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On the complexity of cutting plane proofs using split cuts

Sanjeeb Dash

IBM Research

October 17, 2006

Abstract

We prove that cutting-plane proofs which use split cuts have exponential length in
the worst case. Split cuts, defined by Cook, Kannan, Schrijver (1993), are known to be
equivalent to a number of other classes of cuts, namely mixed-integer rounding (MIR)
cuts, Gomory mixed-integer cuts, and disjunctive cuts. Our result thus implies the
exponential worst-case complexity of cutting-plane proofs which use the above cuts.

Key words. cutting-plane proof, split cut, mixed-integer rounding, disjunctive cut,
effective interpolation, monotone ciruits.

1 Introduction

The complexity of different types of cutting-plane proofs has been a much studied topic
in recent years. Some well-known classes of cutting planes (linear inequalities satisfied by
integral points in polyhedra) are Gomory-Chvátal cuts [10], split cuts [7], mixed-integer
rounding (MIR) cuts [17, 16], and lift-and-project cuts [2]. Let Ax ≤ b stand for a system
of linear inequalities. A Gomory-Chvátal cutting plane (or cut) for Ax ≤ b is a linear
inequality cT x ≤ �d� where c is integral, and cT x ≤ d is satisfied by solutions of Ax ≤ b.
For a class of cuts S, an S cutting-plane proof is a way of certifying that a linear inequality
is satisfied by all integral solutions of Ax ≤ b via cuts from S. For example, a Gomory-
Chvátal (GC) cutting-plane proof of cT x ≤ d with length M is a sequence of M inequalities

aT
i x ≤ di (i = 1, . . . ,M)

such that the last inequality in the sequence is cT x ≤ d, and for each i ∈ {1, . . . ,M}
the inequality aT

i x ≤ di is a Gomory-Chvátal cut derived from the previous inequalities
in the sequence and the inequalities in Ax ≤ b. The notion of a cutting-plane proof was
introduced in [5]).

1



Any inequality satisfied by integral solutions of Ax ≤ b has a Gomory-Chvátal cutting
plane proof. This follows from the work of Gomory [10] and Chvátal [5]. In this paper,
we focus on cutting-plane proofs of inequalities satisfied by 0-1 solutions. In an impor-
tant paper, Pudlák [18] proved that Gomory-Chvátal cutting plane proofs of inequalities
satisfied by 0-1 points in polyhedra have exponential length in the worst case. Dash [8]
proved a similar result for lift-and-project cutting plane proofs. An inequality cT x ≤ d

is a lift-and-project cut for P = {x |Ax ≤ b}, if for some index j, cT x ≤ d is satsfied by
points in P ∩ {xj = 0} and P ∩ {xj = 1}. Lift-and-project cuts polynomially simulate
the “non-commutative” matrix cuts of Lovász and Schrijver (1991), or cuts arising from
the N0 operator, and therefore, N0-cutting plane proofs have exponential worst-case com-
plexity [8]. A question left open in [8] is whether cutting-plane proofs using split cuts
(or split-cut proofs) have exponential worst-case complexity. An inequality cT x ≤ d is a
split cut for P = {x ∈ Rn |Ax ≤ b} with respect to x if cT x ≤ d is satisfied by points
in P ∩ {αT x ≤ β} and P ∩ {αT x ≥ β}, where α, β are integral. We say that cT x ≤ d is
derived from the disjunction αT x ≤ β and αT x ≥ β +1. All points in P ∩{x ∈ Zn} satisfy
any split cut for P . Lift-and-project cuts and Gomory-Chvátal cuts are special cases of
split cuts.

Here we show that split-cut proofs have exponential worst-case complexity, thus gen-
eralizing the results of Dash and Pudlák cited above. The proof technique, and the worst-
case inequality systems, are essentially the same as those in Pudlák [18]. An important
component of our proof is the equivalence between split cuts and mixed-integer rounding
cuts proved in [17], which we discuss in the next section. As split cuts are also equivalent
to the Gomory mixed-integer cuts [11] and disjunctive cuts [1], cutting-plane proofs with
these cuts also have exponential worst-case complexity.

