RC24076 (W0610-054) October 13, 2006
Computer Science

|BM Resear ch Report

|sYour Layout Density Verification Exact?
A Fast Exact Algorithm for Density Calculation

Hua Xiang', Kai-Yuan Chao? Ruchir Puri!, Martin D.F. Wong?

IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Y orktown Heights, NY 10598

?Intel Corporation
Hillsboro, OR

3ECE Department
University of Illinois at Urbana-Champaign
Urbana, IL

—=—=—=—=2= Research Division
£ S= 555 Almaden- Austin - Beijing - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on theinternet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.




Is Your Layout Density Verification Exact ?
— A Fast Exact Algorithm For Density Calculation

Kai-Yuan Chao
Intel Corporation
Hillsboro OR

Hua Xiang
IBM T.J. Watson
Yorktown Heights NY

huaxiang@us.ibm.com kaiyuan.chao@intel.com

Abstract

As the device shapes keep shrinking, the designs are masitigen
to manufacturing processes. In order to improve performame-
dictability and yield, mask layout uniformity/evennessighly de-
sired, and it is usually measured by the feature density défmed
feasible range in manufacture process design rules. Tessldne
density control problem, one fundamental problem is howate c
culate density accurately and efficiently. In this paper pnapose
a fast exact algorithm to identify the maximum density foraeg
layout. Compared with the existing exact algorithms, ogodthm
reduces the running time from days/hours to a few minutesrsis.
And it is even faster than the existing approximate algongfin lit-
erature.

Category: B.7.2 [Integrated Circuits]: Design Aids - Lay-
out; J.6 [Computer Applications]: Computer-Aided Engirieg
- Computer-aided design

Terms: Algorithms, Design

Keywords: density, fix-dissection, DFM

1. Introduction

In very deep-submicron VLSI, manufacturing variations én&e-
come an important consideration in chip designs [1, 15, 8§, 1
Mask layout uniformity is highly desired in order to improper-
formance predictability and yield. To evaluate layout pldty, one
major criteria is the feature density, which is defined aspbe
centage of the total feature area on a given layer in a giveokch
window. Several manufacturing processes, such as CMP (ichem
Mechanical Polishing), etch, CD (Critical Dimension) aahtand
even lithography (implicitly for pitch) [2] are all sensié to pattern
density such that foundries usually require an effectivéahaen-
sity to be satisfied, and the density rules are associatédmany
process layers including diffusion and thin-ox [3, 6]. Meduile,
in order to satisfy density rules, dummy fills are insertedtiom
original layout to balance layout density distribution ialer to re-
solve minimum density violations and achieve the evennessa.
Therefore, to address the density control problem (botkitierule
checking and dummy fill insertion), one fundamental issueois
to calculate density accurately and efficiently.

Given a fixed layout and window size, ideally, we want to iden-
tify the windows with the maximum (minimum) density. In [3, 6
this problem is defined as “Extremal-Density Window Anadysi

Extremal Density Window Analysis (EDWA): Given a fixed win-
dow sizeW and aMxN layout withK non-overlap rectangles, find a
WxW density window which has the maximum (minimum) density.
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identifying windows whose density is higher/lower than tieen
density is required. For example, a foundry requires thad#nsity
range should b&l5% 85%. If the density of a window is outside
the range, the window is reported to have the density vimagnd

it should be fixed with dummy fills/cheesing holes. With alditt
modification of our algorithm, it can be used to identify wimd
density violations as well. In the rest of the paper, we wittds
on the EDMA problem to find the maximum density windows. The
minimum density window can be handled in the similar way.

In literature, [3, 6] proposed exact algorithms to addrd3MA
problems. However, the running time is very long. As showerla
in the experimental result section, the running time is mess by
hours or days. Such a long running time prohibits these lgos
to be used in real designs. [4, 6] also proposed approximate a
gorithms such that the difference between the reported mani
density and the actual maximum density is within the giveworer
bound. However, the algorithms cannot report the exact mmaxi
window density, and the running time depends on the giveor err
bound. The smaller the error bound is, the longer the runtiing.

Due to the lack of efficient density calculation algorithmmest
commercial tools use fix-dissection approach (it is alstedaliding-
window approach) to estimate density. In Section 2, we axiditee
limitation of this approach, and show that only a very smatigent
of windows are selected for the density check. In Section&, w
present density theorems which are the basis of our dereity-c
lation algorithm. Then we propose an exact fast densityutation
algorithm in Section 4. The experimental results are preseim
Section 5, and Section 6 concludes the paper.

