
RC24081 (W0610-086) October 17, 2006
Computer Science

IBM Research Report

Towards Trustworthy Kiosk Computing

Scott Garriss
Carnegie Mellon University

Pittsburgh, PA

Ramón Cáceres, Stefan Berger, Reiner Sailer, 
Leendert van Doorn, Xiaolan Zhang

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Towards Trustworthy Kiosk Computing

Scott Garriss1∗ Ramón Cáceres2 Stefan Berger2

Reiner Sailer2 Leendert van Doorn2 Xiaolan Zhang2

Carnegie Mellon University1 IBM T.J. Watson Research Center2

Pittsburgh, PA, USA Hawthorne, NY, USA
sgarriss@andrew.cmu.edu {caceres,stefanb,sailer,

leendert,cxzhang}@us.ibm.com

Abstract

We present a system in which a user leverages a personal mobile device to establish trust on a public
computing device, orkiosk, prior to revealing personal information to that kiosk. We have designed and
implemented a protocol by which the mobile device determines the identity and integrity of the software
running on the kiosk. A similar protocol simultaneously allows a kiosk owner to verify that the kiosk
is running only approved software. Our system combines a number of emerging security technologies,
including the Trusted Platform Module, the Integrity Measurement Architecture, and new support in x86
processors for establishing a dynamic root of trust. In ongoing work, we plan to use virtual machines
to support the important case where the user wishes to run personal software on the kiosk. We are also
continuing to explore several open issues we have identifiedsurrounding trust in a kiosk scenario.

1 Introduction

Public computingkiosks, such as an airline check-in terminal at an airport or a rental computer at an Internet
café, have become commonplace. A problem with current kiosks is that the user must assume that a kiosk is
performing only its intended function, or more specifically, that it has not been compromised by an attacker.
A compromised kiosk could harm the user by, e.g., stealing private data. Similarly, the owner of a kiosk
wants to ensure that the kiosk is not used to perform malicious acts for which he may be liable.

This paper presents a system in which a user, by leveraging the capabilities of a personal mobile device
such as a smartphone, gains a degree of trust in a kiosk prior to using it. Trust is the expectation that a
computer system will faithfully perform its intended purpose. We assume that the personal device is a priori
trustworthy. We refer to a kiosk as trustworthy if we can verify the identity and integrity of the software
running on that kiosk. We do not protect against hardware attacks but note that software attacks, such as
keystroke logging, are far more common.

In this context we have designed a protocol by which the mobile device establishes that the kiosk is
running only trustworthy software. Only after this protocol has successfully completed will the user reveal
personal information, e.g., credit-card data, to the kiosk. We have incorporated a similar protocol by which
a supervisor machine, acting on behalf of the kiosk owner, verifies that the kiosk is running only approved
software. If unapproved software is found, the owner can take action to disable the kiosk by, for example,
removing it from the network.

∗This work was done during an internship at IBM T.J. Watson Research Center.

1



We have implemented our trust establishment protocols along with the overall system to demonstrate the
viability of our solution. Our prototype, depicted in Figure 1, uses a mobile phone as the personal device, a
PC as the kiosk, and a BlueTooth wireless link to communicatebetween them. We use a second PC as the
supervisor machine connected to the kiosk via the wired Internet.

The main contribution of this work to date is the experimental demonstration of a system for trustworthy
kiosk computing that brings together a number of emerging security technologies and standards. We utilize
new x86 processor support for establishing a dynamic root oftrust on commodity computing platforms that
incorporate AMD’s Secure Virtual Machine Technology [5] orIntel’s Trusted Execution Technology [9].
In addition, we leverage the Trusted Platform Module (TPM) [8] together with the Integrity Measurement
Architecture (IMA) [17] to provide both user and owner with proof that only trustworthy software has been
loaded on the kiosk. In ongoing work, we plan to use the sHype [16] secure virtual machine technology to
allow the user to run personal software on the kiosk in addition to software provided by the kiosk owner.