Kraj́ıček [14] gave an exponential lower bound on the complexity of branch-and-cut
proofs which use restricted Gomory-Chvátal cuts, and branching on inequalities (see also
[12]). In his result, the cuts have polynomially bounded coefficient values, but branching
on an arbitrary inequality aT x ≤ b and its disjunction aT x ≥ b + 1, where a and b, are
integral is allowed. The results in this paper, combined with Lemma 5.7 in Dash [8], imply
that branch-and-cut proofs which use split cuts but branch only on the inequalities xi ≤ 0
and xi ≥ 1 for 0-1 variables xi, have exponential worst-case complexity.

In the next section, we present MIR cuts in a form given in [9], and discuss their
equivalence with split cuts. In Section 3 we discuss some well-known complexity results
for boolean monotone circuits, and give our exponential lower bound results in Section 4.
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2 Notation and Definitions

For a number v and an integer t, define v̂ = v − �v�. Define

Q1 =
{
v ∈ R, z ∈ Z : v + z ≥ b, v ≥ 0

}
.

Lemma 1 [22] All points in Q1 satisfy the basic mixed-integer inequality

v + b̂z ≥ b̂ �b	 . (1)

If b̂ = 0, then v + b̂z ≥ b̂ �b	 becomes v ≥ 0. The basic mixed-integer inequality is a split
cut for Q1 with respect to z derived from the disjunction z ≤ b̄ and z ≥ b̄ + 1. See the
proof of Lemma 1 in [22]. In Figure 1(a), we depict the points in Q1 by horizotal lines. In
Figure 1(b), the dashed line represents (1), and is satisfied by points in the shaded regions
which are Q1 ∩ {z ≤ �b�} and Q1 ∩ {z ≥ �b	}.

z

v

z

b

v

Figure 1: The basic mixed-integer inequality

Lemma 2 conv(Q1) =
{
v, z ∈ R : v + z ≥ b, v + b̂z ≥ b̂ �b	 , v ≥ 0

}
.

Proof Let Q′ be the set on the right-hand side of the equation above. If b̂ = 0, Q′ has
only one extreme point (0, b), and this is contained in Q1. If b̂ 
= 0, the extreme points
of Q′ are (0, �b	) and (b̂, �b�), given by the intersections of the first and third inequalities
with the second inequality. Both these points lie in Q1, and thus Q′ ⊆ conv(Q1).

Any linear inequality satisfied by points in Q1 is therefore implied by a non-negative
linear combination of the inequalities v ≥ 0, v + z ≥ b and the basic mixed-integer
inequality. See Marchand and Wolsey [15] and Wolsey [22] for ways of using the basic
mixed-integer inequality to derived valid inequalities for mixed-integer sets.

Let P = {x ∈ Rn : Ax ≤ b}. We assume that A and b have integral coefficients.
Define s = b − Ax, and P̄ = {s ∈ Rm, x ∈ Rn : Ax + Is = b, s ≥ 0}. Let λ ∈ Rm be a
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row vector such that λA is integral. Define ᾱ, β and β̄ as

ᾱ = λA, β = λb, β̄ = �β� .

By definition, β̂ = β − β̄. Let λ+ satisfy λ+
i ≥ max{λi, 0}. Then λs + ᾱx = λb is a valid

inequality for P̄ and so is
λ+s + ᾱx ≥ β. (2)

For all points in P or P̄ , λ+s is non-negative and ᾱx is integral. Lemma 1 implies that

λ+s + β̂ᾱx ≥ β̂(β̄ + 1) (3)

is a valid inequality for P̄ ∩ {x ∈ Zn}; we call this inequality a mixed-integer rounding
cut (MIR) for P̄ . We say that (3) is derived using the multipliers λ. Substituting out the
slacks in (3), we get a valid inequality for P ∩ {x ∈ Zn2} which we call an MIR cut for P .
Any valid inequality for P is trivially an MIR cut for P . This definition is different from,
but equivalent to, the definition of MIR cuts in [17]. See [9] for a detailed discussion of
different forms of MIR cuts.

Every MIR cut for P is a split cut for P derived from the disjunction ᾱx ≤ β̄ and
ᾱx ≥ β̄ + 1. This is implied by the fact that (1) is a split cut for Q1 with respect to z

derived from the disjunction z ≤ b̄ and z ≥ b̄ + 1. It follows from the work of Nemhauser
and Wolsey [17] that every split cut for P is also an MIR cut for P .

Theorem 3 [17] Every split cut for P is an MIR cut for P .

