
RC24079 (W0610-066) October 13, 2006
Computer Science

IBM Research Report

A Load Shedding Framework and Optimizations for
M-way Windowed Stream Joins

Bugra Gedik1,2, Kun-Lung Wu1, Philip S. Yu1, Ling Liu2

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

2CERCS
College of Computing

Georgia Tech

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Load Shedding Framework and Optimizations for
M-way Windowed Stream Joins

Buğra Gedik♦♠ Kun-Lung Wu♠ Philip S. Yu♠ Ling Liu♦

♦ CERCS, College of Computing, Georgia Tech
♠ Thomas J. Watson Research Center, IBM Research
{bgedik,lingliu}@cc.gatech.edu,{klwu,psyu}@us.ibm.com

Abstract
Tuple dropping, though commonly used for load shedding

in most stream operations, is inadequate form-way, win-
dowed stream joins. The join output rate can be overly re-
duced because it fails to exploit the time correlations likely to
exist among interrelated streams. In this paper, we introduce
GrubJoin: an adaptive,m-way, windowed stream join that
effectively performs time correlation-aware CPU load shed-
ding. GrubJoin maximizes the output rate by achieving near-
optimal window harvesting, which picks only the most prof-
itable window segments for the join. Due to combinatorial ex-
plosion of possiblem-way join sequences involving window
segments,m-way, windowed stream joins pose several unique
challenges. We focus on addressing two of them: (1) How can
we quickly determine the optimal window harvesting config-
uration for anym-way, windowed stream join? (2) How can
we monitor and learn the time correlations among the streams
with high accuracy and minimal overhead? To tackle these
challenges, we formalize window harvesting as an optimiza-
tion problem, develop greedy heuristics to determine near-
optimal window harvesting configurations and use approxi-
mation techniques to capture the time correlations. Our ex-
perimental results show that GrubJoin is vastly superior to
tuple dropping when time correlations exist and is equally ef-
fective when time correlations are nonexistent.

1 Introduction
In today’s highly networked world, many applications rely

on time-critical tasks that require analyzing data from on-
line sources and generating responses in near real-time. On-
line data today are increasingly coming in the form of data
streams, i.e., time-ordered series of events or readings. Ex-
amples include stock tickers in financial services, link statis-
tics in networking and sensor readings in environmental mon-
itoring. In these examples, dynamically changing, rapid
data rates and stringent response time requirements force a
paradigm shift in how the stream data are processed, mov-
ing away from traditional “store and then process” model
of database management systems to “in-transit processing”
model of data stream management systems (DSMSs). This
shift has created a strong interest in DSMS-related research,
in both academia [1, 4, 5] and industry [16, 13].

In a DSMS, CPU load shedding is critical in maintaining
high system throughput and timely response when the avail-

able CPU is not sufficient to handle the processing of the con-
tinual queries installed in the system, under the current rates
of the input streams. Without load shedding, the mismatch be-
tween the available CPU and the query service demands will
result in delays that violate the response time requirements.
Such mismatch can also cause unbounded growth in system
queues, further bogging down the system. In view of these
problems, CPU load shedding can be broadly defined as an
optimization mechanism to reduce the amount of processing
for evaluating continual queries in an effort to match the ser-
vice rate of a DSMS to its input rate, at the cost of producing
a potentially degraded output.

Windowed stream joins are one of the most common, yet
costly, operations in a DSMS [3, 10]. M-way, windowed
stream joins are key operators used by many applications
to correlate events in multiple streams coming from various
sources. Consider the following two applications:

Example 1[11] - Tracking objects using multiple video (sen-
sor) sources: Assuming that scenes (readings) fromm video
(sensor) sources are represented by multi-attribute tuples of
numerical values (join attribute), we can perform a distance-
based similarity join to detect objects that appear in all ofthe
m video (sensor) sources.

Example 2[7] - Finding similar news items from different
news sources: Assuming that news items from CNN, Reuters,
and BBC are represented by weighted keywords (join at-
tribute) in their respective streams, we can perform a win-
dowed inner product join to find similar news items from
these three different sources (herem = 3).

Time correlations often exist among tuples in interrelated
streams, because causal events manifest themselves in these
streams at different, but correlated, times. With time correla-
tions, for pairs of matching tuples from two streams, there ex-
ists a non-flat match probability distribution, which is a func-
tion of the difference between their timestamps. For instance,
in Example 2, it is more likely that a news item from one
source will match with a temporally close news item from an-
other source. In this case the streams are almostalignedand
the probability that a tuple from one stream will match with
a tuple from another decreases as the timestamp difference
increases. The streams can also benonaligned, either due to
delays in the delivery path, such as network and processing
delays, or due to the time of event generation effect inherent
in the application. Them-way video stream join in Example

1

http://www.cercs.gatech.edu
http://www.cc.gatech.edu
http://www.gatech.edu
http://www.watson.ibm.com
http://www.research.ibm.com
mailto:bgedik@cc.gatech.edu
mailto:lingliu@cc.gatech.edu
mailto:klwu@us.ibm.com
mailto:psyu@us.ibm.com

1 gives an illustration of the nonaligned case, where similar
tuples appearing in different video streams will have alag be-
tween their timestamps, due to the time it takes for an object
to pass through all cameras.

In view of the presence of time correlations among cor-
related streams and bursty, unpredictable stream rates, itis
important to develop a time correlation-aware load shed-
ding framework and optimization techniques form-way, win-
dowed stream joins. So far, tuple dropping [2, 17] has been
predominantly used for CPU load shedding in stream joins.
The rates of the input streams are sufficiently reduced via tu-
ple dropping in order to sustain a stable system. However,
tuple dropping is generally ineffective in shedding CPU load
for m-way, windowed stream joins. The join output rate can
be unnecessarily degraded because tuple dropping does not
recognize, hence fails to exploit, time correlations that often
exist among interrelated streams.

In an earlier work [7], we developed an adaptive load shed-
ding scheme for two-way, windowed stream joins. It im-
proves upon tuple dropping by using selective processing.
The main idea is to decide which tuples in a window are more
profitable for the join, if not all tuples can be processed due
to limited CPU. The selective processing in [7] mainly de-
pends on (1) maintaining statistics on individual window seg-
ments to learn time-based correlations between the two input
streams, and (2) applying the learning results to dynamically
revise the selective processing decisions.

Although our preliminary work in [7] established some
foundation for load shedding inm-way, windowed stream
joins, the combinatorial explosion of possiblem-way join
sequences involving different window segments poses sev-
eral unique challenges that require more efficient learningal-
gorithms and more scalable selective processing techniques.
The techniques developed for two-way stream joins are too
costly to apply directly for exploiting time correlations among
multiple streams. In addition, it is inadequate to implement
m-way stream joins by using a sequence of two-way stream
joins. Such an implementation is memory intensive due to
intermediate results. Moreover, time correlation detection on
any two streams is insufficient to capture the global view of
the time correlations, resulting in less accurate time correla-
tion detection, leading to less effective load shedding.