Internet

User Kiosk

Kiosk Supervisor

Mobile
Device

Figure 1: Kiosk Computing Scenario

We have identified a number of open problems in the
course of this work. For example, a kiosk could reboot and
run malicious software after presenting proof that it is running
trustworthy software but before the user reveals personal data.
We are pursuing solutions to these problems and will con-
tribute to improving trusted computing standards where rel-
evant.

2 System Design

2.1 Technological Foundations

Trusted Platform Module (TPM): The TPM [8] is a
hardware component that is increasingly available in personal computers and servers. It provides a vari-
ety of security functions, including cryptographic primitives such as signatures and secure storage for small
amounts of data such as keys. The TPM is resistant to softwareattacks because it is implemented in hard-
ware and presents a carefully designed interface.

Especially notable is the TPM’s ability to store cryptographic hashes, ormeasurements, of loaded soft-
ware components in a set of Platform Configuration Registers(PCRs). PCRs are initialized at boot time
and may not be otherwise reset, with one important exceptiondescribed below. They may only be modified
via theextendoperation, which takes an input value, appends it to the existing value of the PCR, and stores
the SHA1 hash of the result back in the PCR. The cryptographicproperties of this operation state that it is
infeasible to reach the same PCR state through different sequences of inputs.

Integrity Measurement Architecture (IMA): The TPM may be used to achieveTrusted Boot, where
measurements stored in PCRs are used to verify that the loaded BIOS, Boot Loader, and OS kernel meet
expectations. IMA [17] extends Trusted Boot by additionally measuring applications and configuration files.
IMA maintains an in-kernelmeasurement listcontaining a text description and the corresponding hash value
of each software component measured.

IMA further provides anattestation protocolthat allows a remote IMAverifier to challenge the integrity
of an IMA platform. The IMAattestation serverreplies with the current measurement list, along with a
quotecontaining the current PCR values signed by the TPM. The remote verifier then uses the measurement
list to replay the sequence of PCR extend operations and verify that the resulting final PCR value agrees
with the signed quote. Finally, the verifier compares the measurement list to ameasurement databaseof

2



known software, thus verifying the identity and integrity of software on the challenged system. The current
IMA implementation supports Linux.

Dynamic Root of Trust for Measurement (DRTM): As mentioned, general PCRs are initialized at
boot time and cannot be reset. Trusted Boot uses these PCRs toestablish astatic root of trust, which must
include all software loaded since boot, starting with the BIOS. Recent extensions to the x86 architecture
support the establishment of adynamicroot of trust by allowing a special PCR (PCR 17) to be reset at any
time by a special CPU instruction,skinit in AMD processors andsenter in Intel processors. This atomic
instruction takes as input a 64KB section of code known as thesecure loader, resets PCR 17, measures the
secure loader, extends PCR 17 with this measurement, and transfers control of the processor to the secure
loader.

2.2 Challenges in Verifying Software Integrity

We equip each kiosk with an IMA attestation server, and each mobile device and kiosk supervisor with an
IMA verifier. To determine software integrity, the IMA verifier must have access to the expected hash values
of all software components loaded on a kiosk, in order to compare them against the current values from the
kiosk. It would be impractical to track every potentially relevant software component in the world so as to
include its hash in a measurement database.

However, several aspects of our system combine to greatly mitigate this problem. First, kiosks often have
restricted functionality, which reduces the number of software components that must be tracked, especially
applications. Second, establishing a DRTM after the BIOS has run eliminates the BIOS from the Trusted
Computing Base (TCB), which, in addition to gaining the security benefits of a smaller TCB, implies that
BIOS versions need not be tracked. Third, the mobile device must rely on a trusted third party (e.g., the
airline for a flight check-in kiosk) to create the measurement database, which must be digitally signed by
the third party to guarantee its integrity. The mobile device can thus obtain signed databases only as needed,
either directly from the third party, e.g., via a cellular network, or from the kiosk itself.

2.3 Trust Establishment Protocol

Our trust establishment protocol is shown in Figure 2. The mobile device initiates the protocol (Step 0), then
presents authorization to use the kiosk (Step 1). Prior to initiating the protocol, the user must have obtained
this authorization from the kiosk owner. The authorizationprotocol is opaque in the diagram to indicate that
a variety of mechanisms may be used (e.g., anonymous proof ofpayment), as long as they do not require
the user to reveal personal data because the kiosk is not yet trusted. In cases involving free public kiosks,
the authorization protocol may be omitted.

