RC24079 (W0610-066) October 13, 2006
Computer Science

|BM Resear ch Report

A Load Shedding Framework and Optimizations for
M-way Windowed Stream Joins

Bugra Gedik*?, Kun-Lung Wu?, Philip S. Yu?!, Ling Liu?

IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Y orktown Heights, NY 10598

?CERCS
College of Computing
GeorgiaTech

—==—=—=—=2= Research Division
£ S= 555 Almaden- Austin - Beijing - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on theinternet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

A Load Shedding Framework and Optimizations for
M-way Windowed Stream Joins

Bugra Gedik* Kun-Lung Wu* Philip S. Yu Ling Liu®

¢ CERCS, College of Computing, Georgia Tech
* Thomas J. Watson Research Center, IBM Research
{bgedik,lingliu} @cc.gatech.edyklwu,psyu @us.ibm.com

Abstract able CPU is not sufficient to handle the processing of the con-

Tuple dropping, though commonly used for load Sheololingtinual _queries installed.in the system, ur_1der the c_urre!nlsra
in most stream operations, is inadequate forway, win- of the input strgams. Without load sheddlng,t_he mismateh bg
dowed stream joins. The join output rate can be overly re_tweenlthe available CI.DU and the query service dem_ands wil
duced because it fails to exploit the time correlationsljike result n delays that violate the response time reqw'rement
exist among interrelated streams. In this paper, we intoedu Such mismatch can a_llso cause unbounded grov_vth In system
GrubJoin an adaptive,m-way, windowed stream join that queues, further bogging d0_/vn the system. In view of these
effectively performs time correlation-aware CPU load shed proplgms_, CPU Ioad.sheddmg can be broadly defined as an
ding. GrubJoin maximizes the output rate by achieving near_opt|m|zathn mechgmsm to r_edu.ce the amount of processing
optimal window harvestingwhich picks only the most prof- fqr evaluating contmuallqu.erles in an effort to match the s€
itable window segments for the join. Due to combinatorial ex vice rate of a DSMS to its input rate, at the cost of producing
plosion of possiblen-way join sequences involving window a pot_entlally degradeql output.
segmentsy-way, windowed stream joins pose several unique Windowed stream joins are one of the most common, yet
challenges. We focus on addressing two of them: (1) How car?osuy’ qp_erauons in a DSMS [3, 10]. M-way, wmdpwgd
we quickly determine the optimal window harvesting config-Strearn joins are ke_y operators used by many appl|ca_t|ons
uration for anym-way, windowed stream join? (2) How can to correlate ev_ents in multlpl_e streams coming f.rom various
we monitor and learn the time correlations among the streams>OUrces. Consider the following two applications:
with high accuracy and minimal overhead? To tackle theseExample 1[11] - Tracking objects using multiple video (sen-
challenges, we formalize window harvesting as an optimiza-Sor) sourcesAssuming that scenes (readings) framvideo
tion problem, develop greedy heuristics to determine near{sensor) sources are represented by multi-attribute sugfle
optimal window harvesting configurations and use approxi- numerical values (join attribute), we can perform a diséanc
mation techniques to capture the time correlations. Our ex-based similarity join to detect objects that appear in athef
perimental results show that GrubJoin is vastly superior to ™ Video (sensor) sources.
tuple dropping when time correlations exist and is equaly e Example 2[7] - Finding similar news items from different

fective when time correlations are nonexistent. news sourcesAssuming that news items from CNN, Reuters,
] and BBC are represented by weighted keywords (join at-
1 Introduction tribute) in their respective streams, we can perform a win-

In today’s highly networked world, many applications rely dowed inner product join to find similar news items from
on time-critical tasks that require analyzing data from on-these three different sources (hete= 3).
line sources and generating responses in near real-time. On Time correlations often exist among tuples in interrelated
line data today are increasingly coming in the form of datastreams, because causal events manifest themselves én thes
streams, i.e., time-ordered series of events or readings. E streams at different, but correlated, times. With time elar
amples include stock tickers in financial services, linkista tions, for pairs of matching tuples from two streams, there e
tics in networking and sensor readings in environmental-monists a non-flat match probability distribution, which is au
itoring. In these examples, dynamically changing, rapidtion of the difference between their timestamps. For insan
data rates and stringent response time requirements forceia Example 2, it is more likely that a news item from one
paradigm shift in how the stream data are processed, movsource will match with a temporally close news item from an-
ing away from traditional “store and then process” model other source. In this case the streams are almlagtedand
of database management systems to “in-transit processinghe probability that a tuple from one stream will match with
model of data stream management systems (DSMSs). Thia tuple from another decreases as the timestamp difference
shift has created a strong interest in DSMS-related reBgarc increases. The streams can alsmbaaligned either due to
in both academia [1, 4, 5] and industry [16, 13]. delays in the delivery path, such as network and processing
In a DSMS, CPU load shedding is critical in maintaining delays, or due to the time of event generation effect intteren
high system throughput and timely response when the availin the application. Then-way video stream join in Example

http://www.cercs.gatech.edu
http://www.cc.gatech.edu
http://www.gatech.edu
http://www.watson.ibm.com
http://www.research.ibm.com
mailto:bgedik@cc.gatech.edu
mailto:lingliu@cc.gatech.edu
mailto:klwu@us.ibm.com
mailto:psyu@us.ibm.com