2. Fix-Dissection Approach
Limitation

A standard practice in the density calculation is to consatdy
windows from a fix dissection [5, 7, 8, 9, 10, 11, 12, 13, 14, 17,
18, 20]. In this approach, a layout is partitioned iffx§ non-
overlappingRxR windows. Usuallyw is multiple times ofR, and
Ris called sliding step. Then only windows whose boundaids f
on theR-grid is checked for density as shown in Figure 1. For
convenience, we call this kind of windows as sliding-windokw
Figure 1, the two blue solid windows are on the grid, and threy a
checked for the window density. But the red dash window wbe't
considered. In this work, we are using square windows, while
algorithm is also applicable to general rectangular wirglow

Fix-Dissection approach is fast, but it only checks a vanjtid
number of windows. In thidMxN layout, totally there aréM —
W+ 1)x(N — W + 1) windows. WithR-dissection, only M=% +
1)x(% +1) windows are checked. For example, suppose the lay-

In this paper, we propose an exact and fast algorithm to find out is Innx1mm and the window size is 20n Let the minimum
the maximum density window on a given layout. In some cases, feature unitis 18Bm Then in this caséMl = N = Imny10nm= 10°,



Figure 1: Fix-dissection approach. The layout is dividedaliy-
grid. Only windows (the blue solid windows) whose boundsarie
are on the grid are checked for density. Other windows sutheas
red dash window is not checked.

W = 20um/10nm= 2000. So totally there are arounds210° win-
dows. Most industrial applications ug&=W/2, then the num-
ber of sliding-windows is less than 1X10Therefore, only a very
small percent of windows are checked. This may not be a pmoble
in previous technology nodes, but the non-exact densitificer
tion will become a significant issue in deep submicron tetdgyo
for DFM (Design For Manufacture). Especially, as devicepssa
keep shrinking, the minimum feature size will become evealkam
while the chip size will become larger, the demand on deragity
curacy will increase. For example, the recent TSMC DFM Data
Kit (DDK) requires an accurate density input for etch/dey@GaMP
depths calculation.

o R W 1 — —— — — —_— —
l<Z»)
W,

2 R <2 R 2] Y
P 2 2

AMAAM TOMOM MM M M MM M

RR S S R RRS S R RS S

22 2 22 2 2

(a) (b) ()

Figure 2: The two windows in (a) and (b) are Brgrid, and have
the maximum densitp from the fix-dissection approach. The win-
dow in (c) is not a sliding-window, but it has larger density.

Finally, we show that by shrinking, the fix-dissection approach
cannot produce the exact density calculation uRtileaches the
minimum feature size.

Lemma 1 If Ris larger than the minimum feature size, the fix-
dissection approach cannot guarantee to solve the extrelmasity
window analysis problem exactly.

Figure 2 shows a counter example. In Figure 2, suppose the max
mum density of sliding-windows B, and the two windows in Fig-
ure 2 (a) and (b) reach the maximum dengityFor simplicity, let

the wires long enough such that only x-direction need beidensd

in density calculation. Assume there &avires, and all wires ex-
cept the rightmost green one have the same wire widfiie right-

most wire has a widtla+ R/2. The wire spacing is= V%IR/Z.

Then for the window in (c), its density i > D. This case
shows that shrinkingr in the fix-dissection approach cannot guar-
antee to find the maximum density window.

-Z+R/2
W

3. Density Bound

Although fix-dissection approach cannot guarantee to ifyetite
maximum density window, it provides basic information omsiéy
distribution.

Theorem 1 Any window Win must be fully covered by four
sliding-windows. And the density of Win satisfies thgt{>- Drwin <
R = (43 )2, where Dyin is the density of Win, anddinis the max-

imum density of the four sliding-windows.

PROOF Suppose the coordinate of the left bottom cornét/af
is (x,y). Then it must be covered by four sliding-windows whose
left bottom corners ar¢| %] -R, %] -R), ([x) -R+R &R,
(L&) R [&)-R+R), and(|§] -R+R, [ %] -R+R). As shown in
Figure 3, the red window is fully covered by the four blue winc
in Figure 3 (a), (b), (c) and (d). For convenience, the fourdeivs
are named aé{ g, Wke, WLu andWry, respectively. Also let their
density beD| g, Drg, DLy andDgry. Assume thati=x— | &]-R
andv= | %] -R+R—x Similarly,s=y— | %]-Randt =[] -R+
R—y.