In Steps 3 and 4, the kiosk proposes a list of available software configurations, and the mobile device
selects the one desired by the user. If the kiosk is not already running the desired configuration, it must
reboot following the sequence in Step 5. In either case, the kiosk alerts the mobile device when the desired
configuration is running (Step 6).

The mobile device then challenges the kiosk using the IMA attestation protocol (Step 7), receiving in
response an IMA measurement list and signed TPM quote (Step 8). If the attestation protocol completes
successfully, the mobile device decides the kiosk is trustworthy and informs the user of this fact (Step 9).
The user may then proceed to use the kiosk, which may involve revealing personal data (Step 10).

3



Mobile Device Kiosk

0 Hello
-

1 Authentication protocol
-�

2 User is authorized

3 Supported configurations
�

4 Selected configuration
-

5 If necessary:
a. Reboot
b. Run BIOS and Boot Loader
c. Establish DRTM
d. Run Secure Loader
e. Run OS or Hypervisor

6 Done
�

7 IMA attestation request
-

8 IMA measurement list and TPM signed quote
�

9 Kiosk is trusted

10 Personal data
-

Figure 2: Trust Establishment Protocol between Mobile Device and Kiosk

3 Prototype Implementation

Our prototype comprises three parties shown in Figure 1: a mobile device, a kiosk, and a kiosk supervisor.
Our mobile device is a Nokia N70 smartphone with GSM/GPRS andBlueTooth wireless connectivity. The
smartphone runs the Symbian Series 60 platform, which supports Java 2 Mobile Edition (J2ME). Our kiosk
is a desktop PC equipped with an AMD SVM-capable processor, an Infineon TPM 1.2, and an Iogear USB
BlueTooth adapter. The kiosk runs the Xen hypervisor managed by a virtual machine running Linux. Our
kiosk supervisor is a generic Linux PC.

The rest of this section describes the software we added to the mobile device and kiosk to carry out
the trust establishment protocol shown in Figure 2. The kiosk supervisor simply runs an existing IMA
verifier [17] to periodically request an integrity attestation from the kiosk.

3.1 Mobile device software

For the phone we wrote a J2ME application that interacts withthe user, as well as a new IMA verifier for
the J2ME environment that talks to the kiosk over BlueTooth.We used the Bouncy Castle [14] library for
all cryptographic operations carried out by the IMA verifier, such as replaying PCR extend operations and
verifying TPM signatures. Finally, we pre-loaded measurements of all the software expected to run on our
prototype kiosk, including Xen, Linux, and the additional components described below.

3.2 Kiosk software

We added three software components to the kiosk platform: a new kiosk front-end application, an existing
IMA attestation server [17], and a modified version of the OSLO secure loader [10].

Kiosk front-end: The front-end interacts with the phone over BlueTooth to establish the desired soft-
ware configuration, reboots the machine into this configuration if necessary, and provides a conduit for the
mobile phone to retrieve measurements from the IMA attestation server. The front-end application is written
in Java 2 Standard Edition (J2SE), with some help from Perl scripts to manipulate the configuration of the
GRUB boot loader.

4



Secure Loader: Step 5 in Figure 2 outlines the kiosk boot sequence. After rebooting, the BIOS runs
the GRUB boot loader, which in turn launches the OSLO secure loader. OSLO establishes a dynamic root
of trust for measurement (DRTM) by invokingskinit, then measures and runs the Xen hypervisor and the
Linux kernel. As described in Section 2.1,skinit atomically measures the secure loader itself, stores the
result in the TPM, and transfers execution to that loader.

We extended OSLO to record the measurements of itself, the hypervisor, and the kernel in the Advanced
Configuration and Power Interface (ACPI) table maintained in system memory by the BIOS. Standard OSLO
does not keep a list of the measurements done byskinit and by OSLO itself. As described in Section 2.1,
such a list is needed by the IMA verifier to replay the measurement sequence. We used the ACPI table to
communicate these measurements to IMA because there is no higher-level communication facility (e.g., a
file system) available when OSLO runs. Our extensions involved calling the BIOS from 16-bit real-mode
x86 assembly code.