Proof Let cT x ≤ d be a split cut for P . Then cT x ≤ d is valid for P1 = P ∩ {ᾱx ≤ β̄}
and P2 = P ∩ {ᾱx ≥ β̄ + 1}, for some integral row vector ᾱ and integer β̄. There are
multipliers λ1, λ2 ∈ Rm and μ1, μ2 ∈ R with λ1, λ2, μ1, μ2 ≥ 0 such that

cT = λ1Ax + μ1ᾱ, cT = λ2Ax − μ2ᾱ,

d ≥ λ1b + μ1β̄, d ≥ λ2b − μ2(β̄ + 1).

Assume (without loss of generality) that λ2b− μ2(β̄ + 1) ≥ λ1b + μ1β̄ and let d′ stand for
the first number. This implies that the following inequalities are valid for P̄ :

cT x − μ1(ᾱx − β̄) + λ1s ≤ d′ (4)

cT x + μ2(ᾱx − (β̄ + 1)) + λ2s = d′. (5)

For cT x ≤ d to be a non-trivial split cut (i.e., not valid for P ), μ1 + μ2 has to be positive,
and we assume this to be the case. Subtracting (4) from (5) and dividing by μ1 + μ2, we
obtain

λ2s − λ1s

μ1 + μ2
+ ᾱx ≥ β̄ +

μ2

μ1 + μ2
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as a valid inequality for P̄ . Let β̂ = μ2/(μ1 + μ2). It follows that

λ2s

μ1 + μ2
+ β̂ᾱx ≥ β̂(β̄ + 1) (6)

is an MIR cut for P̄ (λ1s ≥ 0 and λ1s ≥ λ1s − λ2s). Using equation (5) to substitute out
λ2s, and then multiplying (6) by μ1 + μ2, we obtain cT x ≤ d as an MIR for P .

Consider the multipliers λ1, λ2 ≥ 0 defined in the above proof. It is clear cT x ≤ d can
be viewed as split cut derived from the inequalities λ1Ax ≤ λ1b and λ2Ax ≤ λ2b. We call
these inequalities the base inequalities for cT x ≤ d.

Definition 4 The split closure of a polyhedron P , denoted by sc(P ), is the set of points
satisfying all split cuts for the polyhedron.

It is well-known that sc(P ) ⊆ P . The MIR closure is defined similarly in terms of MIR
cuts. The split closure of a polyhedron is therefore the same as its MIR closure.

3 Boolean circuits

A boolean circuit can be thought of as a description of the elementary steps in an algorithm
via a directed acyclic graph with two types of nodes: input nodes – nodes with no incoming
arcs, and computation nodes (or gates), each of which is labelled by one of the boolean
functions ∧,∨, and ¬. One of the computation nodes has no outgoing arcs is designated
as the output node. For nodes i and j, an arc ij means that the value computed at i is
used as an input to the gate at node j. A computation is represented by placing 0-1 values
on the input gates, and then recursively applying the gates to inputs on incoming arcs,
till the function at the output node is evaluated.

A monotone function is a real-valued non-decreasing function f : Rn → R, that is, if
x ≤ y with x, y in Rn, then f(x) ≤ f(y). Here, x ≤ y means xi ≤ yi for i = 1, . . . , n.
Some monotone unary and binary functions (we call these monotone operations) are

tx, r + x, x + y, �x�, thr(x, 0)

where t is a non-negative constant, x and y are real variables, and r is a real constant;
thr(x, 0) is a threshold function which returns 0, if x < 0, and 1 otherwise. The functions ∧
and ∨ are monotone operations over the domain {0, 1}. On the other hand f(x, y) = x−y,
where x, y ∈ R, is not a monotone function. A monotone boolean circuit is one which uses
only ∧ gates and ∨ gates; a monotone real circuit is one with arbitary monotone operations
as gates. We will only consider monotone circuits with 0-1 inputs and outputs.
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Figure 2: A boolean circuit

Consider CLIQUEk,n (say k is a function of n), the function which takes as input n-
node graphs (represented by incidence vectors of their edges) and returns 1 if the graph has
a clique of size k or more, and 0 otherwise. This is monotone, as adding edges to a graph
(changing some zeros to ones in the incidence vector) causes the maximum clique size
to increase. Every monotone boolean function can be computed by a monotone boolean
circuit. Razborov [20] established super-polynomial lower bounds on the sizes of monotone
boolean circuits, and Alon and Boppana [3] strengthened his result.