1 gives an illustration of the nonaligned case, where simila GrubJoin divides each join window into multiple, small-
tuples appearing in different video streams will havagbe- sized segments dbasic windowsto efficiently implement
tween their timestamps, due to the time it takes for an objectime correlation-aware load shedding. Our operator tlngtt
to pass through all cameras. scheme performs load shedding within the stream operator,
In view of the presence of time correlations among cor-i.e., regulating the amount of work performed by the join.
related streams and bursty, unpredictable stream ratés, it This requires altering the processing logic of thevay join
important to develop a time correlation-aware load shed-by parameterizing it with ghrottle fraction The parameter-
ding framework and optimization techniques forway, win- ized join incurs only a throttle fraction of the processimgtc
dowed stream joins. So far, tuple dropping [2, 17] has beerrequired to perform the full join. As a side effect, the quignt
predominantly used for CPU load shedding in stream joins.of the output produced may be decreased when load shed-
The rates of the input streams are sufficiently reduced via tuding is performed. To maximize the output rate while shed-
ple dropping in order to sustain a stable system. Howeverding CPU load, we develop window harvesting optimization
tuple dropping is generally ineffective in shedding CPUdloa that picks only the most profitable basic windows of individ-
for m-way, windowed stream joins. The join output rate can ual join windows for the join while ignoring the less valuabl
be unnecessarily degraded because tuple dropping does nohes, similar to farmers harvesting fruits, like strawlesrby
recognize, hence fails to exploit, time correlations thfédro picking only the ripest while leaving the less ripe untowthe
exist among interrelated streams. One key challenge of GrubJoin is: How do we implement
In an earlier work [7], we developed an adaptive load shed-window harvesting efficiently in view of the combinatorial
ding scheme for two-way, windowed stream joins. It im- explosion of possiblen-way join sequences? Another key
proves upon tuple dropping by using selective processingchallenge is: How do we learn the time correlations among all
The main idea is to decide which tuples in a window are morethem? /2 pairs of streams with little overhead? We tackle the
profitable for the join, if not all tuples can be processed duefirst challenge by developing fast greedy heuristics forimgk
to limited CPU. The selective processing lin [7] mainly de- near-optimal window harvesting decisions, and the secgnd b
pends on (1) maintaining statistics on individual windog-se employing low-overhead approximation techniques thay onl
ments to learn time-based correlations between the twd inpumaintainm cross-stream statistics to capture the time correla-
streams, and (2) applying the learning results to dynaigical tions among then?/2 pairs of streams. As a result, Grub-
revise the selective processing decisions. Join is very efficient in both window harvesting and time-
Although our preliminary work in [7] established some correlation learning, enabling it to quickly react and tiyne
foundation for load shedding im-way, windowed stream adapt to fast-changing stream rates.
joins, the combinatorial explosion of possible-way join To the best of our knowledge, this is the first work on time
sequences involving different window segments poses seveorrelation-aware CPU load shedding farway, windowed
eral unique challenges that require more efficient learalng stream joins that are adaptive to the dynamically changing
gorithms and more scalable selective processing techgiqueinput stream rates. We would like to point out that tgge-
The techniques developed for two-way stream joins are todasedload shedding framework in [15] is the first one that
costly to apply directly for exploiting time correlationsiang recognizes the time correlation effect on making tuple re-
multiple streams. In addition, it is inadequate to implemen placement decisions for two-way stream joins with limited
m-way stream joins by using a sequence of two-way streammemory. Furthermore, in the context of traditional joins,
joins. Such an implementation is memory intensive due tothe database literature includes join operators, such ag-Dr
intermediate results. Moreover, time correlation detectn Join [12], that capitalized on the time of data creationaffe
any two streams is insufficient to capture the global view ofin data warehouses, which is similar to the time correlation
the time correlations, resulting in less accurate timeatasr effect in stream joins.
tion de_tectlon, leading to less effect!ve Ic_)ad shedding. 2 Preliminaries
In view of the above challenges, in this paper we present a
general framework and a set of optimization techniques for In this section, we present our window-based stream join
performing time correlation-aware CPU load shedding formodel, introduce some notations, and describe the basics of
m-way, windowed stream joins. Our framework consists of m-way, windowed stream join processing.
three key functional componentsiindow harvestingoper- We denote theth input stream bys;, wherei € [1..m]
ator throttling, andwindow partitioning We developGrub- ~ andm > 2 is the number of input streams of the join opera-
Joi! — an m-way, windowed stream join algorithm, which tor, i.e., we have am-way join. Each stream is a sequence of
implements these three functional components. While shedtuples ordered by an increasing timestamp. We denote a tuple
ding load, GrubJoin maximizes the output rate by achievingby ¢ and its timestamp b¥'(¢). Current time is denoted k.
near-optimal window harvesting within an operator thingl ~ We assume that tuples are assigned timestamps upon their en-
scheme built on top of the window partitioning core. trance to the DSMS. We do not enforce any particular schema
1 —) A o type for the input streams. Schemas of the streams can mclud
As an intransitive verb, grub means “to search laboriously by digging”. It relates attributes that are single-valued, set-valued, userdé,finr

to the way that the most profitable segments of individual join wivelare picked and .) . -
processed with window harvesting in order to maximize the join output. binary. The only requirement is to have timestamps and an

appropriate join condition defined over the input streams. W by maintaining a throttle fraction, and relies on an in-gper
denote the current rate (in tuples/sec) of a stréatmy \;. load shedding technique to reduce the CPU cost of execut-
An m-way stream join operator has join windows, as ing the operator in accordance with the throttle fractiore W
shown in the 3-way join example of Fig. 1. The join window denote the throttle fraction by. It has a value in the range
for streamS; is denoted by¥V;, and has a user-defined size, in (0,1]. The in-operator load shedding technique will adjust
terms of seconds, denoted by. A tuplet from S; is keptin the processing logic of the operator such that the CPU cost of
W, onlyif T > T(t) > T —w;. The join operator has buffers executing it is reduced te times the original. As expected,
attached to its inputs and output. The input stream tupkes arthis will have side-effects on the quality/quantity of thet-o
pushed into their respective input buffers either direfrtiyn put. In stream joins, the side-effect is a reduced outpat, rat
their source or from output of other operators. The join op-i.e. a subset result.
.er'ator fetches the tuples from its i_nput buffers, procefises Setting of the Throttle Fraction
join, and pushes the result tuples into the output buffer.

inputtuples INPULTUPIES muioway join performed | OUPUL tuples The setting of the throttle fraction depends_on theT join per-
pushed poped pushed formance under current system load and the incoming stream
s, —» D@ L Py » ‘ rates. We capture this as foIIo_ws._ _
N N Let us denote the adaptation interval By This means
5, —>|:|© N AN A | *I:I@ that the throttle fraction is adjusted evenA seconds. Let
N ’—‘(; { e = o ‘ - us denote the tuple consumption rate of the join operator for
nput streams oupuouEr S;, measured for the last adaptation interval,cyy In other
input buffers join windows and join operator _ words, «; is the tuple pop rate of the join operator for the
N, order index input buffer attached t6;, during the lastA seconds. On the
Figure 1: M-way, win- i b2 other hand, let\] be the tuple push rate for the same buffer
dowedstreamjoinprocess- o 1 |g={ 3,2 } during the last adaptation interval. Using's and \]'s we
ing, join directions, joinor- = & R=1{3,1 } capture the performance of the join operator under current
ders for each direction g .= load. d d g N\m moy
ST 3 | R=({ 1,2 } system load, denoted by, as: 3 = >"." o/ >0, AL

The GrubJoin aldorith b q q The value is used to adjust the throttle fraction as fol-
e GrubJoin algorithm can be seen as a descendant %ws. We start with & value of1, optimistically assuming

MJoin [19]. MJoins have been shown to be effective for y e will be able to fully execute the operator without any
fine-grained adaptation and are suitable for the enviromsnen overload. At each adaptation step econds), we update
where the stream rates are bursty. In an MJoin, thererare from its o.Id value=°l4 based on the formula: ’

differentjoin directions one for each stream, and for each join

direction there is an associatgin order. Theith join direc- B zot 6<1;

tion describes how a tuplefrom S; is processed by the join == min(1,7 - z'1) otherwise.

