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ABSTRACT
Flash crowd events (FCEs) present a real threat to the stability of

routers and end-servers. Such events are characterized by a large and
sustained spike in client arrival rates, usually to the point of service
failure. Traditional rate-based drop policies, such as Random Early
Drop (RED), become ineffective in such situations since clients tend
to be persistent, in the sense that they make multiple retransmission
attempts before aborting their connection. As it is built into TCP’s
congestion control, this persistence is very widespread, making it a
major stumbling block to providing responsive aggregate traffic con-
trols. This paper focuses on analyzing and modeling the effects of
client persistence on the controllability of aggregate traffic. Based on
this model, we propose a new drop strategy called persistent dropping
to regulate the arrival of SYN packets and achieves three important
goals: (1) it allows routers and end-servers to quickly converge to
their control targets without sacrificing fairness, (2) it minimizes the
portion of client delay that is attributed to the applied controls, and (3)
it is both easily implementable and computationally tractable. Using a
real implementation of this controller in the Linux kernel, we demon-
strate its efficacy, up to 60% delay reduction for drop probabilities less
than 0.5.

1. Introduction

Flash crowd events (FCEs) and distributed denial of service
(DDoS) attacks have received considerable attention from the
mass media and the research community. They are character-
ized by a large and sudden increase in demand for both the
network and end-server resources. Similar to natural disasters,
both phenomena are relatively infrequent but leave devastating
damages behind. Their initial effect is a dramatic reduction in
service quality to clients sharing the network and the server.
Even worse, sustained overload can bring networks and espe-
cially end-servers to a complete halt. The cause of this over-
load need not be intentional nor need be originated by mali-
cious clients or applications. FCEs, unlike DDoS attacks, are
generally caused by a very large number of legitimate users all
targeting the same network or server. Their sheer traffic vol-
ume exhausts any available network and server resources. In
addition to high arrival rate, there is a second cause that is com-
monly overlooked, namely, the persistence of individual clients
accessing the server that can be responsible for increasing the
aggregate traffic in an FCE by two folds.

This paper focuses on the control of aggregate traffic des-
tined for web servers, which are the targets of flash crowds.
Unlike video or audio traffic, web servers are generally domi-
nated by short-lived connections. Several research efforts have

The work reported in this paper was supported in part by the NSF under
Grant CCR-0216977. A subset of this paper was presented at ACM SIG-
COMM 2003.

focused on the detection of, and/or protection from, FCEs and
DDoS attacks. In particular, Aggregate-based Congestion Con-
trol (ACC) is introduced to deal with such attacks by limiting
the (high) rate of aggregate traffic at the routers to reduce the
impact of the added load on the underlying network and end-
servers [21, 23]. We observed, however, that the reaction of
the underlying traffic to a rate-limiting policy can, and often
will, reduce the effectiveness of the applied control. This can
be better explained by decoupling aggregate traffic into two el-
ements. The first element describes how existing or on-going
connections react to the applied controls; the second element
describes how the arrival of new connections is affected by the
applied control, which we call the persistent behavior of client
requests or client persistence for short. We find that the com-
bination of the arrival of connection requests from new clients
with TCP’s reaction to packet loss—namely, retransmitting af-
ter a timeout—has an additional effect that is not accounted for
by current traffic controllers. To improve the controllability of
FCEs, we advocate the classification of incoming connection
requests (into new SYN packets and retransmitted SYN pack-
ets) and applying specialized controls to each traffic class—a
similar concept to [34]. We are interested in controlling the
interactions between clients, the network, and the end-server.

Through the specialization of control, we are able to focus
on new connection requests, the main ingredient of an FCE.
We are also able to take into account the persistence of clients
accessing the server. We propose persistent dropping (PD), an
effective control mechanism, which we prove it minimizes the
client-perceived latency and the effective aggregate traffic (in-
cludes new and retransmitted connection requests) while main-
taining the same control targets as regular rate-control policies.
PD randomly chooses a number of requests based on a target re-
duction in the effective aggregate traffic arrival rate and system-
atically drops them on every retransmission. PD is well suited
for controlling aggregate traffic as it achieves three goals: (1)
it enables routers and end-servers to quickly converge to their
control targets, (2) it minimizes the portion of client delay that
is attributed to aggregate control by Internet routers and end-
servers while maintaining fairness to all packets, and (3) it is
both easily implementable and computationally tractable. We
emphasize that PD complements, but does not replace, existing
control mechanisms that are optimized for controlling already-
established TCP connections [6, 13]. We also emphasize that
PD does not interfere with end-to-end admission-control poli-
cies as it represents an optimization of existing queue manage-
ment techniques.

This paper is organized as follows. We first look at the
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Table 1: Retransmission behavior for different OSs. The measurement assumes default OS configuration. Some parameters such as
the timeout before the connection is aborted, can be dynamically configured.

persistent behavior in aggregate traffic in Section 2. We then
propose a PD controller to deal with persistent clients in Sec-
tion 3 and discuss implementation issues in Section 4. In Sec-
tion 5, we experimentally evaluate some performance issues.
The paper ends with related work and concluding remarks in
Sections 6 and 7, respectively.

2. Persistence in Aggregate Traffic

As mentioned in Section 1, a more accurate representa-
tion of aggregate traffic accounts for those requests that be-
long to new clients entering the system and for those resulting
from client persistence (i.e., requests that are retransmissions of
previously-dropped ones). However, many factors contribute
to the persistence of clients, whereby the client keeps trying
to access the server (normally at a later time) even after server
overload or network congestion is detected. Some factors of
this persistence are embedded in the applications and protocols
that clients use. These are not design flaws, but are often nec-
essary to the proper operation of clients, e.g., TCP congestion
control. Other factors are due to purely human habits. In this
subsection, we investigate how the combination of TCP con-
gestion control and rate-based queue-management techniques
in routers and end-servers may raise the severity of FCEs. We
use a simple model where a client issues a single Hyper-Text
Transfer Protocol (HTTP) request using a separate TCP con-
nection. This model allows us to study a single TCP connection
in isolation and is representative of many browser implementa-
tions that issue HTTP requests in parallel to maximize their
throughput [20].

Consider what could happen to our simple client’s request
during an FCE. Before examining the consequences of the re-
quest packets being dropped by routers or end-servers during
the various stages of the request processing, we outline the
stages that a successful request must go through before com-
pletion. The first stage of request processing is the three-way
handshake. In this stage, the client sends a SYN packet to the
server by performing an active open. The server then performs
a passive open by queueing the SYN packet in a global backlog

queue (with possibly per-application-port quotas) where proper
structures (e.g., skbuff in Linux) are allocated and a SYN-
ACK packet is sent back to the client. At this point, the con-
nection at the server is said to be half open. In most operating
systems (OSs), SYN packets are processed in the kernel inde-
pendently from the corresponding application. Upon receiving
the SYN-ACK packet from the server, the client sends an ACK
packet followed immediately (in most implementations) by the
request’s meta-data. At the server, the client’s ACK causes the
half-open connection to be moved to the listen queue for pro-
cessing by the application. Data packets are then exchanged
between the server and the client to complete the request; the
connection is optionally closed.

During overload, packets can get lost at different stages of
request processing and at different points between the source
and destination. Here we consider loss of packets on the path
from the client to the server. An equivalent behavior occurs on
the reverse direction; it is omitted for space consideration.