In view of the above challenges, in this paper we present a
general framework and a set of optimization techniques for
performing time correlation-aware CPU load shedding for
m-way, windowed stream joins. Our framework consists of
three key functional components:window harvesting, oper-
ator throttling, andwindow partitioning. We developGrub-
Join1 − an m-way, windowed stream join algorithm, which
implements these three functional components. While shed-
ding load, GrubJoin maximizes the output rate by achieving
near-optimal window harvesting within an operator throttling
scheme built on top of the window partitioning core.

1As an intransitive verb, grub means “to search laboriously by digging”. It relates
to the way that the most profitable segments of individual join windows are picked and
processed with window harvesting in order to maximize the join output.

GrubJoin divides each join window into multiple, small-
sized segments ofbasic windowsto efficiently implement
time correlation-aware load shedding. Our operator throttling
scheme performs load shedding within the stream operator,
i.e., regulating the amount of work performed by the join.
This requires altering the processing logic of them-way join
by parameterizing it with athrottle fraction. The parameter-
ized join incurs only a throttle fraction of the processing cost
required to perform the full join. As a side effect, the quantity
of the output produced may be decreased when load shed-
ding is performed. To maximize the output rate while shed-
ding CPU load, we develop window harvesting optimization
that picks only the most profitable basic windows of individ-
ual join windows for the join while ignoring the less valuable
ones, similar to farmers harvesting fruits, like strawberries, by
picking only the ripest while leaving the less ripe untouched.

One key challenge of GrubJoin is: How do we implement
window harvesting efficiently in view of the combinatorial
explosion of possiblem-way join sequences? Another key
challenge is: How do we learn the time correlations among all
them2/2 pairs of streams with little overhead? We tackle the
first challenge by developing fast greedy heuristics for making
near-optimal window harvesting decisions, and the second by
employing low-overhead approximation techniques that only
maintainm cross-stream statistics to capture the time correla-
tions among them2/2 pairs of streams. As a result, Grub-
Join is very efficient in both window harvesting and time-
correlation learning, enabling it to quickly react and timely
adapt to fast-changing stream rates.

To the best of our knowledge, this is the first work on time
correlation-aware CPU load shedding form-way, windowed
stream joins that are adaptive to the dynamically changing
input stream rates. We would like to point out that theage-
basedload shedding framework in [15] is the first one that
recognizes the time correlation effect on making tuple re-
placement decisions for two-way stream joins with limited
memory. Furthermore, in the context of traditional joins,
the database literature includes join operators, such as Drag-
Join [12], that capitalized on the time of data creation effect
in data warehouses, which is similar to the time correlation
effect in stream joins.

2 Preliminaries
In this section, we present our window-based stream join

model, introduce some notations, and describe the basics of
m-way, windowed stream join processing.

We denote theith input stream bySi, wherei ∈ [1..m]
andm ≥ 2 is the number of input streams of the join opera-
tor, i.e., we have anm-way join. Each stream is a sequence of
tuples ordered by an increasing timestamp. We denote a tuple
by t and its timestamp byT (t). Current time is denoted byT .
We assume that tuples are assigned timestamps upon their en-
trance to the DSMS. We do not enforce any particular schema
type for the input streams. Schemas of the streams can include
attributes that are single-valued, set-valued, user-defined, or
binary. The only requirement is to have timestamps and an

2

appropriate join condition defined over the input streams. We
denote the current rate (in tuples/sec) of a streamSi by λi.

An m-way stream join operator hasm join windows, as
shown in the 3-way join example of Fig. 1. The join window
for streamSi is denoted byWi, and has a user-defined size, in
terms of seconds, denoted bywi. A tuple t from Si is kept in
Wi only if T ≥ T (t) ≥ T −wi. The join operator has buffers
attached to its inputs and output. The input stream tuples are
pushed into their respective input buffers either directlyfrom
their source or from output of other operators. The join op-
erator fetches the tuples from its input buffers, processesthe
join, and pushes the result tuples into the output buffer.

input tuples

poped

input tuples

pushed

S1

S2

S3

input streams

input buffers join windows and join operator

output tuples

pushed

output buffer

multi-way join performed

Figure 1: M-way, win-
dowed stream join process-
ing, join directions, join or-
ders for each direction

d
ir

ec
ti

o
n

in
d
ex

order indexri,j

i
j 1 2

1

2

3

3 2 R1 = { , }

3 1 R2 = { , }

,1 2 R3 = { }

The GrubJoin algorithm can be seen as a descendant of
MJoin [19]. MJoins have been shown to be effective for
fine-grained adaptation and are suitable for the environments
where the stream rates are bursty. In an MJoin, there arem
differentjoin directions, one for each stream, and for each join
direction there is an associatedjoin order. Theith join direc-
tion describes how a tuplet from Si is processed by the join
algorithm, after it is fetched from the input buffer. The join or-
der for directioni, denoted byRi = {ri,1, ri,2, . . . , ri,m−1},
defines an ordered set of window indexes that will be used
during the processing oft ∈ Si. In particular, tuplet will first
be matched against the tuples in windowWl, wherel = ri,1.
Here,ri,j is the jth join window index inRi. If there is a
match, then the index of the next window to be used for fur-
ther matching is given byri,2, and so on. For any direction,
the join order consists ofm − 1 distinct window indices, i.e.,
Ri is a permutation of{1, . . . ,m} − {i}. Although there are
(m−1)! possible choices of orderings for each join direction,
this number can be smaller depending on the join graph. We
use the MJoin [19] approach for setting the join orders. This
setting is based on the low-selectivity-first heuristic. Once
the join orders are decided, the processing is carried out inan
NLJ (nested-loop) fashion. Since we do not focus on any par-
ticular type of join condition, NLJ is a natural choice. Fig.1
illustrates join directions and orders for a 3-way join.

3 Operator Throttling
Operator throttling is a load shedding framework for gen-

eral stream operators, such as stream join, aggregation [18]
and other operators. It regulates the amount of load shedding

by maintaining a throttle fraction, and relies on an in-operator
load shedding technique to reduce the CPU cost of execut-
ing the operator in accordance with the throttle fraction. We
denote the throttle fraction byz. It has a value in the range
(0, 1]. The in-operator load shedding technique will adjust
the processing logic of the operator such that the CPU cost of
executing it is reduced toz times the original. As expected,
this will have side-effects on the quality/quantity of the out-
put. In stream joins, the side-effect is a reduced output rate,
i.e. a subset result.

Setting of the Throttle Fraction

The setting of the throttle fraction depends on the join per-
formance under current system load and the incoming stream
rates. We capture this as follows.

Let us denote the adaptation interval by∆. This means
that the throttle fractionz is adjusted every∆ seconds. Let
us denote the tuple consumption rate of the join operator for
Si, measured for the last adaptation interval, byαi. In other
words, αi is the tuple pop rate of the join operator for the
input buffer attached toSi, during the last∆ seconds. On the
other hand, letλ′i be the tuple push rate for the same buffer
during the last adaptation interval. Usingαi’s andλ′i’s we
capture the performance of the join operator under current
system load, denoted byβ, as:β =

∑m
i=1 αi/

∑m
i=1 λ′i.

The β value is used to adjust the throttle fraction as fol-
lows. We start with az value of1, optimistically assuming
that we will be able to fully execute the operator without any
overload. At each adaptation step (∆ seconds), we updatez
from its old valuezold based on the formula:

z =

{

β · zold β < 1;

min(1, γ · zold) otherwise.