algorithm, after it is fetched from the input buffer. Therjair-

der for directioni, denoted byR; = {7 1,72, -+ Ti.m—1} If g is smaller than 17 is updated by multiplying its old value
defines an ordered set of window indexes that will be usedwith (3, with the aim of adjusting the amount of load shedding
during the processing ofe S;. In particular, tuple will first to match the tuple consumption and arrival rates. Otherwise
be matched against the tuples in wind@, wherel = r; ;. (8 > 1), the join is able to process all the incoming tuples
Here,r; ; is the jth join window index inR;. If there is a with the current setting of, in a timely manner. In this latter
match, then the index of the next window to be used for fur-casey is set to minimum of andy-z°'¢, wherey is called the
ther matching is given by; o, and so on. For any direction, boost factor This is aimed at increasing the throttle fraction
the join order consists ofi — 1 distinct window indices, i.e., z, assuming that additional processing resources are bigila
R; is a permutation of1,...,m} — {i}. Although there are If not, the throttle fraction will be readjusted during thext
(m—1)! possible choices of orderings for each join direction, adaptation step.

this number can be smaller depending on the join graph. We . .

use the MJoin [19] approach for setting the join orders. This4 Window Harvesting
setting is based on the low-selectivity-first heuristic. c®n The basic idea behind window harvesting is to use only the
the join orders are decided, the processing is carried ariin most profitable segments of the join windows for processing,
NLJ (nested-loop) fashion. Since we do not focus on any parin an effort to reduce the CPU demand of the operator, as dic-
ticular type of join condition, NLJ is a natural choice. Fig. tated by the throttle fraction. Window harvesting maxinsize

illustrates join directions and orders for a 3-way join. the join output rate by using the time correlations among the
. streams to decide which window segments are most valuable
3 Operator Throttling

for output generation.
Operator throttling is a load shedding framework for gen- 4 1 Fundamentals
eral stream operators, such as stream join, aggregatign [18

and other operators. It regulates the amount of load shgddin Vindow harvesting involves organizing join windows into
a set ofbasic windowsand, for each join direction, selecting

the most valuable segments of the windows for join execution
4.1.1 Partitioning into Basic Windows

Each join windowW; is divided into basic windows of size

b seconds. Basic windows are treated as integral units, thu
there is always one extra basic window in each join window
to handle tuple expiration. In other wordd/; consists of

1 4+ n; basic windows, where; = [w;/b]. The first basic
window is partially full, and the last basic window contains
some expired tuples (tuples whose timestamps are out of th
join window’s time range, i.e.7(t) < T — w;). Everyb
seconds the first basic window fills completely and the last
basic window expires totally. Thus, the last basic window is
emptied and it is moved in front of the basic window list as
the new first basic window.

At any time, the unexpired tuples i¥; can be organized
into n; logical basic windows, where thgth logical basic
window (j € [1..n;]), denoted byB; ;, corresponds to the
endingy portion of thejth basic window plus the beginning
1—1 portion of the(j +1)th basic window. We havé = §/b,
whereé is the time elapsed since the last basic window expi-
ration took place. Note that a logical basic window always
stores tuples belonging to a fixed time interxglhtive to the
current time. This distinction between logical and real ba-

in this order, i.e., the one with ranikk The ordering defined
by s} ; values is strongly influenced by the time correlations
among the streams (see Section 4.2 for details).

In summary, the most profitable segments of the join win-
dowW, (I = r;,;) that will be processed during the execution
of theith direction of the join is selected as follows. We first
pick B .1 , thenB,; .2 , and so on, until the total fraction of
%%} proceyésed reachégj. Other segments d¥; that are not
gicked are ignored and not used for the join execution.

basic windows, 1 more than the number of

now: beggining logical basic windows for each join window

of window end of

window

82 ;
A 1. | | | |
5 i I I I I
2§ i |
; i n 2,,=0.4, 2 logical
8~ },2 basic windows
g ! 3
.8 H
© 9 3 : z,,=0.6, 3 logical
.‘:_" P basic windows
&) s - ;E”@: - 37 71 logical basic windows
T (5 of them, n,=n,=ny=5)
logical basic window rankings for Wr, ,=W;
logical basic window rankings for Wr, ,=W,

Figure 2: Example of window harvesting.

Fig./2 shows an example of window harvesting for a 3-
way join, for the join directionR;. In the example, we have
n; = 5 fori € [1..3]. This means that we havelogical
basic windows within each join window and as a resubia-

sic windows becomes handy when we are selecting the mosl. \yindows per join window in practice. The join order for

profitable window segments for the join.
There are two advantages of using basic windows. First
basic windows make expired tuple management more effi

cient [9], because the expired tuples are removed from th(?

join windows in batches, i.e., one basic window at a time.

Second, without basic windows, accessing tuples in a Id)gicafr

basic window will require a search operation to locate agupl
within the logical basic window’s time range.

In general, small basic windows are more advantageous "E;I

better capturing and exploiting the time correlations. @ t

direction1 is given asR; = {3,2}. This meand¥; is the
first window in the join order o (i.e.,r1,1 = 3) andW, is

the second (i.es; 2 = 2). We havez; ; = 0.6. This means
hatn,, , - 211 = 5-0.6 = 3 logical basic windows from

., = W3 are to be processed. In this example, harvest
actions are set such that an integral number of logical ba-
sic windows are picked for join processing. Noting that we
havesj ; = 4, s7 , = 3, ands? ; = 5, the logical basic win-
ows within W3 that are going to be processed are selected
as3,4, andb5. They are marked in the figure with horizontal

other hand, too small basic windows will cause overhead iy, o5 \yith their associated rankings written on top. The co

join processing as well as in window harvesting configuratio
4.1.2 Configuration Parameters

responding portions of the basic windows are also shaded in
the figure. Note that there is a small shift between the Idgica

There are two sets of configuration parameters for windowPasic windows and the actual basic windows (redaffom

harvesting, which determine the window segments to be use
for join processing. These are:

e Harvest fractions z; j,i € [1..m],j € [1..m — 1]: For
the ith direction of the join, the fraction of thggh window
in the join order (i.e., join windowV;, wherel = r; ;) that

will be used for join processing is determined by the harvest

fraction parameter; ; € (0,1]. There aren-(m—1) different
harvest fractions. The settings of these fractions areglyo
tied with the throttle fraction and the time correlationscag
the streams. The details will be presented in Secttion 4.2.
e Window rankingss; ;,i € [1.m],j € [1.m —1],v €
[1..n,, ,]: For theith direction of the join, we define an or-
dering over the logical basic windows of thth window in
the join order (i.e., join window/;, wherel = r; ;), such
thats} ; gives the index of the logical basic window that has
rankv in this ordering.Blyslle is the first logical basic window

gection 4.1.1). Along the similar lines, the logical basio-w
dows?2 and3 from W5 are also marked in the figure, noting
thatr, 2 = 2, 21,2 = 0.4 corresponds t@ logical basic win-
dows, and we havej , = 3, s7, = 2.

4.2 Configuration of Window Harvesting

Configuration of window harvesting involves setting the
window ranking and harvest fraction parameters. It is per-
formed during the adaptation step, evéxysecs.