The density difference betwe#¥in and one of the four sliding-
windows is decided by the metal area in the shadow regiorms (th
blue region and the red region in Figure 3). The maximum dif-
ference can be reached when one region has no features hile t
other region is totally occupied. Therefore, we have

W-u+W-s—u-s

Dwin—Dis < W2

Dwin—Drs < W~v+VVz2~sfv~s
Dwin—Dw < VW
Dwin—Dru < W

SinceDrwin = max{D_ g, Drg,DLu,Dru}, we have

o W-(u+s)—us W-(v+s)—v-s W-(u+t)—ut W-(v+t)—vt
DWin— DRwinS mln{ < WZ) ’ ( WZ) ) ( W2> < W2> }

Without loss of generality, we assume< vands <t. Then

W-(u+s)—u-s
W2

- (W-(u+s)—us W-(v+s)—v-s W-(u+t)—ut W-(v+t)—vty
mln{ W2 ) W2 ) W2 ) W2 }_

In short, we geDwin — Drwin < W41,
Next, we prove tha/ (W19-1s < R (R )2,

Sinceu+v=Randu < v, we getu < §. Similarly,s< §. Let

u=8%—aands= 5 -b(ab>0). Then

W-(u+s)-u-s R-a-b 1 R R
W2 “—w o w27 ¥(GED

1 R ab R R
S @D G Wt ()

We know thatW > %‘. Therefore, only whera =b = 0, the
maximum value can be reached. Thus we have
W-(u+s)—us - R _ (3)2 O

W2 =w—\w/ -

Theorem 1 gives the density bound of a window. The next the-
orem states the properties of a maximum density window withi
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Figure 3: Any window (the red window) can be covered by foidisf-windows.
a given region. For convenience, we define edge directiores of In Figure 5, the blue solid windowWin has the maximum den-
window/rectangle as the clockwise direction. sity, and either the left window edge touches a right redeaadge

(such a<C), or the right window edge touches a left rectangle edge
(such a€ andF). But no rectangles liké or B exist. We define:
H,: total height of rectangles crossing the left window edge;
Hy: total height of rectangles crossing the right window edge;
T;: total height of rectangles whose right edge touches the lef

Theorem 2 Given a region with k rectangles, there exists a
maximum density window that has two adjacent window edges ov
lap two rectangle edges. Furthermore, the overlapped wineldges
and rectangle edges are in the same directions.

PROOF First, we prove that if neither the left nor the right edge window edge;
of a maximum density window touches the edges of any reatang| Ty : total height of rectangles whose left edge touches the righ
then the window density is not changed when the window moves window edge.
left/right. For the example in Figure 3, = hyq, Tj = he, Hy = hg and

In Figure 4, the blue solid window is a maximum density win- Tr = he+hs. When the window moves left or right with a step
dow, and no rectangle edges are on the window edge. When thewithout touching any new rectangle edges, we get two new win-
maximum density window moves left before touching any negta dows as shown in Figure 5. One is the purple dotted windéivy
edge, the feature area in the two shadow regions is the satiner-O  and the other is the green dash windéin, .
wise, suppose the purple dotted window has less densitge $fire

shadow region has the same width, only the total height ofebie 44y uu
angles that cross the left/right edge of the blue window engttlf ) ' -::I-——)——ﬂ*—’v 1 Winr
the dotted window has less density, we hhye- hy, < hz as shown winl : 1 /
in Figure 4 (a). Then the green dash window in Figure 4 (b) has a \N I A 5 ! I
density higher than the maximum density sineéh; +hp) < v-hs. : A |
.
7 [ s
! he/f Co{ |
/ 7 A —; - \
i Al b 1|
! hd | s D Gl 41
ch | @ A 4 [ ] I I::': hJ
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> > <> >
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@ ® Figure 5: Assume that rectanglésandB do not exist. Rectangle

. L . . C, E andF have an edge overlapping with a window edge. But the
Figure 4: The blue solid window has the maximum density. (a) directions are different.