If β is smaller than 1,z is updated by multiplying its old value
with β, with the aim of adjusting the amount of load shedding
to match the tuple consumption and arrival rates. Otherwise
(β ≥ 1), the join is able to process all the incoming tuples
with the current setting ofz, in a timely manner. In this latter
case,z is set to minimum of1 andγ·zold, whereγ is called the
boost factor. This is aimed at increasing the throttle fraction
z, assuming that additional processing resources are available.
If not, the throttle fraction will be readjusted during the next
adaptation step.

4 Window Harvesting
The basic idea behind window harvesting is to use only the

most profitable segments of the join windows for processing,
in an effort to reduce the CPU demand of the operator, as dic-
tated by the throttle fraction. Window harvesting maximizes
the join output rate by using the time correlations among the
streams to decide which window segments are most valuable
for output generation.

4.1 Fundamentals

Window harvesting involves organizing join windows into
a set ofbasic windowsand, for each join direction, selecting

3

the most valuable segments of the windows for join execution.

4.1.1 Partitioning into Basic Windows

Each join windowWi is divided into basic windows of size
b seconds. Basic windows are treated as integral units, thus
there is always one extra basic window in each join window
to handle tuple expiration. In other words,Wi consists of
1 + ni basic windows, whereni = ⌈wi/b⌉. The first basic
window is partially full, and the last basic window contains
some expired tuples (tuples whose timestamps are out of the
join window’s time range, i.e.,T (t) < T − wi). Every b
seconds the first basic window fills completely and the last
basic window expires totally. Thus, the last basic window is
emptied and it is moved in front of the basic window list as
the new first basic window.

At any time, the unexpired tuples inWi can be organized
into ni logical basic windows, where thejth logical basic
window (j ∈ [1..ni]), denoted byBi,j , corresponds to the
endingϑ portion of thejth basic window plus the beginning
1−ϑ portion of the(j+1)th basic window. We haveϑ = δ/b,
whereδ is the time elapsed since the last basic window expi-
ration took place. Note that a logical basic window always
stores tuples belonging to a fixed time intervalrelative to the
current time. This distinction between logical and real ba-
sic windows becomes handy when we are selecting the most
profitable window segments for the join.

There are two advantages of using basic windows. First,
basic windows make expired tuple management more effi-
cient [9], because the expired tuples are removed from the
join windows in batches, i.e., one basic window at a time.
Second, without basic windows, accessing tuples in a logical
basic window will require a search operation to locate a tuple
within the logical basic window’s time range.

In general, small basic windows are more advantageous in
better capturing and exploiting the time correlations. On the
other hand, too small basic windows will cause overhead in
join processing as well as in window harvesting configuration.

4.1.2 Configuration Parameters

There are two sets of configuration parameters for window
harvesting, which determine the window segments to be used
for join processing. These are:

• Harvest fractions; zi,j , i ∈ [1..m], j ∈ [1..m − 1]: For
the ith direction of the join, the fraction of thejth window
in the join order (i.e., join windowWl, wherel = ri,j) that
will be used for join processing is determined by the harvest
fraction parameterzi,j ∈ (0, 1]. There arem·(m−1) different
harvest fractions. The settings of these fractions are strongly
tied with the throttle fraction and the time correlations among
the streams. The details will be presented in Section 4.2.

• Window rankings; sv
i,j , i ∈ [1..m], j ∈ [1..m − 1], v ∈

[1..nri,j
]: For theith direction of the join, we define an or-

dering over the logical basic windows of thejth window in
the join order (i.e., join windowWl, wherel = ri,j), such
thatsv

i,j gives the index of the logical basic window that has
rankv in this ordering.Bl,s1

i,j
is the first logical basic window

in this order, i.e., the one with rank1. The ordering defined
by sv

i,j values is strongly influenced by the time correlations
among the streams (see Section 4.2 for details).

In summary, the most profitable segments of the join win-
dowWl (l = ri,j) that will be processed during the execution
of theith direction of the join is selected as follows. We first
pick Bl,s1

i,j
, thenBl,s2

i,j
, and so on, until the total fraction of

Wl processed reacheszi,j . Other segments ofWl that are not
picked are ignored and not used for the join execution.

now: beggining
of window

1

2

3

end of
window

1 2

s1,1=4, s1,1=3, s1,1=5 logical basic window rankings for Wr1,1=W3
s1,2=3, s1,2=2 logical basic window rankings for Wr1,2=W2

1 2 3

1 2

1 2 3

2 3 4 5 1

basic windows, 1 more than the number of
logical basic windows for each join window

logical basic windows
(5 of them, n1=n2=n3=5)

R
1
=

{
3
,2

}
,
jo

in
 o

rd
e
r

fo
r

d
ir

e
c
ti

o
n
 1

 (
s
tr

e
a
m

 S
1
)

z1,1=0.6, 3 logical

basic windows

z1,2=0.4, 2 logical

basic windows

r1,1

r1,2

Figure 2: Example of window harvesting.

Fig. 2 shows an example of window harvesting for a 3-
way join, for the join directionR1. In the example, we have
ni = 5 for i ∈ [1..3]. This means that we have5 logical
basic windows within each join window and as a result6 ba-
sic windows per join window in practice. The join order for
direction1 is given asR1 = {3, 2}. This meansW3 is the
first window in the join order ofR1 (i.e.,r1,1 = 3) andW2 is
the second (i.e.,r1,2 = 2). We havez1,1 = 0.6. This means
that nr1,1

· z1,1 = 5 · 0.6 = 3 logical basic windows from
Wr1,1

= W3 are to be processed. In this example, harvest
fractions are set such that an integral number of logical ba-
sic windows are picked for join processing. Noting that we
haves1

1,1 = 4, s2
1,1 = 3, ands3

1,1 = 5, the logical basic win-
dows withinW3 that are going to be processed are selected
as3, 4, and5. They are marked in the figure with horizontal
lines, with their associated rankings written on top. The cor-
responding portions of the basic windows are also shaded in
the figure. Note that there is a small shift between the logical
basic windows and the actual basic windows (recallϑ from
Section 4.1.1). Along the similar lines, the logical basic win-
dows2 and3 from W2 are also marked in the figure, noting
thatr1,2 = 2, z1,2 = 0.4 corresponds to2 logical basic win-
dows, and we haves1

1,2 = 3, s2
1,2 = 2.

4.2 Configuration of Window Harvesting

Configuration of window harvesting involves setting the
window ranking and harvest fraction parameters. It is per-
formed during the adaptation step, every∆ secs.

4.2.1 Setting of Window Rankings

We set window ranking parameterssv
i,j ’s in two steps. First

step is calledscore assignment. Concretely, for theith direc-
tion of the join and thejth window in the join orderRi, that
is Wl wherel = ri,j , we assign ascoreto each logical basic
window within Wl. We denote the score of thekth logical
basic window, which isBl,k, by pk

i,j . We definepk
i,j as the

4

probability that an output tuple(. . . , t(i), . . . , t(l), . . .) has:

b · (k − 1) ≤ T (t(i)) − T (t(l)) ≤ b · k.