There is an important subtlety in the use of a DRTM: any software that runs after the secure loader must
not invoke code that was loaded prior to DRTM establishment.In the case of our prototype, nothing must
invoke the BIOS after OSLO runs. We satisfy this requirementbecause neither Xen or the version of Linux
used in Xen virtual machines ever call back into the BIOS.

4 Personalized Computing Environments

In ongoing work we plan to use virtual machine (VM) technology to support the important case where the
user wishes to run personal software on the kiosk, in addition to software provided by the kiosk owner.
Internet Suspend/Resume [11] and SoulPad [4] have shown howVMs can be used to run complete personal
computing environments on kiosks. However, both efforts left unresolved important security issues, in
particular the trust issues that are the focus of this work.

We plan to use the trust establishment protocols presented earlier to verify that a kiosk is running a
trustworthy hypervisor environment before a user allows a personal VM to run on the kiosk. In addition,
we intend to use the sHype [16] hypervisor security architecture to provide strong isolation and contain-
ment of these user-provided VMs. sHype adds mandatory access controls to hypervisors such as Xen. Its
isolation properties protect VMs from tampering, while itscontainment properties allow rogue VMs to be
quarantined. We feel that this approach achieves an effective balance between the needs of kiosk users and
owners.

5 Open Problems and Possible Solutions

Run-Time Attestation: The technologies described earlier guarantee the state of all kiosk software at
the time it is loaded. Such guarantees represent significantimprovement over no guarantees, but do not track
the state of software while it is running. Providing stronger run-time guarantees is a difficult problem and
the focus of active research (e.g., [19]). Future run-time attestation solutions should be incorporated into our
trust-establishment protocol, but we do not address this problem further.

Kiosk-in-the-Middle Attack: The kiosk in front of the user, or local kiosk, could run malicious soft-
ware that relays data between the mobile device and a second,remote kiosk. The remote kiosk could run
and attest to the intended software stack, thus fooling the device into trusting the local kiosk. The local kiosk
could then snoop on and misuse personal data. This problem issimilar to the chess grandmaster problem [1].
To prevent this attack we need to ensure that the TPM quote wassigned by a TPM inside the local kiosk.

5



One possible solution involves cryptographically bindingthe certificate for a secure channel endpoint
(e.g., SSL or IPSec) to the signing key of a TPM located on the same system [6]. If we establish a secure
channel between the mobile device and a kiosk, the problem reduces to verifying that the secure channel
terminates in the local kiosk. We are investigating methodsfor displaying a random string on a terminal
endpoint that is running a known software stack in a manner that cannot be replicated on another machine.

A second possible solution involves using a camera-equipped mobile device to scan a barcode on the
outside of a kiosk that encodes the public signing key of the TPM inside that kiosk [12, 18]. Assuming
no hardware attacks, if the scanned key can be used to successfully verify the signature on the integrity
attestation, the user would know that the TPM doing the attestation resides inside the local kiosk.

Reboot-between-Attestations Attack: A kiosk could reboot and run malicious software after attesting
to its software integrity but before the user reveals personal data. The malicious software could then misuse
the personal data. Even if the user or owner repeats the attestation request, a time window would remain
during which the kiosk could reboot into and out of malicioussoftware without being detected. To solve
this problem we need to ensure that the kiosk has not rebootedbetween the time of attestation and the time
of use.

We have submitted to the Trusted Computing Group several extensions to current TPM standards that
would enable remote parties to detect reboots between attestations [7]. One possibility is to incorporate a
reboot counter in the TPM quote command. This problem is not specific to the kiosk scenario, and must be
resolved to enable the safe use of remote attestation in general.

6 Related Work

Asokan et al. [2] describe how a trusted server may assist a user in authenticating a kiosk. However, they
do not verify the integrity of the kiosk software. Brands et al. [3] bound the physical distance between
two communicating parties using time delays. Although their approach is not accurate enough to detect
an attacker who is in close proximity to either party, it may help make kiosk-in-the-middle attacks more
difficult. Pfitzmann et al. [15] explore the many challenges of using a mobile device in a security-sensitive
setting. Some of the issues they disscuss are relevant to thesecurity of the mobile device in our kiosk
scenario.