When the blue window moves left without touching any rectan-

gle edges, the total feature areas in the two shadow regiertbhea Also let D, D, andD; be the density oWin, Win, andWin,
same. (b) When the blue window moves right without tou<_:h|mg a  respectively. Then we gd —D; = (Hr*;'vilfl)u andD — D, =
;(:i;aengle edges, the feature areas in the two shadow regjiertise (H'_U\r/z_Tr)Au- SinceD has the maximum density, we have
- . . Lo (H—=H -T)-u
Similarly, if we move a maximum density window up/down Wz >0= H >H+T

without touching a rectangle edge, the window density wbe't

changed. Therefore, we can always find a maximum density win-

dow whose two adjacent edges overlap with two edges of rectan (H —Hr Z_Tf) ‘u
les. W

? Next, we show that the overlapped window edges and rectan- ThereforeT; = T, = 0. This contradicts our assumption that at least

gle edges are in the same directions. Suppose no same airecti One rectangle edge touches a window edge. Similar proofesppl

window/rectangle edge pair overlaps with each other. for y-direction. [J

and

>0= H>H+T



4. Density Calculation Algorithm

In this section, we propose an algorithm to solve the EDWApro
lems. The algorithm is based on the two theorems. We firsineutl
the whole algorithm, then detail explanations are presEioireeach
step. For convenience, we use a triple to represent a scegiomr
For example(x,y, B) refers to aBxB region whose left bottom cor-
neris at(x,y).

Algorithm Density CalculationM, N, W, R, Rect3

1. m=M/R n=N/R;

2. err=R/W—(R/2W)?,

3. Rmap= Build_Rect_Map(R, Rect$;

4. Foreach grid tile (iR, jR, R)

5.  Calculate the tile density Rgrid[i][j];

6

7. Foreach region (iR, jR, W—R)

8 Calculate the region density Rcentefi][j];

9.

10. For each region (iR, jR, W)

11.  Calculate the window density Rwin(i][j];

12.

13. U =max{Rwini][j]};

14. Fori=0tom—-2

15. Forj=0ton-2

16.  dmax= max{Rwini][j], Rwini+ 1][j],
Rwin(i][j + 1], Rwini+ 1][j +1]};

17. if(dmax+err > U)

18. U = Detail_Density (iR, jR, R Rcentefi + 1][j + 1]);

19. Output U;

In Density Calculation,M andN are thex andy dimension of
the given layout.W is the window size, an is the sliding step.
Rectsrecords all rectangles in the given layout.

4.1 Data Preparation

The algorithm starts from a fix-dissection density caldatatvith

a sliding stepR. After setting up anxn grid, we define a center-
window as a sliding-window with a window siz@V — R). As
shown in Figure 6 (a), the blue solid window is a sliding-wongl
and the red dotted window is a center-window. For each gled ti
we calculate its density, and store the results irbaa2ray Rgrid.
Based onRgrid, it is easy to get the center-window density and
sliding-window density, and the values are saved in tbeaPray
Rcenterand Rwin, respectively. Since each center-window is a
part of a sliding-window, the center-window density catidn
does not need extra running time. At the same time, the max-
imum sliding-window densityJ is derived. Lines X 13 finish
these preparations.

To calculate the density of a region is a basic operationis th
algorithm, and its first step is to identify rectangles whitdwe
overlap with the region. Therefore, we build a rectangle nap
speed rectangle searching. For the gilexN layout, claim a two-
dimension arrayjRmagM/R N/R], the elements oRmapare a
rectangle id list. For any rectanglect, supposeéx;,y;) and(Xn, Yh)
are the left bottom corner and the right upper corner of titare
gle, respectively. Therectwill be recorded irRmapg|x /R|..|X:/R],
lVi/R|..|yn/R|]. Figure 7 shows an example. Figure 7 (a) gives a
layout with 14 rectangles. Figure 7 (b) is tRenap Rmapi][j] is a
rectangle id list.

The algorithm BuildRectMap is summarized as followsR is
the original sliding step, anBectds the rectangle list.

center-window, Rcenter[2][2]
Rcenter[1][1] | |W-R|

W

) [

[}
[1] 1 grid-window
KRgndllllll LRwin[l][l] RI

—

R

2] [2f2]

L1 2]

@ R

(b)
Figure 6: (a) Illustration oRgrid, RcenterandRwin (b) Suppose
the maximum sliding-window density dRwin(1][1], Rwin1][2],
Rwin2][1], andRwin2][2] is larger tharlJ. Then the blue region
(1,1,W +R) is selected for further density analysis. The center-
window Rcentef2][2] is shared by the four sliding-windows.