Here,t(i) denotes a tuple fromSi. This way, a logical basic
window in Wl is scored based on the likelihood of having
an output tuple whose encompassed tuples fromSi and Sl

have an offset between their timestamps such that this offset
is within the time range of the logical basic window.

The score values are calculated using the time correla-
tions among the streams. For now, we will assume that the
time correlations are given in the form of probability den-
sity functions (pdfs) denoted byfi,j , wherei, j ∈ [1..m].
Let us defineAi,j as a random variable representing the dif-
ferenceT (t(i)) − T (t(j)) in the timestamps of tuplest(i)

and t(j) encompassed in an output tuple of the join. Then
fi,j : [−wi, wj] → [0,∞) is the probability density func-
tion for the random variableAi,j . With this definition, we

havepk
i,j =

∫ b·k

b·(k−1)
fi,ri,j

(x)dx. In practice, we develop a
lightweight method for approximating a subset of these pdfs
and calculatingpk

i,j ’s from this subset efficiently. The details
are given in Section 5.2.2.

The second step of the setting of window ranking param-
eters is calledscore ordering. In this step, we sort the scores
{pk

i,j : k ∈ [1..nri,j
]} in descending order and setsv

i,j to k,
wherev is the rank ofpk

i,j in the sorted set of scores. If the
time correlations among the streams change, then a new set
of scores and a new assignment for the window rankings is
needed. This is handled by the reconfiguration performed at
every adaptation step.

4.2.2 Setting of Harvest Fractions

Harvest fractions are set by taking into account the throttle
fraction and the time correlations among the streams. First,
we have to make sure that the CPU cost of performing the join
agrees with the throttle fractionz. This means that the cost
should be at most equal toz times the cost of performing the
full join. Let C({zi,j}) denote the cost of performing the join
for the given setting of the harvest fractions, andC(1) denote
the cost of performing the full join. We say that a particular
setting of harvest fractions is feasible iffz·C(1) ≥ C({zi,j}).

Second, among the feasible set of settings of the harvest
fractions, we should prefer the one that results in the max-
imum output rate. LetO({zi,j}) denote the output rate of
the join operator for the given setting of the harvest fractions.
Then our objective is to maximizeO({zi,j}). In short, we
have the followingOptimal Window Harvesting Problem:

argmax{zi,j}O({zi,j}) s.t. z · C(1) ≥ C({zi,j}).

The formulations of the functionsC andO are given in our

technical report [8]. Our formulations are similar to previous
work [14, 2], with the exception that we integrate time corre-
lations into the processing cost and output rate computations.

4.3 Brute-force Solution

One way to solve the optimal window harvesting problem
is to enumerate all possible harvest fraction settings assuming

that the harvest fractions are set such that an integral num-
ber logical basic windows are selected, i.e.,∀

i∈[1..m]
j∈[1..m−1], zi,j ·

nri,j
∈ N. Although straightforward to implement, this

brute-force approach results in considering
∏m

i=1 nm−1
i pos-

sible configurations. If we have∀i ∈ [1..m], ni = n, then we
can simplify this asO(nm2

). As we will show in the experi-
mental section, this is computationally very expensive dueto
the long time required to solve the problem with enumeration,
making it impossible to perform frequent adaptation.

5 GrubJoin
GrubJoin is anm-way, windowed stream join operator

with built-in window-harvesting. It uses two key methods to
make window harvesting work efficiently in practice. First,it
employs a fast heuristic method to set the harvest fractions,
making possible frequent rate adaptation with little overhead
(see Section 6.2.4). Second, it uses approximation and sam-
pling techniques to learn the time correlations among the
streams and to set the logical basic window scores based on
that. These two methods make GrubJoin efficient, enabling it
to not only outperform tuple dropping when time correlations
exist among the streams, but also perform competitively when
there are no time-correlations (see Section 6.2.2).

5.1 Heuristic Setting of Harvest Fractions

The heuristic method we use for setting the harvest frac-
tions is greedy in nature. It starts by settingzi,j = 0,∀i, j.
At each greedy step it considers a set of settings for the har-
vest fractions, called thecandidate set, and picks the one with
the highestevaluation metricas the new setting of the har-
vest fractions. Any setting in the candidate set must be a
forward step in increasing thezi,j values, i.e., we must have
∀i, j, zi,j ≥ zold

i,j , where{zold
i,j } is the setting of the harvest

fractions that was picked at the end of the previous step. The
process terminates once a step with an empty candidate set is
reached. We introduce three different evaluation metrics for
deciding the best configuration within the candidate set. In
what follows, we first describe the candidate set generation
and then introduce three alternative evaluation metrics.

5.1.1 Candidate Set Generation

For theith direction of the join and thejth window within the
join orderRi, we add a new setting into the candidate set by
increasingzi,j by di,j . In the rest of the paper we takedi,j as
1/nri,j

. This corresponds to increasing the number of logical
basic windows selected for processing by one. This results in
m · (m − 1) different settings, which is also the maximum
size of the candidate set. The candidate set is thenfiltered to
remove the settings which are infeasible, i.e., do not satisfy
the processing constraint of the optimal window harvesting
problem dictated by the throttle fractionz. Once a setting in
which zu,v is incremented is found to be infeasible, then the
harvest fractionzu,v is frozenand no further settings in which
zu,v is incremented are considered in the future steps.

There is one small complication to the above approach to
generating candidate sets. When we have∀j, zi,j = 0 for

5

theith join direction at the start of a greedy step, it makes no
sense to create a candidate setting in which only one harvest
fraction is non-zero. This is because no join output can be
produced from a join direction if there are one or more win-
dows in the join order for which the harvest fraction is set
to zero. As a result, we say that a join directioni is not ini-
tialized if and only if there is aj such thatzi,j = 0. If at
the start of a greedy step, we have a join direction that is not
initialized, sayith direction, then instead of creatingm − 1
candidate settings for theith direction, we generate only one
setting in which all the harvest fractions for theith direction
are incremented, i.e.,∀j, zi,j = di,j .

The computational complexity of the greedy algorithm is
given bym·(m−1)2 ·

∑m
i=1 ni (see our technical reprt for de-

tails [8]). If we have∀i ∈ [1..m], ni = n, this can be simpli-
fied asO(n ·m4). This is much better than theO(nm2

) com-
plexity of the bute-force algorithm, and as we will show in the
next section it has satisfactory running time performance.

5.1.2 Evaluation Metrics

We introduce three alternative evaluation metrics and experi-
mentally compare their optimality in the Section 6.

• Best Output: The best output metric picks the candidate
setting that results in the highest join outputO({zi,j}).

• Best Output Per Cost: The best output per cost metric
picks the candidate setting that results in the highest joinout-
put to join cost ratioO({zi,j})/C({zi,j}).

• Best Delta Output Per Delta Cost: Let {zold
i,j } denote the

setting of the harvest fractions from the last step. This metric
picks the setting that results in the highest additional output

to additional cost ratio
O({zi,j})−O({zold

i,j })

C({zi,j})−C({zold
i,j
})

.

Fig. 3 gives the pseudo code for the greedy algorithm.