When a typical queues fills up (whether it is a router or a
server SYN backlog queue) and packets are dropped, the re-
quest can be in the connection-establishment stage or the con-
nection has already been established. In the first case, each
time a SYN packet or its corresponding response is lost, an
exponentially-increasing retransmission timeout (RTO) is used
to detect the packet loss and the SYN packet is retransmitted.1

The RTO values used by different client OSs are listed in Ta-
ble 1. Established connections, in the latter case, detect and
recover from packet loss in ways that are more complex. These
have been investigated by several studies, both empirically and
analytically, e.g., in [5, 27, 28].

To better understand the dynamics of FCEs, we extend some
of the results in [5] that pertain to connection establishment.
We follow the same modeling assumptions in [5] and build on

1Most TCP stack implementations follow Jacobson’s algorithm [17, 30],
where a SYN packet that is not acknowledged within an RTO period is re-
transmitted, but with the previous RTO period doubled. This is repeated until
the connection is established or until the connection times out, at which point
the connection is aborted.



3

l

pl

p l
2

p l
3

p l
4

T1 T2 T3 T4 Tabort

Figure 1: Increase in aggregate traffic under the persistent client
model.

its estimate of the connection-establishment latency. We thus
assume that end-points adhere to a TCP-Reno style congestion
control mechanism [17].2 However, to draw general conclu-
sions for the entire aggregate, we must also characterize the ar-
rivals of new connection requests: namely, their arrivals follow
a Poisson process. Since the corresponding interarrival times
are independently and identically distributed (i.i.d.), dropping
one request packet does affect the arrival of future request pack-
ets. This matches well the observation that clients behave inde-
pendently. It, however, does not consider the inter-dependency
between requests from a single client. This is considered in
Section 3. Furthermore, under a uniform drop policy, if we split
incoming SYN requests into different streams, each represent-
ing SYN packets that have been retransmitted an equal number
of times, then each stream can be approximated by a Poisson
arrival process. This is a direct consequence of the fact that
the RTO is measured from the client’s transmission time of the
SYN packet and the variance in the RTO value is very small,
especially when compared to the RTO’s time granularity [18].

For a new connection, consider the retransmission epochs of
a dropped SYN packet as Ti, where i = 0, . . . , n represents
the number of times the corresponding SYN packet has been
dropped and n is the maximum number of connection attempts
before aborting a connection. Let Tabort be the maximum time
a connection waits before aborting. Note that Tn ≤ Tabort.
Since FCEs causes congestion on the path from the client to
the server, we also consider the drop probability, p, in the for-
ward direction. Extending the results to include drops in the
reverse direction is trivial and omitted for space consideration.
The expected connection-establishment latency ELh can be
expressed as:

ELh =
nX

j=0

[pj(1 − p)(Tj + RTT )] + pn+1Tabort, (1)

where pn+1 is the probability that the connection times out
and RTT is the mean round-trip time. The first term, then,
represents expected latency of successful connections, or (1 −

2Other congestion control mechanisms can be assumed as long as they use
Jacobson’s algorithm to recover from SYN packet loss.

pn+1)E[Lh|x succeeds], which was derived in [5]. By the in-
dependence assumption, it can be easily shown that ELh is
also the mean expected connection-establishment latency of all
requests.

Under our network model, we also derive Λ, the effective or
aggregate arrival rate of SYN packets. This aggregate is a col-
lection of newly-transmitted requests and retransmission of the
previously-dropped ones. It is divided into multiple streams,
each representing the number of transmission attempts or trans-
mission class of the corresponding connections. We denote the
stream of initial transmission attempts by λ0 (i.e., SYN packets
on their first transmission), the stream of first retransmissions
by λ1, and so on, up to λn. Then, the effective mean arrival
rate Λ is:

Λ = λ0 + λ1 + · · · + λn

= λ0 + pλ0 + p2λ0 + · · · + pnλ0 =
1 − pn+1

1 − p
λ0. (2)

Notice the simple relationship between the arrival rates of
the different transmission classes. For example, the arrival rate
of the first retransmission class, λ1, is just the arrival rate of the
initial transmissions, λ0, times the drop probability p. Based
on Eq. (2), a 50% drop will, in theory, increase the amount of
SYN requests by 75%.3 In fact, Eq. (2) shows that a typical rate
controller only causes pn+1λ0 connections to time out; for the
rest, increasing the number of retransmissions has a substantial
impact on client-perceived delay as shown in Eq. (1). We argue
that this probability, which we call the effective timeout proba-
bility (p∗), reflects the true impact of the control mechanism on
the underlying traffic.4

We used real measurements to illustrate the effects of client
persistence on the underlying traffic. A Linux-based machine
ran Eve [19] to emulate clients arriving independently with
exponentially-distributed inter-arrival time and with a mean ar-
rival rate of 100 requests/sec. The server machine ran a home-
grown server emulator, which is configured to emulate a server
with a buffer capacity of 50 requests (i.e., listen buffer size =
50) and processes one request at a time with exponential ser-
vice times with mean 1/200 sec. A third machine is configured
as a router running NIST Net to emulate a WAN with a uniform
one-way delay of 50 msec and drops incoming requests with a
fixed probability (here, it was 0.5). The three machines are con-
nected via FastEthernet link and are ensured to be bottleneck
free. Finally, we used tcpdump to collect our measurements.
Figure 1 plot the actual arrival rate of request from the client to
the server as well as our estimated behavior. The figure illus-
trates some of the ideas behind our derivation, especially show-
ing how traditional rate-based dropping can underestimate the
resulting aggregate traffic.

3When all packets are dropped, Λ = (n + 1)λ0 .
4While Eq. 2 assumes a Poisson arrival process for new client arrivals, which

is not affected by drops, in reality, a client may visit a server multiple times,
which clearly can be affected by drops and timeouts. The degree that a client’s
future visits are affected by SYN drops will depend on several factors, which
are described earlier. This paper only focuses on visits from new clients, which
is a serious issue during an FCE.
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Figure 2: Persistent client model.

It is worth noting that unlike router queues, when the back-
log queue at the server fills up, the server can be configured to
drop the SYN packets and send SYN cookies to the client. A
SYN cookie is simply a method for the server to avoid storing
any state for half-open connections. In this case, a challenge is
sent to the client and upon its return, the server can establish the
connection as if the original SYN packet were queued properly
in the backlog queue. The challenge is encoded in the TCP’s
sequence number and, thus, does not require any client modi-
fication. When SYN cookies are lost, the client times out and
retransmits the request as described above. SYN caches are an
alternative method to SYN cookies, which allow the server to
store a large number of SYN packets by simply delaying the
creation of connection data structures until the three-way hand-
shake is completed [22]. Depending on the size of the cache
and the arrival rate, SYN caches can fill up just like SYN back-
log or router queues. Table 1 shows the OSs that support SYN
cookies and SYN caches. Both SYN cookies and SYN caches
are effective in handling a flood of SYN packets, the major-
ity of which are spoofed (or fake). The mechanism relies on
the fact that only a small portion of the SYN-ACKs will be
replied back, after which the TCP connection is fully estab-
lished. When requests originate from legitimate clients, both
mechanisms can increase the additional work on the end-server
as the resulting fully-established connections (from the clients’
perspective) are dropped due to insufficient room in the appli-
cation listen queue.

3. Controllability of Persistent Clients

Client persistence imposes an added challenge to the control-
lability of aggregate traffic. Because clients often send their re-
quests in parallel to maximize their throughput, if that dropped
request was part of a web page, the client may decide to reload
the entire page causing multiple requests in future. It is an im-
portant problem in flash crowds. If a router or end-server is op-
erating near or at full capacity, then any slight increase in load
will trigger dropping of requests. These persistent requests,
upon their retransmission, will set off further drops, creating a
vicious cycle of drops causing future drops. A system that is
trapped into such a cycle will require a long time to recover

after the load subsides. As shown earlier, repeated dropping
dramatically increases the client-perceived latency as it may re-
quire several timeouts before a client successfully establishes a
connection.