w R ) A2[3[4]| A3[4]
! N ! 0,3] 1,3] |[[2,3] (3?]
R
RS | [? & ERI= FZ\S\G\ ﬁs\gﬂo 10
R6 0,2] (1,2] 2,2] (3,2]
Y g B | 11714
@ 2 714 111214
[ i 0,1] 1,1] 2,1] (?%
R14
NULL
6%] E)] (EJ] (3,0]

(@) (b)
Figure 7: (a) A layout with 14 rectangles (b) The correspogdi
Rmap

Algorithm Build_RectMap(R, Rect$
1. Initialize Rmapas Rmapi][j] = NULL
2. For each rectin Rects

3. Forii = |x/R] to [xn/R]
4. For jj = [yi/R] to [yn/R]
5. Insert rect into Rmagii][jj];

According to Theorem 1, we know that any window can be
covered by four sliding-windows, and its density is boundyd
dmax(the maximum density of the four sliding-windows) pleis
(R/W — (R/2W)?). Therefore, ifdmax+ err <U, it means that
any window inside the region that is covered by the four stdi
windows cannot have a density larger thdnpand we do not need
consider those windows any more. This step helps to prung man
regions so that we only need focus on certain areas which will
be handled by DetaiDensity. In Figure 6 (b), suppose the max-
imum value ofRwin1][1], Rwin1]{2], Rwin2][1], andRwin2][2] is
larger thanUJ, then the blue region is selected for Detf@insity.
Meanwhile, the center pink region is shared by these foding)t
windows, andRcentef2][2] is fed into DetailDensity as an input.

4.2 Density Calculation

In this section, we present algorithms to identify the maximden-

sity window in a given region. The main idea is to recursivegiyply

the fix-dissection approach with smaller sliding steps.damh dis-
section, we can further prune regions based on Theorem 1nWhe
the region size is small enough, we will call Exdensity algo-
rithm to report a maximum density window in the given region.



Algorithm DetailDensity(X, Y, B, centerdeng

1. If(B+W < DSIZE)

2. ThenU = Exact_Density(X, Y, B, centerdens;

3. Return U;

4.

5. R=B/k

6. Fori=0to 2k

7. For j=0to 2k

8. ifi==kand j ==Kk)

9. then Rden§][j] = centerdens

10. continue; _

11. regionx = Region_Point(X, i, R);

12. regiony; = Region_Point(Y, j, R);

13. regionx, = Region_Point(X, i+ 1, R);

14. regiony, = Region_Point(Y, j+ 1, R);

15. Calculate regiondensity Rden§][j];

16.

17. Calculate center-window density Cdensi][j] (1 <i,j <K);

18. Calculate sliding-window density Wdené§][j] (0<i,j <Kk);

19.

20. err=R/W — (R/2W)Z;

21. Fori=0tok

22. For j=0tok

23. dmax= max{Wden§][j], Wden§ + 1][j],
wdené][j+1], Wden§ + 1][j +1]};

24, if(dmaxi-err > U) o

25. U = Detail Density(iR, jR, R, Cdengi +1][j +1));

In Detail Density,X andY are the coordinates of the left bottom
corner of the input regiorB is the original sliding step, aridis the
new sliding stepk is a pre-defined division factor such th %.
Lines 5~ 18 calculate sliding-window density. Regidtoint is to
get the four corners of a grid tile. The grid tile is illusedtas
Figure 8 (c) and the details will be presented in Secti@?4 Lines
20~ 25 prune regions based on Theorem 1.

4.2.1 Region Properties

As we notice that all regions processed by Debinsity have a
size less than\®x2W. Therefore, for any inputxL (L < 2W)
region, we have the following observations:

1.L=W+B.

2. AllWxW windows inside this region sharé2V — L)x(2W —
L) area, which is in the center of the region. Furthermore, the
density of this area isenterdens

3. The left bottom corner of ar/xW window must fall in the
BxB area on the left bottom corner of the region.

4. The number of sliding-windows within this region(ls+ 1)2.

In Figure 8 (a), the center green area is covered byVarw
window inside theLxL region. And the left bottom corner of all
windows must be within the pink area including the boundarie
If the sliding step iR, then the total number of grid points inside
the pink area i§ 2 + 1), i.e., (k+1)2. In other words, there are

(k+1)? sliding-windows in the given region.