4.2.1 Setting of Window Rankings

We set window ranking parametesg,’s in two steps. First
step is calledscore assignmentConcretely, for theth direc-
tion of the join and theith window in the join orderR;, that
is W; wherel = r; ;, we assign &coreto each logical basic
window within W;. We denote the score of thgh logical
basic window, which isB; x, by p}’ ;. We definep} ; as the

probability that an output tuple .., ¢, ..., ¢t ..) has: that the harvest fractions are set such that an integral num-

b-(k—1)< T(t(i)) _ T(t(l)) <b-k ber logical basic windows are selected, ibejé[el[_l_;;"ﬂ”, _

, . _ ~ ny,,; € IN. Although straightforward to implement, this
Here,t(* denotes a tuple frons;. This way, a logical basic brute-force approach results in consider|id’, n;n—l pos-
an output tuple whose encompassed tuples fthrand 5; can simplify this a@(nmz). As we will show in the experi-

have an offset between their timestamps such that thistoffsementa| section, this is computationally very expensive tbue

is within the time range of the logical basic window. the long time required to solve the problem with enumeration

The score values are calculated using the time Correlafnaking it impossible to perform frequent adaptation.

tions among the streams. For now, we will assume that the .
time correlations are given in the form of probability den- 5 GrubJoin

Zij

sity functions pdfs) denoted byf; ;, wherei,j € [L.m]. GrubJoin is anm-way, windowed stream join operator
Let us defined; ; as a random variable representing the dif- ith built-in window-harvesting. It uses two key methods to
ferenceT'(t(V) — T'(t)) in the timestamps of tuple8” make window harvesting work efficiently in practice. Fiist,
andt"/) encompassed in an output tuple of the join. Thenemploys a fast heuristic method to set the harvest fractions
fij : [mwi,wj] — [0,00) is the probability density func- making possible frequent rate adaptation with little owexdh

tion for the random variablel; ;. With this definition, we (see Section 6.2/4). Second, it uses approximation and sam-

havepi?”j = ;.'(]Z,l) fir.,;(x)dz. In practice, we develop a pling techniques to learn the time correlations among the

lightweight method for approximating a subset of these pdfsstreams and to set the logical basic window scores based on
and calculatingaﬁj’s from this subset efficiently. The details that. These two methods make GrubJoin efficient, enabling it
are given in Section 5.2.2. to not only outperform tuple dropping when time correlation

The second step of the setting of window ranking param-exist among the streams, but also perform competitivelynwhe
eters is callegcore ordering In this step, we sort the scores there are no time-correlations (see Sedction 6.2.2).

{p¥; : k € [L.n,,]} in descending order and s€t; to k, 5.1 Heuristic Setting of Harvest Fractions

whereuw is the rank ofpﬁj in the sorted set of scores. If the The heuristi thod f tting the h tf
time correlations among the streams change, then a new ssﬁt N ? erurlz 'Cir:n: tor Wﬁ utsert otr) s€ Itrt]'g ‘ e_ gry.es‘ rac-
of scores and a new assignment for the window rankings is o> ' 9r€€dy In nature. 1t starts by setling = U, v, .

needed. This is handled by the reconfiguration performed a‘?‘t Eia]:ch tgreedy S|Teg ;L;;Jnjlgetrs a tsaetdof _Sitt'tr;]gs for th_(ihhar-
every adaptation step. vest fractions, calle ndidate setand picks the one wi

)) the highestevaluation metricas the new setting of the har-
4.2.2 Setting of Harvest Fractions vest fractions. Any setting in the candidate set must be a

Harvest fractions are set by taking into account the theottl forward step in increasing the ; values, i.e., we must have
fraction and the time correlations among the streams. ,First¥i, j, zi; > z9\d, where{zg’”f} is the setting of the harvest
we have to make sure that the CPU cost of performing the joirfractions that was picked at the end of the previous step. The
agrees with the throttle fraction This means that the cost Process terminates once a step with an empty candidate set is
should be at most equal totimes the cost of performing the reached. We introduce three different evaluation metocs f
full join. Let C({z; ;}) denote the cost of performing the join deciding the best configuration within the candidate set. In
for the given setting of the harvest fractions, aiid) denote ~ What follows, we first describe the candidate set generation
the cost of performing the full join. We say that a particular and then introduce three alternative evaluation metrics.
setting of harvest fractions is feasibleafiC' (1) > C({z; ;}). 5.1.1 Candidate Set Generation

Second, among the feasible set of settings of the harves

fractions, we should prefer the one that results in the max-.'Eortheith direction of the join and théth window within the

imum output rate. LeD({z:,}) denote the output rate of 1%n Order R, we add a new setting into the candidate set by
the join operator for the given setting of the harvest famgi " casN%i,; by d;.;. In the rest of the paper we take; as
Then our objective is to maximiz&({z; ;}). In short, we 1/n,, ;. This corresponds to increasing the number of logical

have the followingOptimal Window Harvesting Problem basic wmdowg selected fqr processing by one. This rgsults !
m - (m — 1) different settings, which is also the maximum

argmaz,, .y O({zi;}) st.z- C(1) > C({zi;}) size of the candidate set. The candidate set is fittered to
remove the settings which are infeasible, i.e., do not fyatis
the processing constraint of the optimal window harvesting
problem dictated by the throttle fractian Once a setting in
which z,, ,, is incremented is found to be infeasible, then the
harvest fractior,, ,, is frozenand no further settings in which
4.3 Brute-force Solution .., IS incremented are considered in the future steps.

One way to solve the optimal window harvesting problem ~ There is one small complication to the above approach to
is to enumerate all possible harvest fraction settingsnaisg ~ 9enerating candidate sets. When we hsyez; ; = 0 for

The formulations of the function§ and O are given in our
technical report [8]. Our formulations are similar to pavs
work [14, 2], with the exception that we integrate time cerre
lations into the processing cost and output rate compuiztio

theth join direction at the start of a greedy step, it makes no

sense to create a candidate setting in which only one harve

fraction is non-zero. This is because no join output can be

produced from a join direction if there are one or more win-
dows in the join order for which the harvest fraction is set
to zero. As a result, we say that a join directiois notini-
tialized if and only if there is aj such thatz; ; = 0. If at

the start of a greedy step, we have a join direction that is no
initialized, sayith direction, then instead of creatimg — 1
candidate settings for th¢h direction, we generate only one
setting in which all the harvest fractions for tite direction
are incremented, i.evj, z; ; = d; ;.

The computational complexity of the greedy algorithm is
given bym-(m—1)%->""" | n; (see our technical reprt for de-
tails [8]). If we haveVi € [1..m],n;, = n, this can be simpli-
fied asO(n - m*). This is much better than th@(n™") com-
plexity of the bute-force algorithm, and as we will show ie th
next section it has satisfactory running time performance.

5.1.2 Evaluation Metrics

We introduce three alternative evaluation metrics and i&xpe
mentally compare their optimality in the Section 6.

e Best Output The best output metric picks the candidate
setting that results in the highest join outjgdt{z; ;}).

e Best Output Per CostThe best output per cost metric
picks the candidate setting that results in the highestgatn
put to join cost ratidd ({z; ;})/C({zi ; })-

» Best Delta Output Per Delta Codtet {~{'} denote the
setting of the harvest fractions from the last step. Thigimet
picks the setting that results in the highest additionapott

. L Oz, -0z '}
to additional cost rat'uc({zm})_c<{z;’}f}) .