A traffic controller that drops incoming requests must, there-
fore, deal with its retransmission in the future. To this end,
we introduce persistent dropping, a novel drop strategy that
chooses a small number of requests based on a target timeout
probability and systematically drop them on every retransmis-
sion. We show that this drop policy minimizes the client’s ex-
pected response time, the number of retransmissions, and the
bandwidth requirement of the aggregate traffic. We also show
that this technique does not affect the fairness of the control
policy.

3.1 Modeling of Persistent Clients

Because our drop strategy is based on analytical optimiza-
tion, the first step is to create accurate model of web clients.
As with any analytical approach, the model has to be simple
enough to allow for analytical tractability, yet accurate enough
to reflect realism. To date, many of the analyzed models have
been too simplistic as they assume independent client (or re-
quest) arrivals, with or without balking. One should not con-
fuse modeling with characterization. The latter performs a sim-
ilar analysis to what we did in the previous section to pro-
duce different characteristics (mostly using probabilistic dis-
tributions) of client behavior under certain load conditions. In
fact, several studies have empirically studied the interaction be-
tween the client, network, and end-server to characterize the
dynamics of underlying traffic [2, 10, 11]. Unfortunately, such
studies often lack the clients’ response to different control poli-
cies, which is the main ingredient for constructing effective
controllers.

We are faced with the question of whether an effective traffic
controller can be built without exact knowledge of client be-
havior. We argue that an optimal controller can be realized by
approximating the internal structure of web clients. The model
of persistent clients is presented in Figure 2; it captures the fol-
lowing four important elements.

E1. Individual clients are independent of each other, and a
client’s requests are grouped into visits. Each visit repre-
sents a client accessing a web page and its entire content.
Requests within a visit are correlated by the completion of
the initial page that contains all the embedded links.

E2. Once the main page is fetched, a batch of l parallel con-
nections with probability distribution fm(l) are created
to request the embedded objects with arrival distribution
fa(t). We do not specify the exact distributions for fm(l)
or fa(t), but in our subsequent derivations, they are as-
sumed to be independent and have finite means. More-
over, the retransmissions of lost packets from parallel con-
nections are independent as long as none of the connec-
tions is aborted.

E3. The expected visit completion time, EV , is the sum of the
time it takes to fetch the initial page and the longest finish
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Figure 3: Illustrative comparison between rate-based dropping
and PD. We view the outgoing link as a smaller pipe than the
stream of incoming requests. We then show how the two strate-
gies drop incoming requests to fit them into the pipe.

time of all parallel connections. Formally, consider p∗ as
the effective timeout probability, q∗ = 1− p∗ as the prob-
ability of success, m as the expected number of parallel
connections, and γ as the mean interarrival times of the
parallel connections. Also, consider ETc as the expected
latency for completing a single request (we consider better
estimates for ETc in Section 3.5). Then,

EV = p∗Tabort+ (3)

q∗ [ETc + (1 − (q∗)m)(Tabort + Ψ) + (q∗)m(ETc + Ψ)] .

The second term in Eq. (3) estimates the expected de-
lay when the first page is fetched successfully. The term
(1 − (q∗)m) represents the probability that at least one of
the m connections times out and Ψ = mγ is the approxi-
mate overhead of launching m parallel connections. Thus,
the last product term in Eq. (3) is the expected delay for
completing the parallel requests. It is derived by taking
the expectation of their maximum completion time.

E4. A client may visit multiple pages within a web server be-
fore leaving the server. This is often referred to as a user
session. The expected session time can be estimated in a
manner similar to E3; it is omitted for space consideration.

In the absence of packet loss, our model is consistent with
earlier ones (Observed Behavior in Figure 2) where it is as-
sumed that a client sends a batch of closely-spaced connection
requests (active period) followed by a relatively long period of
user think time (inactive period) [2]. Our distributions have
similar characteristics to those in [2, 9, 11] with very different
distribution parameters. Our model, however, captures the ef-
fects of the applied control, which we use to construct our con-
troller.

3.2 Persistent Dropping

Consider an Active Queue Management (AQM) technique
that drops incoming SYN packets with probability p. Here, we
do not consider how other packets are treated, and p is set in
accordance with the underlying AQM technique. For instance,
if packets are dropped in a router using RED, then p is based
on dynamic measurements of queue length [13]. Alternatively,
consider an unmodified SYN queue at the server. Here, the
drop-tail queue at the server can be considered as a passive con-
trol mechanism where SYN requests will be dropped whenever
the queue fills up. Averaging over any time window, the drop
probability, p, can be computed by simply dividing the number
of dropped SYN packets by the total number of arrivals over
that time window. We, thus, view p as the percentage of pack-
ets that must be dropped regardless of how its value is chosen.
Given a target drop probability p (or equivalently an effective
timeout probability, p∗, as described earlier), our goal is to find
the optimal drop policy that minimizes the effective arrival rate,
Λ, and connection-establishment latency, ELh. We base our
development on the same network model introduced in Sec-
tion 2, and still do not consider the parallelism of individual
clients. This is addressed in Section 4.

The optimality is established by first looking at the re-
transmission epochs of individual connections. As shown
in Section 2, given packet-loss probability p, estimates for
connection-establishment latency and effective arrival rate can
be derived. We use these relationships as bases to show that
a drop policy that consistently drops retransmitted requests is
able to minimize the additional latency that is caused by the
applied control as well as minimize the aggregate traffic of all
incoming requests.

Traditionally, a control policy that drops aggregate traffic
with probability p does not take into account the transmis-
sion class of individual connections. Consider here a differ-
ent mechanism that associates a drop probability p i with each
transmission class i. In order to assign these probabilities, we
assume that incoming requests are classified into their corre-
sponding transmission classes; we will show later how this can
be achieved. Let us rewrite the aggregate arrival rate, Λ, in
Eq. (2) using the per-class drop probabilities p i’s:

Λ = λ0 + p0λ0 + p0p1λ0 + · · · +
(

n−1∏
i=0

pi

)
λ0. (4)

Notice here that the effective timeout probability is p∗ =∏n
i=0 pi. For a traditional rate control policy, all requests are

dropped with an equal probability (or p i = p for ∀ i), which im-
plies that p∗ = pn+1 (consistent with the results in Section 2).

To minimize the expected connection-establishment latency
of clients, we start by writing the probability mass function of
the connection-establishment latency using the per-class drop
probabilities:
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P{Lh(x) = t} =

8>><
>>:

(1 − p0) if t = T0 + RTTQi−1
j=0 pj(1 − pi) if t = Ti + RTT , 1 ≤ i ≤ nQn
j=0 pj if t = Tabort

0 otherwise,
(5)

where Ti is the time of the ith retransmission, T0 = 0 is
the time of the initial transmission, and Tabort is the time be-
fore the connection times out. Intuitively, Eq. (5) establishes
the probability of connecting successfully, for example, after
RTT + T2 seconds, which represents the connection request
being dropped during its initial transmission with probability
p0, then being dropped again on the second transmission with
probability p1, and finally succeeding on the third transmis-
sion attempt with probability (1 − p2). Notice that the mini-
mum connection-establishment latency is t = RTT . Based on
this, the expected connection-establishment delay, ELh, can be
computed as:

ELh = (1 − p0 · · · pn)RTT +
p0(1 − p1)T1 + p0p1(1 − p2)T2 + · · · +
(p0 · · · pn−1)(1 − pn)Tn + (p0 · · · pn)Tabort.(6)

The optimal drop strategy must, therefore, minimize ELh

with the constraint of having an effective timeout probability
that is equal to the one obtained by traditional policies, i.e.,∏n

i=0 pi = p∗. It suffices to show that if we set p0 = p∗ and
pi = 1, for i �= 0, then ELh is minimized. This can be seen
by observing that each term in Eq. (6) cancels out except for
the last term. The minimum connection-establishment latency
is then ELg∗

h = (1 − p∗)RTT + p∗Tabort, where g∗ denotes

our optimal policy. Note that since ELg∗
h no longer has a delay

component for successful connections, g ∗ breaks the depen-
dency between the delay for successful connections and packet
drop.