4.2.2 Region Partition

The main idea of DetaiDensity is to recursively apply the fix-
dissection approach with smaller sliding steps. The runtime
of the fix-dissection approach is closely related to:

(1) the number of rectangles to be checked for each tile;

(2) the number of tiles.

To reduce the number of rectangles to be checked for each tile
we draw onRmap With the help ofRmap we only need check a
few rectangle lists instead of traversing all rectangles.gxample,
ifatile is (x,y,H). Then we only need check the rectangle lists reg-
istered inRmag| & .. | %5 |, L%j..[%]], whereR is the initial
sliding step.

When we apply the fix-dissection algorithm, the region idipar
tioned into%x% tiles as the grid in Figure 8 (b). From the region
property (2), we know that the center green area is sharedl by a
sliding-windows. Therefore, it is not necessary to divitls area
into tiles. Instead, the whole green area should be treatethea
tile. Furthermore, the density of this center area is alyezadcu-
lated in the last dissection when the sliding step,iand the value
is input to the new dissection aenterdens Since the center area
takes a large percent of a sliding-windoggnterdenshelps save
a lot of rectangle-tile overlap checking. For example, igure 8
(b), L/B = 8. The center area takes more than half of the whole
region, while we only need calculate the density of the tikesg
the boundaries.

Meanwhile, the left bottom corner of sliding-windows caryon
fall in the pink region. It is not necessary to calculate dyrier
gridsG; (i = 1,..,12) separately as shown in Figure 8 (b). There-
fore, these twelve tiles can be merged, and be treated ad®@as t
G[2,3] in Figure 8 (c). In this way, the number of tiles is reduced
from 256 in Figure 8 (b) to 24 in Figure 8 (c). For a general cdse
the size of the whole region W + B, then the number of tiles can
be reduced frong£E)? to (2 +1)2 = (2k+1)2. kis a given con-
stant. Thus only a constant number of tiles need to be chefcked
a given region at each dissection. In the algorithm Déddaihsity,
Regionpoint is to get the coordinates of these tiles. Once the tile
region is identified, its density can be easily derived.

4.2.3 Exact Maximum Density Calculation

Given a region(X,Y,L) (L < 2W), we want to find a window with
the maximum density. The total number of windows within tieis
gionis(L—-W+ 1)2. For example, ifL = 2,200 andw = 2,000,
there are 40101 windows. Still, the searching spacing is pretty
large. On the other hand, from Theorem 2, we know that at least
one maximum density window has its two adjacent edges qverla
with two rectangle edges, and the window/rectangle edgehpai
the same direction. This motivates us to focus on the windsats
isfying these conditions so that the searching space caigbii-s
cantly reduced.

In Figure 9 (a), the window satisfies all the above requiregsen
The left window edge overlaps the left edgeRafandRg, and the
upper window edge touches the upper edg&kpf On the other
hand, although the left and upper window edge in Figure 91dn) a
overlap with an edge d®s, Rz andRy, their directions are different.
The left window edge overlap with the right edge Rf and Rg,
and the upper window edge overlap with the bottom edgR;of
Therefore, this kind of windows dose not satisfy the criterin
Figure 9 (c), none of the window edges touch any rectanglesdg
and this window won'’t be considered.

As we notice that the region sizeis always less thanVk. In
section 42.1, we know that all windows inside such a region share
the center(2W — L)x(2W — L) area. Therefore, we do not need
consider the rectangles inside the center area, and gegritsty
from the inputcenterdensinstead. Furthermore, the window edge
distribution has its own range. For the left window edge,xits
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Figure 8: (a) All windows inside thexL region share the center green area. The left bottom corralt stiding windows fall in the pink
region. (b) Full dissection witRxRtiles. The dark grid is the previous dissection with a sligatepB, whereB = 2R. Totally there are 256
tiles that need density calculation. (c) Only the 24 yelldestneed density calculation. The center green tile getdansity from the input
centerdens

L . R ing dotted line isW. In this way, we set up a grid over the given
— R&— — R&— — R&— region, and all windows that satisfy the constraints haeé ttdges
Rg LRI | Ry [RIOY CRIO] on this grid. The solid red dots in Figure 10 (d) are the pdssib
R s el || B £ rraa || B s (RT3 locations for the left bottom corner of a window. In this exzen
RI1 . . . )
’7 RI2 "7 RI2 r7 RI2 we only need check 20 windows. The algorithm is summarized as
- — - follows. X andY are the coordinates of the left bottom corner of the
given region. B is the sliding step of the previous dissection, and
. o o centerdensis the density of the center area.