5.2 Learning Time Correlations

The time correlations among the streams are learned by
monitoring the output of the join operator. Recall that the time
correlations are captured by the pdfsfi,j , wherei, j ∈ [1..m].
fi,j is defined as the pdf of the differenceT (t(i))−T (t(j)) in
the timestamps of the tuplest(i) ∈ Si andt(j) ∈ Sj encom-
passed in an output tuple of the join. We can approximatefi,j

by building a histogram on the differenceT (t(i))−T (t(j)) by
analyzing the output tuples produced by the join.

This straightforward method of approximating the time
correlations has two shortcomings. First and foremost, since
window harvesting uses only certain portions of the join win-
dows, changing time correlations cannot be captured. Second,
for each output tuple of the join we have to updateO(m2)
number of histograms to approximate all pdfs, which hinders
the performance. We tackle the first problem by usingwindow
shredding, and the second one through the use of sampling
andper stream histograms. These are discussed next.

5.2.1 Window Shredding

For a randomly sampled subset of the incoming tuples, we do
not perform the join using window harvesting, but instead we
usewindow shredding. We denote oursampling parameter

GREEDYPICK(z)
(1) cO ← cC ← 0 {current cost and output}
(2) ∀ 1≤i≤m , Ii ← false{initialization indicators}

(3) ∀ 1≤i≤m

1≤j≤m−1 , Fi,j ← false{frozen fraction indicators}

(4) ∀ 1≤i≤m

1≤j≤m−1 , zi,j ← 0 {fraction parameters}
(5) while true
(6) bS ← 0 {best score for this step}
(7) u← v ← −1 {direction and window indices}
(8) for i← 1 to m {for each direction}
(9) if Ii = true {if already initialized}
(10) for j ← 1 to m− 1 {for each window in join order}
(11) if zi,j = 1 or Fi,j = true {zi,j is maxed or frozen}
(12) continue{move to next setting}
(13) z′ ← zi,j {store old value}
(14) zi,j ← M IN(1, zi,j + di,j) {increment}
(15) S ← EVAL (z, {zi,j}, cO, cC)
(16) zi,j ← z′ {reset to old value}
(17) if S > bS {update best solution}
(18) bS ← S; u← i; v ← j
(19) else ifS < 0 {infeasible setting}
(20) Fi,j ← true {frozezi,j}
(21) else{if not initialized}
(22) ∀ 1≤j≤m−1 , zi,j ← di,j {increment all}
(23) S ← EVAL (z, {zi,j}, cO, cC)
(24) ∀ 1≤j≤m−1 , zi,j ← 0 {reset all}
(25) if S > bS {update best solution}
(26) bS ← S; u← i
(27) if u = −1 {no feasible configurations found}
(28) break{further increment not possible}
(29) if Iu = false{if not initialized}
(30) Iu ← true {update initialization indicator}
(31) ∀ 1≤j≤m−1 , zu,j ← di,j {increment all}
(32) elsezu,v = zu,v + di,j {increment}
(33) cC = C({zi,j}) {update current cost}
(34) cO = O({zi,j}) {update current output}
(35) return {zi,j} {Final result}

EVAL (z, {zi,j}, cO, cC)
(1) S ← −1 {metric score of the solution}
(2) if C({zi,j}) > r · C(1) {if not feasible}
(3) return S {return negative metric score}
(4) switch(heuristic type)
(5) caseOutput: S ← O({zi,j}); break
(6) caseOutputPerCost: S ← O({zi,j})/C({zi,j}); break

(7) caseDeltaOutputPerDeltaCost: S ←
O({zi,j})−cO

C({zi,j})−cC
; break

(8) return S {return the metric score}

Figure 3: Greedy Heuristic for setting the harvest fractions.

by ω. On average, for onlyω fraction of the incoming tuples
we perform window shredding.ω is usually small (< 0.1).
Window shredding is performed by executing the join fully,
except that the first window in the join order of a join direc-
tion is processed only partially based on the throttle fractionz.
The tuples to be used from such windows are selected so that
they are roughly evenly distributed within the window’s time
range. This way, we get rid of the bias introduced in the out-
put due to window harvesting, and can safely use the output
generated from window shredding for building histograms to
capture the time correlations. Since window shredding only
processesz fraction of the first windows in the join orders,
it respects the processing constraint of the optimal window
harvesting problem dictated by the throttle fraction.

5.2.2 Per Stream Histograms

The need to maintainm · (m − 1) histograms is excessive
and unnecessary. We propose to maintain onlym histograms,
one for each stream. The histogram associated withWi is
denoted byLi and it is an approximation to the pdffi,1, i.e.,
the probability distribution for the random variableAi,1 that
was introduced in Section 4.2.1.

6

Maintaining only m histograms that are updated only
for the output tuples generated from window shredding in-
troduces very little overhead, but necessitates developing a
new method to calculate logical basic window scores (pk

i,j ’s)
from thesem histograms. Recall that we hadpk

i,j =
∫ b·k

b·(k−1)
fi,ri,j

(x)dx. Since we do not maintain histograms
for all pdfs (fi,j ’s), this formulation should be updated. We
now describe the new method we use for calculating the logi-
cal basic window scores.

From the definition ofpk
i,j , we have:

pk
i,j = P{Ai,l ∈ b · [k − 1, k]}, whereri,j = l.

For the case ofi = 1, nothing thatAi,j = −Aj,i, we have:

pk
1,j = P{Al,1 ∈ b · [−k,−k + 1]}

=

∫ −b·(k−1)

x=−b·k

fl,1(x) dx. (1)

UsingLi(I) to denote the frequency for the time rangeI
in histogramLi, we can approximate Equation 1 as follows:

pk
1,j ≈ Ll(b · [−k,−k + 1]). (2)

For the case ofi 6= 1, we use the trickAi,l = Ai,1 − Al,1:

pk
i,j = P{(Ai,1 − Al,1) ∈ b · [k − 1, k]}

= P{Ai,1 ∈ b · [k − 1, k] + Al,1}.

Making the simplifying assumption thatAl,1 andAi,1 are
independent, we get:

pk
i,j =

∫ w1

x=−wl

fl,1(x) · P{Ai,1 ∈ b · [k − 1, k] + x} dx

=

∫ w1

x=−wl

fl,1(x) ·

∫ b·k+x

y=b·(k−1)+x

fi,1(y) dy dx. (3)

At this point, we will assume that the histograms are equi-
width histograms, although extension to other types are pos-
sible. The valid time range ofLi, which is[−wi, w1] (the in-
put domain offi,1), is divided into|Li| number of histogram
buckets. We useLi[k] to denote the frequency for thekth
bucket inLi. We useLi[k

∗] andLi[k∗] to denote the higher
and lower points of thekth bucket’s time range, respectively.
Finally, we can approximate Equation 3 as follows:

pk
i,j ≈

|Ll|
∑

v=1

(

Ll[v] · Li(b · [k − 1, k] +
Ll[v

∗] + Ll[v∗]

2
)

)

. (4)

Equations (2) and (4) are used to calculate the logical basic
window scores by only using them histograms we maintain.

5.2.3 Cost of Time Correlation Learning

In summary, we only need to capturem pdfs (fi,1,∀i ∈
[1..m]) to calculate the logical basic window scores (pk

i,j).

