% 346 38.96% 74

Table 3: Test results with a window size 24um
ALG3[6] MDA[6] ( err ≤ 2%) Our Alg

Test Max CPU Max CUP Max CPU
Dens (s) Dens (s) Dens (s)

Test1 67.23% 10587 68.06% 436 67.23% 1
Test2 47.40% 42289 48.02% 817 47.40% 3
Test3 29.82% 93242 30.20% 201 29.82% 32
Test4 84.42% 22876 85.57% 1421 84.42% 5
Test5 - > 24h 21.05% 166 20.94% 88
Test6 - > 24h 58.62% 270 57.56% 28
Test7 - > 24h 50.82% 779 50.04% 96
Test8 - > 24h 28.49% 128 28.08% 64
Test9 - > 24h 88.24% 104 86.84% 15
Test10 - > 24h 43.51% 213 42.92% 46



Moreover, Theorem 1 greatly reduces the number of regions that
need to be considered for density calculation. For example,if the
original sliding step isW

4 , and the partition factork = 4. Then in
the 3rd dissection, the sliding step isW43 = W

64, and the error bound

from Theorem 1 is1
64 − ( 1

128)
2 ≈ 1.556%. In other words, after

two dissections, we only need consider windows whose density is
very close to the actual maximum density (the density difference is
less than 1.556%). This is extremely effective when the density dis-
tribution has some density hot spots, which is a must check inthe
post-design stage. The experiments are to identify maximumden-
sity windows, while the minimum density windows can be handled
similarly.

6. Conclusion
Density calculation is a fundamental operation in many manufactur-
ing processes. As the device shapes keep shrinking, the minimum
feature size will become even smaller, while the chip size contin-
ues to grow, the demand on the accuracy of density calculation will
keep increasing. In this paper, we propose a fast exact algorithm
to identify the maximum density for a given layout. (Minimum
density checking can be extended similarly.) Compared withthe
existing exact algorithms, our algorithm reduces the running time
from days/hours to a few minutes/seconds. And it is even faster
than the existing approximate algorithm in the literature.
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