The above discussion implies that the optimal policy must
decouple connection requests that belong to new connections
(i.e., on their first attempt) from those that are not. Viewed an-
other way, this is a form of low-level admission control where
a new connection request can either be admitted into the sys-
tem or denied access. But denying access at the connection-
establishment level can be performed by either (1) sending back
an explicit reject packet, such as an RST packet, notifying the
sender to terminate the initiated connection, or (2) repeatedly
dropping packets on every retransmission attempt. Unfortu-
nately, the success of the first approach is predicated on the
sender’s cooperation. This issue is addressed in [18].

Based on the above discussion, we introduce persistent drop-
ping (PD) as the optimal drop strategy that chooses p∗λ0 new
requests and systematically drop them on every retransmission.
An example of PD is illustrated in Figure 3, where it shows how
this new technique intelligently fills the outgoing link to mini-
mize packet retransmissions. With persistent dropping, the re-
sulting (or the aggregate) drop probability is substantially lower
than traditional rate-based techniques. Specifically,

Table 2: Comparison between PD and random dropping.

pg∗
=

p0λ0 + p1λ1 + · · · + pnλn

λ0 + λ1 + · · · + λn

=
p0λ0 + p0p1λ0 + · · · + (

∏n
i=0 pi)λ0

λ0 + p0λ0 + · · · + (p0p1 · · · pn−1)λ0

=
(n + 1)p∗

1 + np∗
. (7)

Table 2 compares the performance improvement of PD
over a traditional rate-control policy in terms of mean client-
perceived latency, average number of retransmissions, and ag-
gregate arrival rate for the same effective timeout probability.
In Section 5, we also compare the variance in the latency, Lh, of
the two schemes—they can be directly computed using Eq. (5).

3.3 Fairness of Persistent Dropping

Albeit counterintuitive, the fact that PD chooses certain con-
nections and consistently drop them on every retransmission
does not imply that it is unfair. In this subsection, we show that
PD has equal (or better) fairness when compared to traditional
rate-based schemes.

Here, fairness is defined as giving each incoming request
an equal probability of being accepted, given that p ∗ has not
changed by the underlying controller. One, however, must be
careful when specifying what constitutes an incoming request.
Depending on whether incoming requests represent only new
SYN packets or include all SYN packets (i.e., new and retrans-
mitted ones), different types of fairness arise. To see this, con-
sider the example of two clients. Client A has Tabort set small
enough such that retransmissions are not allowed. Client B has
Tabort set to allow for a single retransmission. Given equal
treatment of incoming requests, client B’s request has a higher
probability of getting accepted (i.e., p + (1 − p)p) than client
A’s request (i.e., p). We, thus, distinguish between two types
of fairness. The first is the instantaneous fairness, which mea-
sures the deviation in acceptance probability looking only at
new SYN packets, ignoring any retransmissions. The second is
steady-state fairness, which measures the deviation in accep-
tance probability accounting for all packets. Given these defini-
tions of fairness, we can see that traditional rate-based schemes
are fair from the perspective of instantaneous fairness, but un-
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fair from the perspective of steady-state fairness (i.e., clients
with different Tabort values have different acceptance proba-
bilities). On the other hand, PD provides both steady-state and
instantaneous fairness.

One can alternatively define fairness in terms of the resulting
reduction in arrival rate. We have shown that a rate-control drop
policy generally causes p∗λ0 = pn+1λ0 connections to time
out with an equal probability. This is identical (but less efficient
due to the increased delay) to PD. Under this definition, both
PD and rate-control policies yield the same fairness.

A question that arises is what happens if we design a scheme
that gives retransmitted requests higher priority. That is, given
two requests, one new and one retransmitted, the traffic con-
troller would drop the new request first before dropping the
retransmitted. Intuitively, this should appear preferable since
those that have already been penalized in the past should get a
better chance of being accepted in the future. However, one has
to consider the goal of PD: controlling aggregate traffic when
incoming requests are greater than available resources. Hence,
this alternate scheme will not produce any favorable outcome.
In fact, it follows directly from our derivation that this scheme
will reduce the resulting number of accepted requests and will
increase the average connection delay. When incoming re-
quests are bursty, some tradeoffs can be made to maximize
the acceptance rate while maintaining acceptable connection-
establishment delays. We have explored this issue in [18],
where we proposed a complementary mechanism to PD to deal
with burstiness.

One possible argument against PD is that it may encour-
age users to press the reload button or possibly deploy a more
aggressive TCP. However, this is the case for any rate-based
scheme. Since those requests that will time out in a rate-based
scheme will experience very long delays, they too will have a
similar incentive to be more aggressive. As we show in Sec-
tion 5, PD can be configured to further reduce the effects of
aggressive users.

3.4 Applicability to Network of Queues

In most cases, requests must pass through multiple queues
as they traverse different links on the network before reaching
their destination. Fortunately, the above results also hold in
this scenario, namely, when requests pass through a series of
queues, each using a persistent drop policy g ∗, the client’s es-
tablishment latency and effective arrival rates are minimized.
This is illustrated in Figure 4 where we assumed for simplic-
ity that all queues have the same drop probability p. We see
that for a rate-based drop strategy, the probability of a single
request succeeding on a single attempt is (1 − p)m, where m
is the number of queues that it must pass through. In contrast,
the PD policy g∗ has a probability (1 − pn+1)m. To put this in
perspective, if m = 5, p = 0.05, and n = 4, then the proba-
bility of a request succeeding is 0.77 and 0.99 for the uniform
rate-based and the PD policies, respectively. Using a similar
development to our single queue analysis, we can prove that
g∗ is the optimal drop strategy even when each queue uses a
different drop probability.

Figure 4: Probability of success in network of queues

3.5 Applicability to Persistent Clients

The development in the previous sections treated clients’
connections as independent entities without considering the
correlation between a group of connections originating from
the same client (e.g., client visits or sessions as defined in Sec-
tion 3.1). It is not difficult to verify PD’s optimality in the case
of correlated connections. Under the assumption that the con-
troller does not distinguish between SYN packets that belong
to an already-admitted visit and those that represent new vis-
its, we provide here an intuitive sketch of the proof. Consider
ELs = E[Lh| connection succeeds] as the conditional expec-
tation of the connection-establishment latency for successful
connections. This is equivalent to Eq. (6), but excludes the last
term and divides by (1 − p∗) to compensate for unaccounted
timed-out connections

ELs = RTT +
p0(1 − p1)T1 + · · · + (p0 · · · pn−1)(1 − pn)Tn

1 − p∗
. (8)

For an established connection, let ETs be the average time to
send the request, process it by the server, and receive the reply.
Estimates for ETs are derived in [5, 27] as part of determining
the expected latency of a TCP connection. We can now substi-
tute the expression of ELs into Eq. (3) using the relationship
ETc = ELs + ETs to obtain EV as a function of per-class
drop probabilities. Similar to the development in Section 3.1,
when p0 = p∗ and pi = 1 for i �= 0, EV is minimized.