This is achieved by maintaining the histogramLi for approx-
imating the pdffi,1. The m histograms are updated only
for output tuples generated from window shredding. More-
over, window shredding is performed only for a sampled
subset of incoming tuples defined by the sampling parame-
ter ω. The logical basic window scores are calculated using
the m histograms during the adaptation step (every∆ sec-
onds). This whole process generates very little overhead. If
time-correlations do not exist, the logical basic window scores
are close to each other and GrubJoin reduces to processing a
random subset of the basic windows. Even in these extreme
cases, GrubJoin is able to perform equally well as tuple drop-
ping (see Section 6.2.2), thanks to the low overhead of win-
dow harvesting configuration and time correlation learning.

6 Experimental Results
The GrubJoin algorithm has been implemented and suc-

cessfully demonstrated as part of System S [13], a large-scale
stream processing prototype, at IBM Research. Here, we re-
port two sets of experimental results to demonstrate the effec-
tiveness of our approach. The first set evaluates the optimality
and the runtime performance of the proposed heuristic algo-
rithms used to set the harvest fractions. The second demon-
strates the superiority of window harvesting to tuple dropping,
shows the scalability of our approach with respect to various
workload and system parameters, and illustrates that the over-
head of adaptation is small.

6.1 Setting of Harvest Fractions

To evaluate the effectiveness of the three alternative met-
rics for setting the harvest fractions, we measure the optimal-
ity of the resulting settings with respect to the join outputrate,
compared to the best achievable obtained by using the brute-
force algorithm. The graphs in Fig. 4 show optimality as a
function of throttle fractionz for the three evaluation metrics,
namely Best Output (BO), Best Output Per Cost (BOpC),
and Best Delta Output Per Delta Cost (BDOpDC). An opti-
mality value ofφ ∈ [0, 1] means that the setting of the harvest
fractions obtained from the heuristic yields a join output rate
of φ times the best achievable, i.e.,O({zi,j}) = φ ·O({z∗i,j})
where{z∗i,j} is the optimal setting of the harvest fractions
obtained from the brute-force algorithm and{zi,j} is the set-
ting obtained from the heuristic. For this experiment we have
m = 3, w1 = w2 = w3 = 10, andb = 1. All results are
averages of 500 runs. For each run, a random stream rate is
assigned to each of the three streams using a uniform distri-
bution with range[100, 500]. Similarly, selectivities are ran-
domly assigned. We observe from Fig. 4 thatBOpC per-
forms well only for very smallz values (< 0.2), whereasBO
performs well only for largez values (z ≥ 0.4). BDOpDC
is superior to other two alternatives and performs optimally
for z ≥ 0.4 and within0.98 of the optimal elsewhere. We
conclude thatBDOpDC provides a good approximation to
the optimal setting of harvest fractions. We next study the
advantage of heuristic methods in terms of running time per-
formance, compared to the brute-force algorithm.

7

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
m=3, λ ~ U(100,500), w={10,10,10}, b=1

z (throttle fraction)

o
p

ti
m

a
lit

y

optimal
greedy − BO
greedy − BOpC
greedy − BDOpDC

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.96

0.98

1

5 10 15 20 25
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

z (throttle fraction) = 0.25

n (number of basic windows per window)

ti
m

e
 (

m
ill

is
e

co
n

d
s)

exhaustive (m=3)
greedy (m=3)
greedy (m=4)
greedy (m=5)

Figure 4: Effect of differ-
ent evaluation metrics on op-
timality of greedy heuristic.

Figure 5: Running time per-
formance w.r.tm and number
of basic windows.

The graphs in Fig. 5 plot the time taken to set the harvest
fractions (in msecs) as a function of the number of logical ba-
sic windows per join window (n), for exhaustive and greedy
approaches. The results are shown for3, 4, and5-way joins
with the greedy approach and for3-way join with the exhaus-
tive approach. The throttle fractionz is set to0.25. They-axis
is in logarithmic scale. As expected, the exhaustive approach
takes several orders of magnitude more time than the greedy
one. Moreover, the time taken for the greedy approach in-
creases with increasingn andm, in compliance with its com-
plexity of O(n · m4). However, what is important to observe
here is the absolute values. For instance, for a3-way join the
exhaustive algorithm takes around3 seconds forn = 10 and
around30 seconds forn = 20. Both of these values are unac-
ceptable for performing fine grained adaptation. On the other
hand, forn ≤ 20 the greedy approach performs the setting of
harvest fractions within10 msecs form = 5 and much faster
for m ≤ 4, enabling fine grained adaptation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

n (number of basic windows per window) = 10

z (throttle fraction)

ti
m

e
 (

m
ill

is
e

co
n

d
s)

greedy (m=3)
greedy (m=4)
greedy (m=5)

Figure 6: Running time perfor-
mance wrtm, throttle fraction.

The graphs in Fig. 6 plot
the time taken to set the
harvest fractions as a func-
tion of throttle fractionz, for
greedy approach withm =
3, 4, and 5. Note thatz
affects the total number of
greedy steps, thus the run-
ning time. The best case is
when we havez ≈ 0 and the
search terminates after the
first step. The worst case occurs when we havez = 1, re-
sulting in≈ n · m · (m − 1) steps. We can see this effect
from Fig. 6 by observing that the running time performance
worsens asz gets closer to1. Although the degradation in per-
formance for largez is expected due to increased number of
greedy steps, it can be avoided by reversing the working logic
of the greedy heuristic. Concretely, instead of starting from
zi,j = 0, ∀i, j, and increasing the harvest fractions gradually,
we can start fromzi,j = 1, ∀i, j, and decrease the harvest
fractions gradually. We call this version of the greedy algo-
rithm greedy reverse. Note that greedy reverse is expected
to run fast whenz is large, but its performance will degrade
whenz is small. The solution is to switch between the two
algorithms based on the value ofz. We call this version of the
algorithmgreedy double-sided. It uses the original greedy al-

gorithm whenz ≤ 0.5(m−1)/2 and greedy reverse otherwise.
Performance results on greedy double-sided can be found in
our technical report [8].

6.2 Results on Join Output Rate

In this section, we report results on the effectiveness of
GrubJoin with respect to join output rate, under heavy sys-
tem load due to high rates of the incoming input streams. We
compare GrubJoin with theRandomDropapproach. In Ran-
domDrop, excessive load is shed by placing drop operators
in front of input stream buffers, where the parameters of the
drop operators are set based on the input stream rates using
the static optimization framework of [2]. We report resultson
3-way, 4-way, and5-way joins. When not explicitly stated,
the join refers to a3-way join. The window size is set to
wi = 20,∀i, andb is set to2, resulting in10 logical basic
windows per join window. The sampling parameterω is set
to 0.1 for all experiments. The results reported in this section
are from averages of several runs. Unless stated otherwise,
each run is1 minute, and the initial20 seconds are used for
warm-up. The default value of the adaptation period∆ is 5
seconds for the GrubJoin algorithm, although we study the
impact of∆ on the performance of the join in Section 6.2.4.