Fig.|3 gives the pseudo code for the greedy algorithm.

5.2 Learning Time Correlations

The time correlations among the streams are learned b
monitoring the output of the join operator. Recall that iheet
correlations are captured by the pdfs, wherei, j € [1..m].
fi.; is defined as the pdf of the differenggt () — T(¢(9)) in
the timestamps of the tuple§) € S; andt") € S; encom-
passed in an output tuple of the join. We can approxinfaje
by building a histogram on the differen@&t(*)) — 7'(¢(9)) by
analyzing the output tuples produced by the join.

This straightforward method of approximating the time
correlations has two shortcomings. First and foremostesin
window harvesting uses only certain portions of the join-win
dows, changing time correlations cannot be captured. $kecon
for each output tuple of the join we have to updétém?)

number of histograms to approximate all pdfs, which hinders

the performance. We tackle the first problem by usifgdow

shredding and the second one through the use of samplingrhe need to maintaim: - (m — 1)

andper stream histograms&hese are discussed next.
5.2.1 Window Shredding

For a randomly sampled subset of the incoming tuples, we d(Sj

not perform the join using window harvesting, but instead we
usewindow shredding We denote ousampling parameter

GREEDYPICK(2)
| (1) cO «— c¢C « 0 {current cost and outpht
P2) Vi<i<m,I,; « false{initialization indicatorg

3 Vv 1%;;%;”_1 , F; ; « false{frozen fraction indicators

@ Vv, I35 2, — 0 {fraction parameteis

(5) while true

(6) bS «— 0 {best score for this stgp

@) u «— v « —1 {direction and window indicgs

8) for ¢ <+ 1 to m {for each directiof

9) if I; = true {if already initialized
t(lO) for j <« 1tom — 1 {for each window in join ordéer
(11) if z; ; = 1or F; ; =true {z; ; is maxed or frozeh
(12) continue{move to next settinp

(13) 2’ « z; ; {store old valug

(14) zi,; < MIN(1, z; ; + d; ;) {incremen}
(15) S «— EVAL(z, {z;,;}, cO, cC)

(16) 2;,; < 2’ {resetto old valug

17) if S > bS {update best solutign

(18) bS — S;u — ;v — 3

(19) else if S < 0 {infeasible setting

(20) F; ; « true {frozez; ;}

(21) else{if not initialized}

(22) Vi<j<m-—1,z; j < d; j {incremental}
(23) S «— EVAL(z, {z;,;}, cO, cC)

(24) Vi1<j<m-—1,z; ; < 0 {resetal}

(25) if S > bS {update best solutign

(26) bS — S;u «—1

(27) if w = —1 {no feasible configurations fouhd

(28) break{further increment not possibje

(29) if 1,, = false {if not initialized}

(30) I,, — true {update initialization indicatdr

(31) Vi1<j<m—1, 2z, ; < d; j {increment al}

(32) elsezy, v = zu,» + ds,; {increment

(33) c¢C = C({z,;}) {update current copt

(34) cO = O({z;,;}) {update current outpyt

(35) return {z; ;} {Final resul}

EVAL(z,{z4,;},cO, cC)

(1) S <« —1 {metric score of the solutign

) ifC({z,;}) > r-C(1) {if not feasiblg

3) return S {return negative metric scofe

4) switch(heuristic_type)

5) caseOutput: S — O({z;,;}); break

(6) caseOutput PerCost: S «— O({z;,;})/C({zi,;}); break
(@) caseDeltaOutput Per DeltaCost: S «— %; break
(8) return S {return the metric scofe

Figure 3: Greedy Heuristic for setting the harvest fractions.

)l;y w. On average, for only fraction of the incoming tuples
we perform window shreddingw is usually small £ 0.1).
Window shredding is performed by executing the join fully,
except that the first window in the join order of a join direc-
tion is processed only partially based on the throttle fosct.

The tuples to be used from such windows are selected so that
they are roughly evenly distributed within the window’s &ém
range. This way, we get rid of the bias introduced in the out-
put due to window harvesting, and can safely use the output
generated from window shredding for building histograms to
capture the time correlations. Since window shredding only
processeg fraction of the first windows in the join orders,

it respects the processing constraint of the optimal window
harvesting problem dictated by the throttle fraction.

5.2.2 Per Stream Histograms

histograms is excessive
and unnecessary. We propose to maintain anlyistograms,
one for each stream. The histogram associated Withs
enoted byZ; and it is an approximation to the pdf ;, i.e.,
the probability distribution for the random variabg ; that
was introduced in Section 4.2.1.

Maintaining only m histograms that are updated only This is achieved by maintaining the histogradnfor approx-
for the output tuples generated from window shredding in-imating the pdff; ;. The m histograms are updated only
troduces very little overhead, but necessitates devejopin for output tuples generated from window shredding. More-
new method to calculate logical basic window scoﬁg's) over, window shredding is performed only for a sampled
from thesem histograms. Recall that we haptj" = subset of incoming tuples defined by the sampling parame-

fbl{klz-—1) fiw(x)dz. Since we do not maintain histograms terw. The logical basic window scores are calculated using

for all pdfs (f; ;'s), this formulation should be updated. We the m h|stpgrams during the adaptation ste_p (evansec
LU . .onds). This whole process generates very little overheiad. |
now describe the new method we use for calculating the logi-. . . i .
o time-correlations do not exist, the logical basic windowres
cal basic window scores. . .
-~ &) are close to each other and GrubJoin reduces to processing a
From the definition op? ., we have: o .
] random subset of the basic windows. Even in these extreme
k cases, GrubJoin is able to perform equally well as tuple-drop
Pig = P{Air € bk — 1, K]}, wherer; ; = . ping (see Section 6.2.2), thanks to the low overhead of win-

For the case of = 1, nothing that4; ; = — A ;, we have: dow harvesting configuration and time correlation learning
— 4 ,] — Jyty .
. 6 Experimental Results
pi; = P{A[J €b- [—k, —k+ 1]} . .)
b (k1) The GrubJoin algorithm has been implemented and suc-
— / fia(z) da. 1) cessfully demonstrated as part of System S [13], a largle-sca
z=—bk ’ stream processing prototype, at IBM Research. Here, we re-

port two sets of experimental results to demonstrate tlee-eff
tiveness of our approach. The first set evaluates the ojptymal
and the runtime performance of the proposed heuristic algo-
rithms used to set the harvest fractions. The second demon-

Using £,(I) to denote the frequency for the time ranbe
in histogramZ;, we can approximate Equatipn 1 as follows:

k ~ . _— —
piy ~ Lo =k k1) 2) strates the superiority of window harvesting to tuple dingp
For the case of 1, we use the trickd; ; = A; 1 — A1 shows the scalability of our approach v_vith respect to variou
workload and system parameters, and illustrates that the ov
Pf,j = P{(Ai1— A1) €b-[k—1,k]} head of adaptation is small.
= P{A;1€b-[k—1,k]+ A1} 6.1 Setting of Harvest Fractions