4. Designing a Persistent Dropping Queue Manager

In the previous section, we have showed the optimality con-
ditions of an admission-like control policy that can be imple-
mented at the TCP-level protocol to minimize the portion of
the client’s delay that is due to queue management in routers
or end-servers. Implementation of our optimal drop policy in
routers and end-servers relies on the ability to (1) detect FCEs,
(2) group requests originating from the same client visit, and
(3) distinguish between new and retransmitted requests. If PD
is to be deployed at servers or front-end switches, then SYN
drops can be monitored as an effective way to detect FCEs.
Adaptive Packet Filters can be used for deployment of PD [31].
Unfortunately, requirements (2) and (3) present design chal-
lenges, especially since we intend for our technique to operate
at the packet-level. In fact, precise implementation requires
violation of the protocol layering, similar to Layer-7 switches
(e.g., Foundry, Alteon) to satisfy requirement (1) and need per-
connection state information to satisfy requirement (2). How-
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ever, one must not forget the original environment that this is
intended for: large aggregate traffic causing an FCE. We are,
thus, interested in constructing approximate implementations
that are allowed to be less accurate than an exact implementa-
tion, but significantly improves on existing techniques.

The basic idea is to use an “appropriate” hash function to
group requests from the same client and then, based on the
mapping, decide to drop or allow packets to go through. The
controller’s logical operation is organized into two parts: clas-
sification and policy enforcement. The classification splits in-
coming requests into two streams, one representing new trans-
missions for new client visits and the other representing retrans-
mitted requests. Policy enforcement then drops new connection
requests with an equal probability, p∗, and drops retransmitted
requests with probability 1.

The selection of a suitable hash function, h(.), is not difficult.
In fact, as we will show shortly, a simple XOR operation on
the input parameters produces the desired uniform hashing [8].
On the other hand, we found that choice of the input param-
eters to the hash function is the most critical element in our
design. Unfortunately, without the client-side’s cooperation,
packet-level information provides limited choices in achieving
the desired classification. They are summarized as follows. We
abbreviate IP source and destination addresses and TCP source
and destination ports with src addr, dest addr, src port, and
dest port, respectively.

H1. h(src addr, dest addr): The src addr allows per client
classification and, with the combination of dest addr,
allows approximate user-session classification. Unfor-
tunately, it is relatively coarse-grain classification since
clients connecting through a proxy or a NAT (Network to
Address Translation) service are treated as a single client.
In case of high aggregate traffic, this seems to be an ac-
ceptable trade-off. It can be further improved by storing
a separate list of high-priority IP addresses that contain
preferred proxy servers (e.g., AOL, MSN). Packets orig-
inating from these addresses can then be excluded from
dropping as long as the control target is met.

H2. h(src addr, dest addr, src port, dest port): The com-
bination of the four elements allows accurate connection-
level classification even through proxies and NAT ser-
vices. It, however, loses session semantics, which, as we
show, still provides a considerable performance improve-
ment over traditional mechanisms.

H3 h(src addr, dest addr, IP options): One alternative so-
lution is to require clients to encode their session informa-
tion using IP options. This will produce the most accu-
rate classification. It is, however, impractical as it requires
client stack modification as well as high router overhead to
process IP options. We will not investigate this alternative
any further.

Since this classification must be performed at very high
speeds, the hash function must be simple, yet still provide uni-
form hashing. We observe that the uniqueness of the source IP
address, and when combined with the TCP port information,
the probability of collision is minimized. We used a simple

Figure 5: Stateless and state-based implementation of persistent
drop controller.

XOR operation to perform the required mapping:

h(x1, x2, . . . , xk) = x1 ⊕ x2 ⊕ · · · ⊕ xk × K(t) mod R, (9)

where K(t) is an appropriately-selected prime number that we
use to randomize the hashing function (to be described shortly)
and R is the range of the hash function. We performed a simple
simulation, where IP addresses are randomly chosen and long
runs of consecutive port numbers are used (since consecutive
port numbers are commonly used by the underlying OS when
multiple connections are issued). The distribution was almost
uniform as we hoped and expected.5

We came up with two schemes to perform the desired clas-
sification: one is a stateless implementation and another stores
a small per-connection state. We assume here that a preferred
proxy list described in H1 is handled using a separate lookup
operation.

4.1 Stateless Persistent Dropping (SLPD)

Upon arrival of a new connection, the hash in H1 or H2 is
computed and normalized to a number within the range [0,1]. A
threshold value, represented by the effective timeout probabil-
ity, p∗, is used to drop those packets that have a hash value less
than p∗ and allow the rest to pass through (Figure 5). Depend-
ing on whether H1 or H2 is used, client- or connection-level
persistent dropping can be achieved, respectively. The absence
of state makes this scheme very simple to implement and fast to
execute. However, this scheme can be unfair as it discriminates
against a fixed set of clients. To mitigate this problem we use
the term K(t) in Eq. (9) to periodically change the function’s
mapping, hence its dependence on t [3]. The time interval be-
tween changes should be on the order of several minutes to
minimize the error introduced by changing the set of dropped
packets.

5Unfortunately, we are unable to use publicly available logs because they
always anonymized, making logged IP will be uniformly distributed, which
defeats the point of using an access log. We have used private logs from
The University of Michigan’s Electrical Engineering and Computer Science
department. These logs were small and highly localized. Even then, the results
seemed consistent.
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4.2 State-based Persistent Dropping (SBPD)

Especially when connection-level control is desired (H2),
storing a small (soft) state for each connection can further im-
prove the accuracy of the classification. A hash table is used
here to store the time at which a new request is dropped. Upon
its retransmission, the controller is able to look up the request’s
initial drop time, and based on the age of the retransmission,
determine the transmission class. Using hash tables is an effi-
cient way to compactly organize the request’s information such
that its storage and retrieval are very efficient. The hash func-
tion described in H2 can be used to map the set of possible
request headers into a much smaller number of table indices.

The basic operation of SBPD is split into two stages (Fig-
ure 5). The first stage consults the table to see if the request is a
new or a retransmitted one. A table entry stores the time of the
first drop time. Therefore, any incoming request that is mapped
to a used entry is systematically marked as “retransmission” for
a T max

abort second window from the initial drop time. The win-
dow length is chosen based on the timeout value among most
OS implementations. If the entry is empty or has an expired
time-stamp, the request is marked as “new.” The second stage
of SBPD decides the control policy. Obviously, a request that
is marked as “retransmission” is dropped. However, one that is
marked as “new” is dropped with probability p∗ and the hash
table is appropriately updated.