The join type in the experiments reported in this subsec-
tion is ǫ-join. A set of tuples are considered to be matching
iff their values (assuming single-valued numerical attributes)
are within ǫ distance of each other.ǫ is taken as1 in the
experiments. We model streamSi as a stochastic process
Xi = {Xi(ϕ)}. Xi(ϕ) is the random variable representing
the value of the tuplet ∈ Si with timestampT (t) = ϕ. A
tuple consists of a single numerical attribute with the domain
D = [0,D] and an associated timestamp. We defineXi(t) as:

Xi(ϕ) = (D/η) · (ϕ + τi) + κi · N (0, 1) mod D.

In other words,Xi is a linearly increasing process (with wrap-
around periodη) that has a random Gaussian component.
There are two important parameters that make this model use-
ful for studying GrubJoin. First, the parameterκi, named as
deviation parameter, enables us to adjust the amount of time
correlations among the streams. If we haveκi = 0,∀i, then
the values for the time-aligned portions of the streams willbe
exactly the same, i.e., the streams are identical with possible
lags between them based on the setting ofτi’s. If κi values are
large, then the streams are mostly random, so we do not have
any time correlation left. Second, the parameterτ (named
as lag parameter) enables us to introduce lags between the
streams. We can setτi = 0,∀i, to have aligned streams. Al-
ternatively, we can setτi to any value within the range(0, η]
to create nonaligned streams. We setD = 1000, η = 50, and
vary the time lag parameters (τi’s) and the deviation parame-
ters (κi’s) to generate a rich set of time correlations.

6.2.1 Varyingλ, Input Rates

The graphs in Fig. 7 show the output rate of the join as a func-
tion of the input stream rates, for GrubJoin and RandomDrop.

8

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10
5

input rate (tuples/sec)

o
u

tp
u

t
ra

te
 (

tu
p

le
s/

se
c)

Grub Join (non−aligned)
Random Drop (non−aligned)
Grub Join (aligned)
Random Drop (aligned)

10 20 30 40 50 60 70 80 90 100

2

3

4

5

6

7

8

9

x 10
4

κ, deviation parameter

o
u

tp
u

t
ra

te
 (

tu
p

le
s/

se
c)

Grub Join
Random Drop

Figure 7: Effect of varying the
input rates on the output rate
w/wo time-lags.

Figure 8: Effect of varying
the amount of time correla-
tions on the output rate.

For each approach, we report results for both aligned and non-
aligned scenarios. In the aligned case, we haveτi = 0,∀i,
and in the nonaligned case we haveτ1 = 0, τ2 = 5, and
τ3 = 15. The deviation parameters are set asκ1 = κ2 = 2
andκ3 = 50. As a result, there is strong time correlation
betweenS1 andS2, whereasS3 is more random. We make
three major observation from Fig. 7. First, we see that Grub-
Join and RandomDrop perform the same for small values of
the input rates, since there is no need for load shedding until
the rates reach100 tuples/sec. Second, we see that GrubJoin
is vastly superior to RandomDrop when the input stream rates
are high. Moreover, the improvement in the output rate be-
comes more prominent for increasing input rates, i.e., when
there is a greater need for load shedding. Third, GrubJoin
provides up to65% better output rate for the aligned case and
up to 150% improvement for the nonaligned case. This is
because the lag-awareness nature of GrubJoin gives it an ad-
ditional upper hand in sustaining a high output rate when the
streams are nonaligned.

6.2.2 Varying Time Correlations

The graphs in Fig. 8 study the effect of varying the amount
of time correlations among the streams on the output rate of
the join, with GrubJoin and RandomDrop for the nonaligned
case. Recall that the deviation parameterκ is used to alter the
strength of time correlations. It can be increased to remove
the time correlations. In this experimentκ3 is altered to study
the change in output rate. The other settings are the same with
the previous experiment, except that the input rates are fixed
at 200 tuples/sec. We plot the output rate as a function ofκ3

in Fig. 8. We observe that the join output rate for GrubJoin
and Random Drop are very close when the time correlations
are almost totally removed. This is observed by looking at
the right end of thex-axis. However, for the majority of the
deviation parameter’s range, GrubJoin outperforms Random-
Drop. The improvement provided by GrubJoin is250% when
κ3 = 25, 150% whenκ3 = 50, and25% whenκ3 = 75. Note
that, asκ gets larger, RandomDrop starts to suffer less from
its inability to exploit time correlations. On the other hand,
whenκ gets smaller, the selectivity of the join increases as a
side effect and in general the output rate increases. These con-
trasting factors result in a bimodal graph for RandomDrop.

6.2.3 Varyingm, # of Input Streams

We study the effect ofm on the improvement provided by
GrubJoin, in Fig. 9. Them values are listed on thex-
axis, whereas the corresponding output rates are shown in
bars using the lefty-axis. The improvement in the out-
put rate (in terms of percentage) is shown using the right
y-axis. Results are shown for both aligned and nonaligned
scenarios. The input rates are set to100 tuples/sec for
this experiment. We observe that, compared to Random-
Drop, GrubJoin provides an improvement in output rate that
is linearly increasing with the number of input streamsm.

3 4 5
0

2

4

6

8

10

12

14

16

18
x 10

4

m, number of input streams

o
u

tp
u

t
ra

te
 (

tu
p

le
s/

se
c)

im
p

ro
v

e
m

e
n

t
%

0

100

200

300

400

500

600

700

non−aligned
aligned

Grub Join,
 non−aligned
Random Drop,
 non−aligned

Grub Join, aligned

Random Drop, aligned

Figure 9: Effect of the # of in-
put streams on the improvement
provided by GrubJoin.

Moreover, this improve-
ment is more prominent for
nonaligned scenarios and
reaches up to700% when
we have a5-way join. This
shows the importance of
performing intelligent load
shedding form-way joins.
Naturally, joins with more
input streams are costlier to
evaluate. For such joins,
effective load shedding techniques play a more crucial role
in keeping the output rate high.

6.2.4 Adaptation Overhead

In order to adapt to the changes in the input stream rates,
the GrubJoin algorithm re-adjusts the window rankings and
harvest fractions every∆ seconds. We now experiment with
a scenario where input stream rates change as a function of
time. We study the effect of using different∆ values on the
output rate of the join. In this scenario the stream rates start
from 100 tuples/sec, change to150tuples/sec after8 seconds,
and change to50tuples/sec after another8 seconds.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

x 10
4

∆, adaptation interval (seconds)

o
u

tp
u

t
ra

te
 (

tu
p

le
s/

se
c)

m = 3
m = 4
m = 5

Figure 10: Effect of adaptation
period on output rate.

The graphs in Fig. 10 plot
the output rate of GrubJoin
as a function of∆, for dif-
ferent m values. Remem-
ber that larger values ofm
increase the running time of
the heuristic used for setting
the harvest fractions, and
thus have a profound effect
on how frequent we can per-
form the adaptation. The∆
range used in this experiment is[0.5, 8] seconds. We observe
from Fig. 10 that the best output rate is achieved with the
smallest∆ value of0.5 for m = 3. This is because form = 3
the adaptation step is very cheap in terms of computational
cost. We see that the best output rate is achieved for∆ = 1
for m = 4 and for∆ = 3 for m = 5. TheO(n · m4) com-
plexity of the adaptation step is a major factor for this change
in the ideal setting of∆ for largerm.