Algorithm ExactDensityX, Y, B, centerdeng

1. For all rectangles rect in the given region

If rect.x € [X,X +B], add rect.x to Llist;

If rect.xp € [X+W, X +W + BJ, add rect.x, to Rlist;
If recty; € [Y,Y +B], add rect.y; to Blist;

If rect.yn € [Y +W,Y +W + B, add rect.yy, to Ulist;

Figure 9: (a) The left and upper edges of the window overlap wi
left rectangle edge and an upper rectangle edge. (b) A wirrdmsy
two adjacent edges overlapping with two rectangle edgesthgu
rectangle/window edges have different directions. (c) Adeiw

has no edge overlapping with any rectangle edges. ) ) ) ) )
Setup a grid based on Llist, Rlist, Blist and Ulist;

Nk~ WN

9. Calculate density for each grid tile except the center tile;
coordinate must fall in the randX,X + (L —W)]. Therefore, we 10. Set the density of the center tile as centerdens
only need record the left rectangle edges satisfying thistraint. 11.

If the x-coordinate of a left rectangle edge is larger tham (L — 12. For each grid point (i, j) in the region (X,Y,B)
W), no feasible window matches this rectangle edge with its lef 13. WinDens= density of the window whose left bottom
window edge. We have similar constraints for the right, upe corner is on grid[i][j];
bottom window edges. 14. If (Windens> U)
Figure 10 shows an example. In Figure 10 (a), there are 14 rect 15. U =Windens

angles in the givelxL region. The centefL — 2B)x(L — 2B) area 16. ReturnU;

is shared by all windows inside the region. Since the leftdein

edge can only fall within the first column, we only need coasid When ExactDensity is called, the region size is very close to the
the left edge o1, Rs andRg as the blue and green lines in Fig-  window size. So the number of rectangle edges within the tiagyn
ure 10 (b). Although the right edges B§ andRg are also within tiles is very limited, which means that the grid size in ExBensity
the first column, they are not considered. Similarly, only tipper won't be big. Therefore, only a small amount of windows nezd t
edge ofRy, the right edge oRyg andRy3, and the bottom edge of  be checked, and this guarantees a short running time.

R14 are selected. When two of these edges are selected, e.g., the

upper edge oR; and the right edge dR1g, one window is fixed as REMARK In this paper, we focus on identifying the maximum
shown in Figure 10 (c), and this window satisfies all the camsts. density window. In reality, we may also want to find regionsos
Therefore, for each selected edge, a dotted line is creatshaavn density is larger than the given density bound. By chanbiing the

in Figure 10 (d). The distance between an edge and the comdsp  given density bound, our algorithm can be used to servedblsds
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Figure 10: (a) A region with 14 rectangles. (b) The left edofeRs,
R andR; are within the first column. Therefore, two lines (the blue

Table 1: Test casess

Testcasd| Layout Area (in?) | #rectangles
Testl 576x576 191,967
Test2 576x576 360,799
Test3 512x512 449,828
Test4 1248x1216 762,412
Tests 512x512 1,375,605
Test6 992x992 3,106,559
Test7 992x992 4,632,445
Test8 992x992 5,033,242
Test9 1216x1216 5,287,136

Test10 992x992 5,583,589

cases, our algorithm can report the exact maximum densityita
running time is even shorter than that of MDA.
One big advantage of our algorithm is that it fully utilizéet
results from previous iterations. For each region proakbyeDe-
tail_Density or ExaciDensity, the center area gets its density infor-
mation directly from the previous iteration, and this saadet of
computations. Especially, when the sliding step becomeslem
the percentage of the center area dominates the whole reagidn
the rectangles falling on the boundaries are very limitéte MDA
[6] also adopts the recursive partition approach. But irheétara-
tion, a region is partitioned into smaller tiles with a fineidg and
the density calculation has to be called for each grid tilen®&of
the previous density calculation can be reused.