Besides the hash function, there are two components that are
important for an effective implementation of SBPD: the size of
hash table, and the information stored in each entry. The size
of hash table, M , determines the probability of collision be-
tween two requests. Recall that a collision occurs when two
requests hash into the same entry. For a uniform hash func-
tion, the expected number of collisions at each table entry is
K/M , where K is the number of possible request keys. To
minimize the lookup and storage overheads, we do not store re-
quests that are hashed into an occupied table entry (e.g., using
chaining or open addressing). Consequently, M should be de-
signed to reduce the probability of collision; it depends on the
expected arrival rate, λ0, and the connection timeout period,
T max

abort. The maximum (expected) values for these two parame-
ters then dictate the worst-case scenario for which M should be
provisioned. Assuming that our hash function is truly uniform,
at most λ0 requests may need to be dropped (and stored) per
second.6 But requests must be tracked for at least T max

abort, so the
table size is computed as:

M = λ0 × T max
abort × σ, (10)

where σ ≥ 1 is an over-design factor that further reduces the
probability of collisions; our experimental results have indi-
cated that σ = 1.2 is adequate. For example, if we want to
implement predictive drop that can accommodate the follow-
ing specification: λ0 < 1,000 reqs/s, and Tconn < 45 s, then
K =67,500 entries.

6In fact, even if we are designing for small p∗ values, we cannot reduce the
per-second size requirement to p∗λ0. If we do, then the hash table will be fully
occupied and the probability of collision will be close to 1.

Figure 6: Example of request classification based on the time ref-
erence and transmit counters.

For individual table entries, we identify three criteria for en-
coding each entry in our hash table. First, the time or equiva-
lently the age of a dropped request must be stored to identify
its corresponding transmission class. Second, hashing colli-
sions must be detected upon their occurrence, to maintain ac-
curate classification of incoming requests. Third, the size of
each entry must be limited (e.g., to 8 bits) to minimize mem-
ory requirements. To meet these requirements, we observe that
almost all requests will time out within 5 retransmission at-
tempts (n = 4), including the initial transmission (Table 1).
This implies that the reference time counter should cover a
range of 45 seconds to properly classify all transmissions in that
range. Since retransmissions are on the order of multiple sec-
onds, a two-second resolution is sufficient; it also accounts for
the slight variations in transmission times.7 With this in mind,
only 5 bits are required to encode the reference time counter,
which covers a range of 0 to 2 × 25 − 1 = 63 seconds. To
detect collisions, we use three bits to account for the number of
transmission attempts.

The basic process of classifying incoming requests are ex-
emplified in Figure 6 and formally defined in the CLASSIFY

function in Figure 7. Let t = t0 be the arrival time of a new
connection request that was dropped and hashed into a hash ta-
ble entry. Assume that the hash entry was initially unoccupied.
Logically, our time reference is a circular counter, and thus,
can be represented by a time dial in Figure 6(a). All time val-
ues on the dial represent time ranges with respect to t0, where
the “X” in the figure marks arrival (and also drop) time of this
connection request and the shaded boxes indicate the time pe-
riods for its expected retransmissions within a 2-second range

7As we will show, those TCP implementations that do not have the same
timeout sequence, will not be discriminated against since they will be classified
as “collision decidable.”
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Figure 7: Hashing and classification algorithms. The algo-
rithm presented ignores the counter wrap-around issues. So,
current time − time ref should always be assumed to be non-
negative.

([Tx − 1, Tx + 1]). Because this is the first transmission, the
transmission counter is cleared. Consider now t = t0 + 3, the
arrival time of the request’s retransmission (Figure 6(b)). Since
it will arrive during the first shaded box, it will be classified as a
retransmission of the original request; the transmission counter
is incremented accordingly. This will repeat until the connec-
tion times out.

Classification conflicts may arise when multiple requests are
hashed to the same entry. Consider a second request arriving
during a non-shaded period (Figure 6(c)). We call this a “de-
cidable collision” since—with high probability—this request
does not correspond to the original one. On the other hand, if
a second request arrives during a shaded period (Figure 6(d))
and the transmission counter has already been incremented to
reflect that a retransmission has been seen in this period, then
this request can correspond to the actual retransmission or some
new transmission; we, thus, classify it as an “undecidable col-
lision.”

When a collision is detected, a proper action must be taken
to maintain proper (future) classification. As mentioned earlier,
there are two types of collisions: decidable and undecidable.
All undecidable collisions are classified as a retransmission and

dropped, because an arriving request during a shaded-area will
either correspond to the original request or to a new request,
and such requests are indistinguishable from each other. Fortu-
nately, new requests that are inappropriately dropped will be re-
transmitted during a non-shaded area, which are then classified
as decidable collisions. When a decidable collision is detected,
we interpret it as new transmission. Two possibilities exist in
this case. First, upon arrival during a non-shaded area, if the
transmission counter was not incremented during the most re-
cent shaded area (Figure 6(e)) or if the counter equals 4 (i.e.,
its maximum value), then this means that the original request
has either aborted the connection attempt or timed out. The en-
try can then be updated to reflect the new request (Figure 6(f)).
Second, upon arrival during a non-shaded area, if the transmis-
sion counter was appropriately incremented during the most re-
cent shaded area, then we are almost certain that the request is
a new transmission, but cannot be stored in the entry. We, thus,
let it pass through the filter. In general, because of the low col-
lision probability, letting “decidable collisions” pass through
will not affect the target drop probability or the corresponding
delay.

When the hash table is used beyond its design range, the
above classification technique can yield too many errors. To
protect against such erroneous behavior, we use dynamic mon-
itoring to detect and take corrective actions. Basically, the real
drop probability is measured on-line by counting the total num-
ber of arrivals and dropped requests. If the measured drop prob-
ability is dramatically different from the aggregate drop prob-
ability in Eq. (7), then a uniform drop probability is used with
p = p∗ for all incoming requests. This is a fall-back behavior,
which is used only in extreme cases.

Finally, periodic maintenance of the hash table entries is re-
quired. This is equivalent to garbage-collection where old en-
tries are cleared before the reference timer roles around. Dur-
ing this process, all hash entries are examined for expired val-
ues as follows. If the transmission counter does not correspond
to the appropriate transmission class at the time of the main-
tenance (similar to the case in Figure 6(e)), then that entry
is cleared.8 Only once every 16 seconds all entries must be
checked. This requirement can be verified by observing that at
least once for every time the counters role over (64 seconds) we
need to check during the “dead zone” (Figure 6) of every entry
if it has expired. Note that if longer inter-maintenance periods
are required, then more bits are needed to encode the reference
timer to increase the length of the “dead zone”.

4.3 Linux Implementation

We implemented working prototypes of SLPD and SBPD in
Linux (Kernel 2.4) as filter extensions to iptables, Linux’s
firewalling architecture [24]. Using iptables, our imple-
mentation can be configured as part of the routing path, when
our Linux box is configured as a router, or as a front-end, when

8We set all the bits in the transmission counter to indicate that the corre-
sponding hash table entry is unused.
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it is configured as a regular server.9 In iptables, packets
are filtered based on user-defined rules. Typically, a rule may
include IP and TCP header information such as source or desti-
nation addresses/networks, ToS bits, SYN or RST flags, or TCP
source or destination ports. A target function is also associated
with each rule; it specifies what should be done to packets that
match the corresponding rule. Typical targets include ACCEPT
to accept the packet and DROP to drop the packet. Therefore,
when an incoming packet matches a rule, the associated target
function is invoked. For example, one can define a rule that
matches all packets with the SYN flag set (indicating a new
connection request) with a target of DROP. This would effec-
tively block any connection attempt to the protected machine.

The architecture of iptables is designed to be easily ex-
tensible where the target function can be written as a separate
kernel module and is free to implement any packet enforcement
behavior. We defined two new targets in iptables called
SLPD Filt and SBPD Filt that are kernel modules. These
targets have a configurable effective timeout probability, p ∗,
and hash function, H1 or H2, that can be altered at runtime.
Their implementation follows the exact description in this sec-
tion. To activate either filter, we define a new rule that matches
any packet with the SYN flag set and associate either module
as its target. This way, new connection requests are dropped
according to our optimal drop policy. As mentioned above, our
implementation dynamically monitors the real drop probabil-
ity. If the number does not match the expected value, incoming
requests are dropped with probability p.