In general, a default value of∆ = 5 seems to be too con-
servative for stream rates that show frequent fluctuations.In

9

order to get better performance, the adaptation period can
be shortened. The low cost of window harvesting configu-
ration in GrubJoin makes it possible to use smaller∆ values
to perform more frequent adaptation. As a result, GrubJoin
achieves additional gain in output rate when the input rates
are fast changing and require frequent adaptation. The opti-
mal value of∆ to use depends on the number of input streams.

7 Related Work
The related work in the literature on load shedding in

stream join operators can be classified along four major di-
mensions. The first dimension is the metric to be optimized
when shedding load. Our work aims at maximizing the out-
put rate of the join, also known as the MAX-subset metric [6].
Besides the output rate metric for join load shedding opti-
mization [2, 7, 6, 15, 20], other metrics have also been intro-
duced in the literature, such as the Archive-metric [6], andthe
sampled output rate metric [15].

The second dimension is the constrained resource that
forces load shedding. CPU and memory are the two major
limiting resources in join processing. In the context of stream
joins, works on memory load shedding [15, 6, 20] and CPU
load shedding [2, 7] have received significant interest. In the
case of user-defined join windows, the memory is expected
to be less of an issue. Our experience shows that form-
way joins, CPU becomes a limiting factor before the memory
does. As a result, our work focuses on CPU load shedding.
However, our framework can also be used to save memory [8].

The third dimension is the stream characteristic that is ex-
ploited for optimizing the load shedding process. Stream
rates, window sizes, and selectivities among the streams are
commonly used for load shedding optimization [2, 14]. How-
ever, these works do not incorporate tuple semantics into the
decision process. Insemanticload shedding, the load shed-
ding decisions are influenced by the values of the tuples. In
frequency-based semantic load shedding, tuples whose values
frequently appear in the join windows are considered as more
important [6, 20]. However, this only works for equi-joins.
In time correlation-based semantic load shedding, also called
age-based load shedding [15], a tuple’s profitability in terms
of producing join output depends on the difference between
its timestamp and the timestamp of the tuple it is matched
against [7, 15]. Our work takes this latter approach.

The fourth dimension is the technique used for shedding
load. In the limited memory scenarios the problem is a
caching one [2] and thus tuple admission/replacement is the
most commonly used technique [15, 6, 20]. On the other
hand, CPU load shedding can be achieved by either dropping
tuples from the input streams [2] or by only processing a sub-
set of the join windows [7]. As we show in this paper, our
window harvesting technique is superior to tuple dropping
and prefers to perform the join partially, as dictated by our
operator throttling framework.

8 Conclusion
We presented GrubJoin, an adaptive,m-way, windowed

stream join which performs time correlation-aware CPU load
shedding. We developed the concept of window harvesting as
an in-operator load shedding technique for GrubJoin. Win-
dow harvesting sheds excessive CPU load by processing only
the most profitable segments of the join windows, while ig-
noring the less valuable ones. Window harvesting exploits the
time correlations to prioritize the segments of the join win-
dows and maximizes the output rate of the join. We devel-
oped several heuristic and approximation-based techniques
to make window harvesting effective in practice form-way,
windowed stream joins. Our experimental studies show that
GrubJoin is vastly superior to tuple dropping.

References
[1] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani,

I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and J. Widom.
STREAM: The stanford stream data manager.IEEE Data Engineer-
ing Bulletin, 26, 2003.

[2] A. M. Ayad and J. F. Naughton. Static optimization of conjunctive
queries with sliding windows over infinite streams. InACM SIGMOD,
2004.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. InACM PODS, 2002.

[4] H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, M. Cherni-
ack, C. Convey, E. Galvez, J. Salz, M. Stonebraker, N. Tatbul, R. Tib-
betts, and S. Zdonik. Retrospective on Aurora.VLDB Journal, 2004.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, V. Raman,
F. Reiss, and M. A. Shah. TelegraphCQ: Continuous dataflow pro-
cessing for an uncertain world. InCIDR, 2003.

[6] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing
over data streams. InACM SIGMOD, 2003.

[7] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. Adaptive load shedding for
windowed stream joins. InACM CIKM, 2005.

[8] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. GrubJoin: An adaptive
multi-way windowed stream join with time correlation-aware cpu load
shedding. Technical Report GIT-CERCS-05-19, Georgia Tech, 2005.

[9] L. Golab, S. Garg, and M. T. Ozsu. On indexing sliding windows over
online data streams. InEDBT, 2004.

[10] L. Golab and M. T. Ozsu. Processing sliding window multi-joins in
continuous queries over data streams. InVLDB, 2003.

[11] M. A. Hammad, W. G. Aref, and A. K. Elmagarmid. Stream window
join: Tracking moving objects in sensor-network databases.In Scien-
tific and Statistical Database Management, SSDBM, 2003.

[12] S. Helmer, T. Westmann, and G. Moerkotte. Diag-Join: An opportunis-
tic join algorithm for 1:N relationships. InVLDB, 1998.

[13] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C. Venka-
tramani. Design, implementation, and evaluation of the linearroad
benchmark on the stream processing core. InACM SIGMOD, 2006.

[14] J. Kang, J. Naughton, and S. Viglas. Evaluating window joins over
unbounded streams. InIEEE ICDE, 2003.

[15] U. Srivastava and J. Widom. Memory-limited execution of windowed
stream joins. InVLDB, 2004.

[16] Streambase systems. http://www.streambase.com/, May 2005.
[17] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and M.Stone-

braker. Load shedding in a data stream manager. InVLDB, 2003.
[18] N. Tatbul and S. Zdonik. A subset-based load shedding approach for

aggregation queries over data streams. InVLDB, 2006.
[19] S. D. Viglas, J. F. Naughton, and J. Burger. Maximizing the output rate

of m-way join queries over streaming information sources. InVLDB,
2003.

[20] J. Xie, J. Yang, and Y. Chen. On joining and caching stochastic streams.
In ACM SIGMOD, 2005.

10

	1 Introduction
	2 Preliminaries
	3 Operator Throttling
	3.1 Setting of the Throttle Fraction

	4 Window Harvesting
	4.1 Fundamentals
	4.1.1 Partitioning into Basic Windows
	4.1.2 Configuration Parameters

	4.2 Configuration of Window Harvesting
	4.2.1 Setting of Window Rankings
	4.2.2 Setting of Harvest Fractions

	4.3 Brute-force Solution

	5 GrubJoin
	5.1 Heuristic Setting of Harvest Fractions
	5.1.1 Candidate Set Generation
	5.1.2 Evaluation Metrics

	5.2 Learning Time Correlations
	5.2.1 Window Shredding
	5.2.2 Per Stream Histograms
	5.2.3 Cost of Time Correlation Learning

	6 Experimental Results
	6.1 Setting of Harvest Fractions
	6.2 Results on Join Output Rate
	6.2.1 Varying , Input Rates
	6.2.2 Varying Time Correlations
	6.2.3 Varying m, # of Input Streams
	6.2.4 Adaptation Overhead

	7 Related Work
	8 Conclusion