To evaluate the effectiveness of the three alternative met-
rics for setting the harvest fractions, we measure the @btim
ity of the resulting settings with respect to the join outraie,
/w1 compared to the best achievable obtained by using the brute-
x

Making the simplifying assumption that; ; and A; ; are
independent, we get:

i fia(z) P{A;q €b- [k — 1,k + 2} dx force algorithm. The graphs in Fig. 4 show optimality as a

=—wy

o bokte function of throttle fractiore for the three evaluation metrics,
/ () / fi1(y) dy dz. (3) namely Best OutputRO), Best Output Per CostHOpC),
z ’ y=b-(k=D)4z and Best Delta Output Per Delta Co8tpOpDC'). An opti-
.))) ~mality value of¢ € [0, 1] means that the setting of the harvest
At this point, we will assume that the histograms are equi-fractions obtained from the heuristic yields a join outgater
width histograms, although extension to other types are posy times the best achievable, LO({zi;}) = ¢-0({z,;})
sible. The_ valid time range QIz which |s[—wi,w1]_(the IN- where {z} .} is the optimal setting of the harvest fractions
put domain off;), is divided into| £;| number of histogram gptained from the brute-force algorithm afid ;} is the set-
buckets. We use;[k] to denote the frequency for theh ing optained from the heuristic. For this experiment weehav
bucket inZ;. We useL;[k*] andL;[k.] to denote the higher ., "_ 3 —) — 4, = 10, andb = 1. All results are
and lower points of théth bucket's time range, respectively. ayerages of 500 runs. For each run, a random stream rate is
Finally, we can approximate Equation 3 as follows: assigned to each of the three streams using a uniform distri-
2] L]+ Lo gutioln with range{loo, 50t())]. Sim]ilarly, sglecti\ggs gre ran-
B 1|v* 1Vx omly assigned. We observe from Fig. 4 tiaOpC per-
Pij = Z (ﬁl [l £a(b- e — 1, K] + 2)) - (4) forms well only for very smalk values & 0.2), whereasBO
performs well only for large: values ¢ > 0.4). BDOpDC
Equations/(2) and (4) are used to calculate the logical basiés superior to other two alternatives and performs optiynall
window scores by only using the histograms we maintain. for z > 0.4 and within0.98 of the optimal elsewhere. We
conclude thatBDOpDC' provides a good approximation to
the optimal setting of harvest fractions. We next study the
In summary, we only neec_i to captum_ pdfs (f;1,Vi € advantage of heuristic methods in terms of running time per-
[1..m]) to calculate the logical basic window scoreg). formance, compared to the brute-force algorithm.

r=—w

v=1

5.2.3 Cost of Time Correlation Learning

m=3, % ~U(100,500), w={10,10,10}, b=1 2 (throttle fraction) = 0.25
T

gorithm whenz < 0.5(™~1)/2 and greedy reverse otherwise.
Performance results on greedy double-sided can be found in
our technical report [8].

6.2 Results on Join Output Rate

In this section, we report results on the effectiveness of
GrubJoin with respect to join output rate, under heavy sys-

°
©

08

e

o
o

0.98

optimality
o o
2

0.96

time (milliseconds)

°

01 015 02 025 03 035 04

= optimal
greedy - BO

o

0.1 —— greedy - BOpC

Vo 0T an m em oh ew s 0% 0 i % » tem load due to high rates of the incoming input streams. We
z (throttle fraction) n (number of basic windows per window) N .

Figure 4: Effect of differ- Figure 5: Running time per- compare GrubJoin with thQandomDrompp_roach. In Ran-

ent evaluation metrics on opformance w.r.tm and number domDrop, excessive load is shed by placing drop operators

timality of greedy heuristic. ~ of basic windows. in front of input stream buffers, where the parameters of the

N . drop operators are set based on the input stream rates using
The graphs in Fig. 5 plot the time taken to set the harvesty e giatic optimization framework of [2]. We report reswts

fractions (in msecs) as a function of the number of logical ba 3-way, 4-way, and5-way joins. When not explicitly stated,

sic windows per join window(), for exhaustive and greedy e join refers to s-way join. The window size is set to
approaches. The results are showndpt, and5-way joins .~ _ 99 v; andb is set to2, resulting in10 logical basic

with the greedy approach and f&way join with the exhaus- ingows per join window. The sampling parameteis set

fuv.e approf':lch._The throttle fractiaris set to0.25. Th_ey-aX|s to 0.1 for all experiments. The results reported in this section
is in logarithmic scale. As expected, the exhaustive amiToa e from averages of several runs. Unless stated otherwise,
takes several orders of magnitude more time than the greedy, ., run is minute, and the initia0 seconds are used for

one. Moreover, the time taken for the greedy approach inyyam_yp. The default value of the adaptation perinds 5
creases with increasingandr, in compliance with its COM- ge04nds for the GrubJoin algorithm, although we study the

) . e
plexity of O(n - m*). However, what is important to observe impact of A on the performance of the join in Section 6.2.4.
here is the absolute values. For instance, fatveay join the The join type in the experiments reported in this subsec-

exhaustive algorithm takes arouBceconds forn = 10and s js join. A set of tuples are considered to be matching
around30 seconds for. = 20. Both of these values are unac- g their values (assuming single-valued numerical atttis)
ceptable for performing fine grained adaptation. On therothe ;. \uithin ¢ distance of each othere is taken asl in the
hand, forn < 20 the greedy approach performs the setting of experiments. We model streaf) as a stochastic process
harvest fractions within0 msecs forn = 5 and much faster X; = {Xi(p)}. Xi(p) is the random variable representing

for m < 4, enabling fine grained adaptation. the value of the tupleé € S; with timestampT'(t) = . A
The graphs n F|g ‘6 plot n(numberofbasicwindowspe’rwinc'iow):10

. tuple consists of a single numerical attribute with the dioma
the time taken to set the | |Zaiey o D = [0, D] and an associated timestamp. We defihé) as:
harvest fractions as a func- s
tion of throttle fractionz, for ¢ *M#//#4 Xi(¢) = (D/n) - (¢ +7i) + ki - N(0,1) mod D.
greedy approach witlm = z
3, 4, and5. Note thatz ¢ ! In other wordsX; is a linearly increasing process (with wrap-
affects the total number of “| : — around periody) that has a random Gaussian component.
greedy steps, thus the run- |e——"" B - — There are two important parameters that make this model use-
ning time. The best case is z(hotefcion ful for studying GrubJoin. First, the parametgr named as

Figure 6: Running time perfor-

when we have =~ 0 and the , deviation parameterenables us to adjust the amount of time
mance wrtm, throttle fraction.