The results of the following efforts may help establish a secure channel between the mobile device and
the kiosk. Stajano and Anderson [20] propose the use of physical contacts to establish a shared secret that
subsequently enables secure wireless communication. Naorand Pinkas [13] prove that data may be securely
transmitted to a human equipped with nothing more than a secret, pre-printed transparency.

7 Conclusions

We have presented the design and implementation of a system that allows a mobile user to gain a degree
of trust in the software running on a public computing kiosk.The system also allows kiosk owners to
enforce the integrity of kiosk software. Our prototype brings together several emerging trusted computing
technologies and standards. We are continuing to explore issues raised by this work, and to propose our
solutions to standards bodies where relevant. We feel that our system is making significant progress towards
protecting the interests of both users and owners of public computing facilities.

6



References

[1] A. Alkassar, A.-R. Sadeghi, and C. Stüble. Secure object identification - or: Solving the chess grandmaster
problem. InProc. of New Security Paradigm Workshow (NSPW), 2003.

[2] N. Asokan, H. Debar, M. Steiner, and M. Waidner. Authenticating Public Terminals.CompNet, 31(8), 1999.
[3] S. Brands and D. Chaum. Distance-bounding protocols (extended abstract). InTheory and Application of

Cryptographic Techniques, pages 344–359, 1993.
[4] R. Cáceres, C. Carter, C. Narayanaswami, and M. T. Raghunath. Reincarnating PCs with Portable SoulPads. In

Proc. of ACM/USENIX Conference on Mobile Computing Systems, Applications, and Services, 2005.
[5] Advanced Micro Devices. Secure Virtual Machine Technology. http://www.amd.com/.
[6] K. Goldman, R. Perez, and R. Sailer. Linking Remote Attestation to Secure Tunnel Endpoints. InProc. of 1st

ACM Workshop on Scalable Trusted Computing, 2006.
[7] K. Goldman and R. Sailer. Making reboot between TPM attestations visible. TCG standards discussions, 2006.
[8] Trusted Computing Group. Trusted Platform Module. https://www.trustedcomputinggroup.org/.
[9] Intel. Trusted Execution Technology. http://www.intel.com/technology/security/.

[10] B. Kauer. OSLO - The Open Secure LOader. http://os.inf.tu-dresden.de/ kauer/oslo/.
[11] M. Kozuch and M. Satyanarayanan. Internet Suspend/Resume. InProc. of IEEE Workshop on Mobile Computing

Systems and Applications, 2002.
[12] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing is Believing: Using Camera Phones for Human-Verifiable

Authentication. InProc. of IEEE Symposium on Security and Privacy, 2005.
[13] M. Naor and B. Pinkas. Visual authentication and identification. Lecture Notes in Computer Science, 1294,

1997.
[14] Legion of the Bouncy Castle. Bouncy Castle LightweightCryptography API. http://www.bouncycastle.org/.
[15] A. Pfitzmann, B. Pfitzmann, M. Schunter, and M. Waidner. Trusting mobile user devices and security modules.

IEEE Computer, 30(2):61–68, February 1997.
[16] R. Sailer, T. Jaeger, E. Valdez, R. Cáceres, R. Perez, S. Berger, J. Griffin, and L. van Doorn. Building a MAC-

based security architecture for the Xen opensource hypervisor. InProc. of Annual Computer Security Applica-
tions Conference, 2005.

[17] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a TCG-based integrity measure-
ment architecture. InProc. of USENIX Security Symposium, 2004.

[18] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure Device Pairing Based on a Visual Channel
(Extended Abstract). InProc. of IEEE Symposium on Security and Privacy, 2006.

[19] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying Integrity and Guaran-
teeing Execution of Code on Legacy Platforms. InProc. of ACM Symposium on Operating Systems Principles,
2005.

[20] F. Stajano and R. Anderson. The Resurrecting Duckling:Security Issues for Ad-hoc Wireless Networks. In
Security Protocols Workshop, 1999.

7