5. EVALUATION

To evaluate and demonstrate the efficacy of PD, we equipped
a Linux server machine with working implementations of the
SLPD and SBPD controllers (Section 4.3) as well as a rate-
based drop (RBD) controller. The latter mimics traditional
mechanisms where it uniformly drops all incoming requests
with probability p and is used as the baseline for compari-
son [24]. Our main goal is to subject these controllers to re-
alistic load conditions so that the results we obtain may be ap-
plicable to real-world deployment scenarios. We also want to
avoid any unnecessary complexity without sacrificing accuracy.
The three controllers are compared by studying their effects on
the performance of clients during a synthesized FCE, which is
emulated by generating high client arrival rates to a web server.
In each scenario, we also compare the measured results with
the predicted ones from our analytic models.

5.1 Experimental Setup

We employ a simple setup where the server machine (a 2.24
GHz Pentium 4 with 1 GBytes of RDRAM) runs Apache 1.3 to
receive HTTP requests through a high-speed FastEthernet link.
Clients on the other side are generated using Eve, a scalable
highly-optimized client emulator. Eve follows the same design

9To be more precise, iptables is built on top of netfilters, which
allows packets to be intercepted at various points in the IP stack.

principles provided by SPECWeb99 [7] and Surge [2], widely-
used tools to evaluate the performance of Web servers. The pri-
mary difference between Eve and the two load generators lies in
the Eve’s ability to sustain extremely high arrival rates regard-
less of the progress of on-going requests, which is critical to the
accuracy of emulating an FCE. This is similar to httperf [26],
but Eve has a more accurate client model. SPECWeb99, on the
other hand, sends a fixed maximum number of requests; once
the maximum is reached, a new request is sent only after the
completion of a previous one.

Each of our emulated clients was based on the model de-
scribed in Section 3.1, where the distributions for the number of
parallel connections and their inter-arrival times were based on
our estimates for IE 6.0 in Table [20]. Furthermore, we used IP
aliasing to provide each client with a unique IP address, which
is necessary for the H1 hashing metric. The arrival of clients
(not their requests) followed a Poisson process with mean λ0,
a traditionally-accepted model. Furthermore, each client be-
haved independently from other clients and, on average, issued
6 (independent) parallel requests. Up to four (500 MHz Pen-
tium III with 512 MBytes of SDRAM) machines were used
to generate the desired client arrivals. Finally, an intermediate
Linux machine was used as a router to implement one of the
three controllers.

To eliminate external effects from our measurements, we
observe that the client-perceived delay when connecting to a
web server is the total wait time before a request completes
and is the summation of three mostly independent compo-
nents: connection-establishment latency (Lh), propagation de-
lay, and service delay. As mentioned earlier, PD only affects the
connection-establishment latency. Thus, by keeping the other
two components constant, we are able to obtain an unbiased
view of the performance of PD. We take two measures to mini-
mize the variation in the other two components. First, we made
sure that the client-to-server network path is bottleneck-free.
Second, we over-provisioned the server to handle all incoming
requests, and all requests issue the same document (e.g., in-
dex.html). Therefore, if a request passes through the controller,
it successfully completes the HTTP request and has a similar
service time to the other requests. Finally, because we need to
conduct a large number of experiments to cover the wide range
of variable parameters, we limit each run to 5 minutes. Each
experiment was repeated until the 95% confidence interval was
less than 5% (roughly 25 ∼ 30 times).

Our focus in this section is to evaluate the efficacy of PD at
the request level and user-visit level based on the H1 and H2
metrics in Section 4, respectively, and to compare stateless and
state-based implementations, SLPD and SBPD, respectively.
Since PD is intended as a low-level control mechanism (and
due to space considerations), we provide a limited discussion
regarding higher-level semantics such as user-sessions. As pre-
viously noted, PD is not intended to replace high-level admis-
sion control mechanisms, but to improve the control of aggre-
gate traffic in routers, especially during overload.
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Figure 8: Request delay comparison, (left) Delay for λ0 = 60 clients/sec and Tabort = 20 sec, (center) Delay for λ0 = 80 clients/sec and
Tabort = 40 sec, (right) Mean and variance for the delay of successful requests (same configuration as left).

5.2 Connection-Level Measurements

We now focus on characterizing client-perceived delay for
rate-based and persistent dropping (both SLPD and SBPD). In
our comparisons, we assume that both stateless and state-based
PD controllers are using the connection-level hashing metric
H2; they are denoted as SLPD-TCP and SBPD-TCP, respec-
tively. In each experiment, we vary the effective timeout prob-
ability, p∗, and compare the three drop policies (SLPD, SBPD,
and RBD) against each other and against their analytically-
derived counterparts. Due to space limitation, we only present
two configurations of source traffic. They are meant to confirm
the efficacy of our new drop policy. We have performed an
extensive evaluation while varying the various parameters over
wide ranges. In all cases, our results were consistent with those
presented here.

Two metrics are of particular interest to us: (1) the mean re-
quest delay, which is computed by averaging the elapsed time
before a request is completed or timed out, (2) the mean and
variance of successful-request delay, which is similar to the
first metric but only looks at successful requests; it also looks
at the variance of the delay. Figures 8(left) and (center) show
the benefits of using PD. In the center plot, for example, clients
experiencing an effective timeout probability of 0.1 had about a
50% reduction in their mean request delay (due to the reduction
in the mean connection-establishment latency) when SLPD-
TCP or SBPD-TCP, instead of RBD, is used. This is a dramatic
reduction as it implies that a traffic controller that uses RBD to
uniformly drop incoming requests with a probability of 0.56
achieves an effective timeout probability of 0.1 and produces
100% longer connection-establishment delays than the one that
uses PD (SLPD-TCP or SBPD-TCP).10 In Figure 8(right) we
plotted the delay and variance for successful connections only.
The figure shows the main benefit of PD, namely, decoupling
the effects of the control policy on the delay of successful re-
quests. The greatest impact can be seen on the variance of suc-
cessful requests since PD produces one of two outcomes: (1)

10One can argue that drop probabilities of larger than 10% can dramatically
affect the throughput of established connections, thus questioning the useful-
ness of PD. However, bandwidth is commonly not the primary reason of the
drops during an FCE, but rather the server’s processing capacity. In such sit-
uations, the SYN packets are being dropped because the listen queue is full;
established TCP connections are not affected. Simple filtering rules can distin-
guish between the two types of traffic.

immediately allows a connection to pass through or (2) consis-
tently drop it. We also observed that PD reduced the variability
of the underlying aggregate traffic.

Figure 8 shows that SLPD-TCP achieves similar perfor-
mance to SBPD-TCP. The real difference between the two
schemes is fairness, which is not reflected in our performance
metrics. In SLPD-TCP, packets are dropped based on their
header information and the only randomness in the scheme
is introduced by the prime multiplier, K(t), in Eq. (9). On
the other hand, SBPD-TCP has a built-in randomness in every
packet it chooses to consistently drop. This, in our opinion,
produces better fairness from the client’s viewpoint.