search terminates after the correlations among the streams. If we haye= 0, Vi, then
first step. The worst case occurs when we have 1, re- the values for the time-aligned portions of the streamslvill
sulting in~ n - m - (m — 1) steps. We can see this effect exactly the same, i.e., the streams are identical with plessi
from Fig.[6 by observing that the running time performance lags between them based on the setting'sf If x; values are
worsens as gets closer td. Although the degradationin per- large, then the streams are mostly random, so we do not have
formance for large: is expected due to increased number of any time correlation left. Second, the parametgnamed
greedy steps, it can be avoided by reversing the working logi aslag parametey enables us to introduce lags between the
of the greedy heuristic. Concretely, instead of startimgmfr streams. We can set = 0, V4, to have aligned streams. Al-
z;; = 0, Vi, j, and increasing the harvest fractions gradually, ternatively, we can set; to any value within the rang@, 7]

we can start frony; ; = 1, Vi, 4, and decrease the harvest to create nonaligned streams. We Bet= 1000, = 50, and
fractions gradually. We call this version of the greedy algo vary the time lag parameters;§) and the deviation parame-
rithm greedy reverse Note that greedy reverse is expected ters («;'s) to generate a rich set of time correlations.

to run fast wherr is large, but its performance will degrade 6.2.1 Varying), Input Rates

when z is small. The solution is to switch between the two o o
algorithms based on the value:ofWe call this version of the ~ The graphs in Fig. 7 show the output rate of the join as a func-
algorithmgreedy double-sidedt uses the original greedy al- tion of the input stream rates, for GrubJoin and RandomDrop.

: 6.2.3 Varyingm, # of Input Streams
—— Grub Join
—E— Random Drop

2.2} [—%—Grub Join (non—aligned)
~6— Random Drop (non-aligned)
—— Grub Join (aligned)

1.8} | —#— Random Drop (aligned)

We study the effect ofn on the improvement provided by
GrubJoin, in Fig._ 9. Then values are listed on the-
axis, whereas the corresponding output rates are shown in
bars using the left-axis. The improvement in the out-
put rate (in terms of percentage) is shown using the right
y-axis. Results are shown for both aligned and nonaligned

“w o N ® ©

output rate (tuples/sec)

output rate (tuples/sec)
N

N ow

20 40 60 80 100 120 140 160 180 200 10 20 30 40 S50 60 70 8 90 100

input rate (tuples/sec) . deviation parameter scenarios. The input rates are set1ta) tuples/sec for
Figure 7: Effect of varying the Figure 8: Effect of varying this experiment. We observe that, compared to Random-
input rates on the output ratéhe amount of time correla- Drop, GrubJoin provides an improvement in output rate that
wiwo time-lags. tions on the output rate. is linearly increasing with the number of input streams
For each approach, we report results for both aligned and norMoreover, this improve- =

16

aligned scenarios. In the aligned case, we have- 0,vi, ~ mentis more prominent for *
and in the nonaligned case we hawe = 0,7, = 5, and honaligned scenarios and.
75 = 15. The deviation parameters are setas= 1, = 2 reaches up tad00% when /==
andk; = 50. As a result, there is strong time correlation We have &-way join. This
betweenS; and Sy, whereasSs is more random. We make shows the importance of:
three major observation from Fig. 7. First, we see that Grub-Performing intelligent load
Join and RandomDrop perform the same for small values oshedding form-way joins. 7 mnumber it sreams _

the input rates, since there is no need for load shedding untiNaturally, joins with more Figure 9: Effect of the # of in-
the rates reach00 tuples/sec. Second, we see that GrubJoininput streams are costlier to put streams on the improvement
is vastly superior to RandomDrop when the input stream rate§Vvaluate. For such joins, provided by GrubJoin.

are high. Moreover, the improvement in the output rate be-effective load shedding techniques play a more crucial role
comes more prominent for increasing input rates, i.e., wherin keeping the output rate high.

there is a greater need for load shedding. Third, GrubJoirg.2.4 Adaptation Overhead

provides up td#5% better output rate for the aligned case and
up to 150% improvement for the nonaligned case. This is

t rate (tuples;

o v & o
improvement %

200

outpuf

In order to adapt to the changes in the input stream rates,

because the lag-awareness nature of GrubJoin gives it an aﬁm GrubJoin algorithm re-adjusts the window rankings and

ditional upper hand in sustaining a high output rate when theaasr\clgigfrrscxﬁgfeex]erﬁ 23‘;3;‘??&:2/: Qﬁ;]ezp::r:?&:z\t’:;?] of
streams are nonaligned. P 9

o _ time. We study the effect of using differet values on the
6.2.2 Varying Time Correlations output rate of the join. In this scenario the stream rates sta

The graphs in Fig. 8 study the effect of varying the amountfrom 100 tuples/sec, change t&0tuples/sec aftes seconds,
of time correlations among the streams on the output rate ofind change t60tuples/sec after anoth&rseconds.
the join, with GrubJoin and RandomDrop for the nonaligned ~ The graphsin Fig. 10 plot-=;
case. Recall that the deviation parametés used to alter the the output rate of GrubJoing
strength of time correlations. It can be increased to removeas a function ofA, for dif-
the time correlations. In this experiment is altered to study ~ ferentm values. Remem- 2
the change in output rate. The other settings are the sarhe witoer that larger values af
the previous experiment, except that the input rates ard fixe increase the running time OfQZ
at 200 tuples/sec. We plot the output rate as a functior:pf the heuristic used for settmg '
in Fig.[8. We observe that the join output rate for GrubJointhe harvest fractions, and ———————<—
and Random Drop are very close when the time correlationghus have a profound effect - & adaptation interval seconds)
. . igure 10: Effect of adaptation
are almost totally removed. This is observed by looking aton how frequent we can per- ;
| I 7 . perlod on Output rate.
the right end of ther-axis. However, for the majority of the form the adaptation. Tha
deviation parameter’s range, GrubJoin outperforms Randomrange used in this experiment[is5, 8] seconds. We observe
Drop_ The improvement provided by GrubJoiri®% when from FIg’TO that the best output rate is achieved with the
k3 = 25, 150% whenks = 50, and25% whenr; = 75. Note smallestA value of0.5 for m = 3. This is because fan = 3
that, asx gets larger, RandomDrop starts to suffer less fromthe adaptation step is very cheap in terms of computational
its inability to exploit time correlations. On the other kian ~ cost. We see that the best output rate is achievedfer 1
whenk gets smaller, the selectivity of the join increases as afor m = 4 and forA = 3 for m = 5. The O(n - m*) com-
side effect and in general the output rate increases. Tlese ¢ Plexity of the adaptation step is a major factor for this g&n

trasting factors result in a bimodal graph for RandomDrop. in the ideal setting of for largerm.
In general, a default value df = 5 seems to be too con-

servative for stream rates that show frequent fluctuatiéms.

t rate (uples/se
w »

order to get better performance, the adaptation period caB@ Conclusion
be shortened. The low cost of window harvesting configu-

ration in GrubJoin makes it possible to use smallevalues — gyoam ioin which performs time correlation-aware CPU load
to perform more frequent adaptation. As a result, GrubJoinge4ding. We developed the concept of window harvesting as
achieves add|t_|onal gain |n.output rate when the input rate_san in-operator load shedding technique for GrubJoin. Win-
are fast changing and require frequent adaptation. The optiy,y, harvesting sheds excessive CPU load by processing only
mal value ofA to use depends on the number of input streams. o 1 0st profitable segments of the join windows, while ig-
7 Related Work noring the less valuable ones. Window harvesting explbés t
time correlations to prioritize the segments of the join -win

The related work in the literature on load shedding in . -
L o . .dows and maximizes the output rate of the join. We devel-
stream join operators can be classified along four major di- o o .
.) . S) -~ oped several heuristic and approximation-based techsique
mensions. The first dimension is the metric to be optimized

: . to make window harvesting effective in practi FW
when shedding load. Our work aims at maximizing the out- O maxe dow harvesting effective in practice forway,

e : windowed stream joins. Our experimental studies show that
put rate of the join, also known as the MAX-subset metric [6]. S J , P :
. . - . " GrubJoin is vastly superior to tuple dropping.