line and the green line) are created. Similarly, one lineréated Table 2: Test results with a window size 88
for the upper edge dRy, one is for the right edge d®;p andRy3, ALG3[6] MDA[6] (err < 2%) Our Alg
and one is for the bottom edge Bfs. (c) When the upper edge of Test Max CPU Max CupP Max | CPU
R; and the right edge d®;¢ are selected, one window is fixed, and Dens (s) Dens (s) Dens (s)
it satisfies all the constraints. (d) A grid is set up for ExBeinsity. | Testl || 57.54%| 22027 || 58.41% 300 57.54%| 2
The distance between a solid line and the correspondingdititte | Test2 || 42.83%| 83254 || 43.26% 224 42.83%| 4
isW. Test3 || 28.99% | 51h 30m || 29.32% 170 28.99% | 42
Test4 || 84.48%| 46231 | 85.52% 821 84.48%| 3
well. Test5 - > 24h 19.61% 197 19.35%| 110
Test6 - > 24h 56.33% 136 55.57%| 39
H - 0, 0
. . . . Test8 - > 24h 26.93% 138 26.64%| 73
We implemented our algorithm in C on an AIX workstation (126
. ) ) Test9 - > 24h 86.88% 135 85.90%| 15
with 2GB memory. The test cases are derived from industry "lei_- 10 52h 39 30% 376 38.96% | 74
signs. For comparison purpose, we also implemented theltyoe es - - A IO
rithms in [6]. One is ALG3 which is the fastest exact algarmitin
[6]. The other is “Multilevel Density Analysis” (MDA) whiclis an
approximate algorithm and it terminates when the reporeatitly Table 3: Test results with a window sizeld
is within an error bound of the actual maximum density. Wetlset ALGB;[G] MDA[6] (err < 2%) Our Alg
error bound as 2%. Table_ 1 summarizes the layout dimensidn gn Tggt Max CPU Max CuP Max CPU
the number of rectangles in each test case. Table 2 and 3 kleow|t Dens (s) Dens (s) Dens (s)
test result_s with two V\{indow_s_izes @ and 32im, respectively. Testl || 67.23% | 10557 || 68.06% 236 67.23% | 1
The_a_llgofrlthm rkSt—arLtlS \'/:vnh Aaleldlnglj k?tep éff and _s;t th_;e reqcurswe Testz | 47.20% | 22289 || 48.02% 817 27 40%] 3
partition agto . Ocl’r tthl alt _0“‘3‘1_ itcan erl‘“ y the eza‘:t Test3 || 29.82% | 93242 || 30.20%| 201 | 29.82%| 32
by hours orcays, Such a long running fime i not acceptabiasin | 1eous | 04427 22876 [ 85 57%| 1421 | 84.42%| 5
yhn yS 9 g ime IS e P Tests - =24 || 21.05%| 166 || 20.94%| 88
designs. We killed the tests when the running time was lotiger
. - . Test6 - > 24h || 58.62% 270 57.56% | 28
24 hours. (To verify the correctness of our implementatiomalso Tost? 52h 1 50,8204 ) £0.04% | 96
finished the test casBesB. When the window size was 8@ it Tes 5 - = >ah 28.49fV0 178 28'080/0 &4
took more than 2 days to finish.) On the other hand, the alguorit est - = - 00 . o°
MDA is fast, but it cannot find the exact maximum density, gmel t Test9 - > 24n 88'240/0 104 86'840/" 15
running time will increase with smaller error bounds. Fdrtest | 1€St10 - >24n || 43.51%| 213 42.92%| 46




Moreover, Theorem 1 greatly reduces the number of regiats th
need to be considered for density calculation. For exanifpibe
original sliding step isVZV, and the partition factok = 4. Then in
the 3¢ dissection, the sliding step & = &, and the error bound
from Theorem 1 is(%4 — (lizs)2 ~ 1.556%. In other words, after
two dissections, we only need consider windows whose derssit
very close to the actual maximum density (the density diffee is
less than 556%). This is extremely effective when the density dis-
tribution has some density hot spots, which is a must chetken
post-design stage. The experiments are to identify maxirdem
sity windows, while the minimum density windows can be haddl
similarly.

6. Conclusion

Density calculation is a fundamental operation in many rfectur-
ing processes. As the device shapes keep shrinking, thenomimi
feature size will become even smaller, while the chip sizgtine
ues to grow, the demand on the accuracy of density calcolatilh
keep increasing. In this paper, we propose a fast exactitgor
to identify the maximum density for a given layout. (Minimum
density checking can be extended similarly.) Compared thi¢h
existing exact algorithms, our algorithm reduces the migrime
from days/hours to a few minutes/seconds. And it is everefast
than the existing approximate algorithm in the literature.
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