We also verified the accuracy of our analytical models. We
observe larger, but tolerable, errors in our estimates for smaller
values of p∗. However, as p∗ increases, Tabort dominates the
computation of ELh and thus, improves the accuracy of our
prediction. Based on the presented results, our model still ac-
curately predicts the expected delay even though incoming re-
quests are highly dependent. This phenomenon seems counter-
intuitive, but is explained by the strict enforcement of the effec-
tive timeout probability. Specifically, regardless of the instan-
taneous arrival rate, a fixed percentage of requests is dropped.
Looking back at how the expected delay, ELh, was derived
(Section 2), one can observe that once the p i’s are held con-
stant, the delay value becomes independent of the arrival rate.
In fact, this type of policy enforcement is implemented by most
Active Queue Management (AQM) techniques where a con-
stant drop probability is enforced based on the average (not
instantaneous) length of the underlying queues [13]. Further-
more, the effects of dependent traffic are apparent in other met-
rics, such as mean user-visit delay and probability of a success-
ful visit (to be discussed shortly).

5.3 User-Visit Behavior

While the mean request delay provides a good indication of
the performance of the underlying drop policy, it does not give
a complete picture. Looking at the performance metrics that
are associated with user-visits and the corresponding aggregate
traffic better reflects what a typical client experiences in real
systems. They also show the effects of dependent traffic more
clearly than looking at individual requests by themselves. In the
context of user-visits, we use three metrics to compare the per-
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Figure 9: User-visit behavior. In all cases, λ0 = 60 clients/sec and Tabort = 20 sec, (left) mean successful visit delay (a point with zero
value implies that no visit was successful), (center) probability of successful visit, (right) effective arrival rate.

formance of the drop polices: (1) the mean successful visit de-
lay, which measures the cumulative time for a successful visit
as described in Eq. (3), excluding the aborted visits, (2) the
probability of a successful visit, which reflects the sensitivity
of dependent traffic to packet drops, and (3) the effective ar-
rival rate, which looks at the change in arrival rate as the drop
probability is varied.

Figures 9(left) and (center) plot the expected delay and suc-
cess probability for the various drop policies. They also show
the performance of a stateless PD that uses a client-level hash-
ing metric (H1), referred to as SLPD-IP. Our analytical predic-
tions for the expected user-visit delay were consistent with the
measured values and omitted to reduce graph clutter. The figure
clearly shows the advantage of PD, especially on the mean visit
delay due to its additive nature (Eq. (3)). We note that while the
delay seems to be decreasing as p∗ > 0.6, it is only an artifact
from having user-visits with fewer parallel connections that are
actually succeeding. Eventually, all visits are aborted by the
client and are represented by a zero-valued point in the figure.

Figure 9(center) shows how user visits are sensitive to
connection-level and random dropping policies since a visit is
successful only if none of its requests times out. This sensi-
tivity is reduced when client-level dropping (SLPD-IP) is per-
formed, which is apparent in the linear relationship between
success probability and the effective timeout probability. In
effect, SLPD-IP is performing a form of low-level admission
control, which maximizes the performance of the controller.
Unfortunately, SLPD-IP has the least fairness among our PD
implementations as it targets entire clients. As mentioned ear-
lier, unless care was taken to deal with NAT and proxy servers,
SLPD-IP may unintentionally block a large number of clients.

Figure 9(right) shows how the aggregate traffic changes
among the different policies. Two important points should
be observed. First, because the source traffic model is highly
dependent, the aggregate traffic, Λ, decreases as the effective
timeout probability, p∗, is increased. Our analytical model as-
sumed independent traffic sources and is, thus, not suited for
predicting Λ in this case. Second, for any given p∗, we can see
the dramatic improvement in using any of the PD policies com-
pared to a rate-based drop policy. From that perspective, our es-
timate for Λ highlights the relative (not absolute) improvement
in using PD over a rate-based drop policy.

5.4 Limitations of the Study

There are still three specific limitations to our study that are
worth mentioning. First, we have not discussed how a traffic
controller would adjust p∗ based on the measured arrival rates
or router queue lengths. We believe that PD can be easily inte-
grated into existing AQM techniques, which already have built-
in adaptation mechanisms [6, 13, 31]. Because PD reduces the
variability of aggregate traffic, it will improve the stability and
responsiveness of such mechanisms. Second, we have assumed
that clients have unique IP addresses. This provided SLPD-IP
with a clear advantage over the other schemes as it mimicked
application-level admission control policies. For this reason,
we believe that its performance numbers are overstated, but
it still performs well when controlling large aggregate traffic
as classification errors can be better tolerated. Finally, while
our technique seems less effective in controlling or defending
against DDoS attacks, it is indeed not more vulnerable than tra-
ditional rate-based techniques. The vulnerability of our scheme
is only apparent in the choice of the hash function. This can be
easily overcome by using more secure hash functions that an
adversary cannot exploit. All that a DDoS attack can do is to
increase the amount of traffic, which may force the controller
to use a larger p∗ value. This is not different from traditional
control mechanisms.

6. RELATED WORK

Several recent studies have focused on characterizing aggre-
gate traffic during FCEs [21, 23]. Looking at the broader scope,
earlier studies can be categorized into empirical characteriza-
tion or analytical modeling of TCP traffic. Measurement stud-
ies such as [1, 10, 11, 25, 29, 33], to name a few, have investi-
gated the impact of TCP congestion control on the behavior of
underlying traffic (e.g., throughput, variance, self-similarity).
On the other side of the spectrum, the authors of [5, 15, 16, 27,
28, 32] presented analytical characterizations of the throughput
of TCP’s congestion control as a function of RTT and packet
loss probability. Our proposed client model can be viewed as
a direct extension to earlier ones, however, with the focus on
the interaction between active traffic controls and the aggregate
behavior of incoming requests. We have taken a bottom-up ap-
proach which investigates both the influence of low-level net-
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work protocols as well as high-level application mechanism on
the behavior (or persistence) of clients.

In general, our analysis is based on a different model of
client behavior where we introduced the concept of persistent
clients to capture the dynamics of client retransmissions. Our
main objective is similar to queue-management solutions such
as Class-Based Queueing (CBQ) [14], Active Queue Manage-
ment (AQM) [4, 6, 13], and Explicit Congestion Notification
(ECN) [12] all of which aim to improve the performance of the
underlying network. Our work complements these solutions
by specifying the exact mechanism for minimizing connection-
establishment latency in the presence of active packet dropping
by routers or end-servers.

7. CONCLUSIONS

We characterized the dynamics of persistent clients in aggre-
gate traffic. In particular, we showed that client persistence,
which is due mostly to TCP’s congestion control, has a direct
effect on the stability and effectiveness of traffic control mecha-
nisms. To deal with client persistence, we introduced persistent
dropping and showed that minimizes the average connection
establishment delay as well as the effective arrival rate when-
ever the volume of incoming request exceeds the server’s or
router’s capacity. We presented two working implementations
of persistent dropping based on hash functions that can be de-
ployed in routers or end-servers.

Persistent dropping can be considered as a low-level admis-
sion control policy. No application-level support is required
for the correct operation of persistent dropping. In particular,
when connection-level classification (H2) is performed, persis-
tent dropping does not violate any end-to-end semantics and,
at the same time, achieve the same control targets as the tra-
ditional rate-based control. Furthermore, the improvement in
the connection-establishment latency does not interfere with
higher-level admission control mechanisms. On the other hand,
client-level classification (H1) does violate the end-to-end ar-
gument, and it is presented here to show the full potential of
an intelligent dropping mechanism in routers. One can argue
that connection-level controls should be avoided in routers and
left to the end-servers. We addressed this exact issue by show-
ing that in some high-congestion cases, such as FCEs, routers
are forced to drop new connection requests. Our technique
achieves quick convergence to the control targets with minimal
intrusion on successful connections.
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