Besides the output rate metric for join load shedding opti-
mization [2, 7, 6, 15, 20], other metrics have also been intro References
duced in the literature, suph as the Archive-metric [6], tired [1] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani
sampled output rate metric [15]. I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and J. Widom.

The second dimension is the constrained resource that STREﬁMi The stanford stream data managifEE Data Engineer-

; : ing Bulletin, 26, 2003.
f_or<_:_es load shedd_lng._ CPU and_ memory are the two major [2] A. M. Ayad and J. F. Naughton. Static optimization of camjtive
!'m'tmg résources in join processing. In the context oéam queries with sliding windows over infinite streams.AGM SIGMOD
joins, works on memory load shedding [15, 6, 20] and CPU 2004.
load shedding [2, 7] have received significant interesthint [3] B Ef’ﬂbCOCk; Sd Babu, M. Datar, RS-AmV%‘B saggojé Widom. Misd
_ . [. . and issues In data stream systems£ .
case of user deflr_]ed join windows, _the memory 1S expected [4] H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintenvl Cherni-
to be_ !955 of an issue. qu _e_Xpe”ence shows thatrfer ack, C. Convey, E. Galvez, J. Salz, M. Stonebraker, N. TatuTib-
way joins, CPU becomes a limiting factor before the memory betts, and S. Zdonik. Retrospective on AurovaDB Journa) 2004.
does. As a result, our work focuses on CPU load shedding.[®! i ﬁha:‘d_ras\kaa;a”' O-SCEOP‘;" A. DtiShPSa”geiMM-dé- ”’a\f/‘k'RM-
ellerstein, . Aong, S. Krishnamurtny, S. R. Madden, V. Raman

However’_ourframe_/vorl_(can also be used to Sa_ve,memolry [8] F. Reiss, and M. A. Shah. TelegraphCQ: Continuous dataflaw pr

The third dimension is the stream characteristic that is €x- cessing for an uncertain world. @IDR, 2003.
ploited for optimizing the load shedding process. Stream [6] A. Das, J. Gehrke, and M. Riedewald. Approximate join jgexing

rates, window sizes, and selectivities among the streaes ar __Over datastreams. ACM SIGMOD 2003. _ _
[7] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. Adaptive load stdidg for

We presented GrubJoin, an adaptivesway, windowed

commonly used for load s.heddlng optimization [2, 14]. ‘How- windowed stream joins. IACM CIKM, 2005.
ever, these works do not incorporate tuple semantics irto th [8] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. GrubJoin: An adiyat
decision process. Isemantidoad shedding, the load shed- multi-way windowed stream join with time correlation-awapgidoad

; i ; shedding. Technical Report GIT-CERCS-05-19, Georgia ;T2aa5.
ding decisions are influenced by the values of the tuples. In [9] L. Golab, S. Garg, and M. T, Ozsu. On indexing sliding v over

frequency-based s_emanfciq Ioa_d shedding, tupl_es whosesvalu online data streams. EDBT, 2004.
frequently appear in the join windows are considered as morgi0] L. Golab and M. T. Ozsu. Processing sliding window migtis in
important [6, 20]. However, this only works for equi-joins. continuous queries over data streamsVLiDB, 2003.

In time correlation-based semantic load shedding, aldectal 11 M- A Hammad, W. G. Aref, and A. K. Elmagarmid. Stream window
join: Tracking moving objects in sensor-network databasesScien-

age-based load shedding [15], a tuple’s profitability imter tific and Statistical Database Management, SSDBB03.
of producing join output depends on the difference betweer[12] S.Helmer, T. Westmann, and G. Moerkotte. Diag-Join: Apasfunis-
its timestamp and the timestamp of the tuple it is matched ticjoin algorithm for 1:N relationships. IWLDB, 1998.

: . [13] N.Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Seloda@. Venka-
against [7, 15]. Our work takes this latter approach. tramani. Design, implementation, and evaluation of the limead

The fourth dimension is the technique used for shedding penchmark on the stream processing coreA@M SIGMOD 2006.
load. In the limited memory scenarios the problem is a[14] J. Kang, J. Naughton, and S. Viglas. Evaluating windowg over
caching one [2] and thus tuple admission/replacement is the _ unbounded streams. IEEE ICDE, 2003.

. - [15] U. Srivastava and J. Widom. Memory-limited execution ofgdowed
most commonly used technique [15,/ 6, 20]. On the other stream joins. IVVLDB, 2004

hand, CPU load shedding can be achieved by either droppingis] Streambase systems. http://www.streambase.com/, M. 200
tuples from the input streams [2] or by only processing a sub{17] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and Btone-
set of the join windows [7]. As we show in this paper, our braker. Load shedding in a data stream managev.LIDB, 2003.

. [18] N. Tatbul and S. Zdonik. A subset-based load sheddimpyagzh for
window harvesting technique is superior to tuple dropping aggregation queries over data streamsvIiDB, 2006,

and prefers to perform the join partially, as dictated by our[19] s.D. Viglas, J. F. Naughton, and J. Burger. Maximizing tutput rate
operator throttling framework. of m-way join queries over streaming information sourcesVILIDB,
2003.
[20] J.Xie, J. Yang, and Y. Chen. On joining and caching séstie streams.
In ACM SIGMOD 2005.

10

	1 Introduction
	2 Preliminaries
	3 Operator Throttling
	3.1 Setting of the Throttle Fraction

	4 Window Harvesting
	4.1 Fundamentals
	4.1.1 Partitioning into Basic Windows
	4.1.2 Configuration Parameters

	4.2 Configuration of Window Harvesting
	4.2.1 Setting of Window Rankings
	4.2.2 Setting of Harvest Fractions

	4.3 Brute-force Solution

	5 GrubJoin
	5.1 Heuristic Setting of Harvest Fractions
	5.1.1 Candidate Set Generation
	5.1.2 Evaluation Metrics

	5.2 Learning Time Correlations
	5.2.1 Window Shredding
	5.2.2 Per Stream Histograms
	5.2.3 Cost of Time Correlation Learning

	6 Experimental Results
	6.1 Setting of Harvest Fractions
	6.2 Results on Join Output Rate
	6.2.1 Varying , Input Rates
	6.2.2 Varying Time Correlations
	6.2.3 Varying m, # of Input Streams
	6.2.4 Adaptation Overhead

	7 Related Work
	8 Conclusion