Theorem 5 (Razborov [20], Alon and Boppana [3]) Let Cn be a monotone boolean circuit
which takes as input graphs on n nodes (given as incidence vectors of edges), and returns
1 if the input graph contains a clique of size k = �n2/3�, and 0 if the graph contains a
coloring of size k − 1 (and returns 0 or 1 for all other graphs). Then

|Cn| ≥ 2Ω((n/ log n)1/3).

Thus any monotone boolean circuit computing CLIQUEk,n, with k given as above, has
exponentially many gates. This result is essentially true for monotone real circuits as well
(Cook and Haken proved a slightly different statement).

Theorem 6 (Pudlák [18], Cook and Haken [6]) Let Dn be a monotone real circuit which
has the same inputs and outputs as in Theorem 5. Then Dn must have exponentially many
gates (the lower bound for |Cn| given in Theorem 5 is also valid for |Dn|).

To use Theorem 6, we encode (in a sense) the problem of Theorem 5 using a system of
inequalities. Let k = �n2/3�. Consider the set of nodes N = {1, . . . , n}. Let z be a vector
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of n(n−1)/2 0-1 variables, such that every 0-1 assignment to z corresponds to the incidence
vector of a graph on n nodes. Let x be the 0-1 vector of variables (xi | i = 1, . . . , n) and
let y be the 0-1 vector of variables (yij | i = 1, . . . , n, j = 1, . . . , k − 1). We want to impose
the conditions:

the set of nodes {i |xi = 1} forms a clique of size ≥ k,

for all j ∈ {1, . . . , k − 1}, the set {i | yij = 1} is a stable set.

Thus, the variables yij define a mapping of nodes in a graph to k − 1 colors in a proper
colouring. To this end, add the inequalities

∑

i

xi ≥ k, (7)

xi + xj ≤ 1 + zij, ∀ i, j ∈ N, with i < j, (8)
k−1∑

j=1

yij = 1, ∀i ∈ N, (9)

yis + yjs ≤ 2 − zij , ∀ i, j ∈ N with i < j, and ∀s ∈ {1, . . . , k − 1}. (10)

Let Ax + Cz ≤ e stand for the inequalities (7) and (8), along with the bounds on
0 ≤ x ≤ 1. Let By + Dz ≤ f stand for the inequalities (9) and (10), along with the
bounds 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1. Then any 0-1 solution of Ax+Cz ≤ e and By +Dz ≤ f

corresponds to a graph which has both a clique of size k, and a coloring of size k − 1.
Clearly, no such 0-1 solution exists. Note that the above inequalities have O(n3) variables
and constraints; for technical reasons we will also need the fact that C ≤ 0. Because of
Theorem 6, every monotone real circuit which takes graphs on n nodes as input (in the
form of a 0-1 vector z′) and has the property that output 0 implies Ax ≤ e − Cz′ has no
0-1 solution and output 1 implies By ≤ f − Dz′ has no 0-1 solution, has exponential size.

4 Complexity of split-cut proofs

For i = 1, 2, let

Pi = {vi, zi : vi + zi ≥ bi, vi ≥ 0, zi ∈ Z}, (11)

P3 = {v1, v2, z1, z2 : v1 + v2 + z1 + z2 ≥ b1 + b2, v1 + v2 ≥ 0, z1 + z2 ∈ Z} (12)

Lemma 7 Let P1, P2 and P3 be defined as above. Let b3 = b1 + b2. Then the inequality
(v1 + v2) + b̂3(z1 + z2) ≥ b̂3 �b3	 valid for P3 is implied by a non-negative combination of
the inequalities defining P1 and P2 and the basic mixed-integer inequalities for P1 and P2.
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Proof By Lemma 2, for i = 1, 2,

conv(Pi) = {vi, zi : vi + zi ≥ bi, vi + b̂izi ≥ b̂i �bi	 , vi ≥ 0}.

By applying the basic mixed-integer inequality, we can see that

v1 + v2 + b̂3(z1 + z2) ≥ b̂3 �b3	 (13)

is valid for P3. Therefore

b̂3 �b3	 ≤ min{v1 + v2 + b̂3(z1 + z2) | (v1, v2, z1, z2) ∈ P3}
≤ min{v1 + b̂3z1 | (v1, z1) ∈ P1} + min{v2 + b̂3z2 | (v2, z2) ∈ P2}.

as optimal solutions (v∗1 , z∗1) and (v∗2 , z∗2) of the last two minimization problems with op-
timal values μ1 and μ2, respectively, yield a feasible solution (v∗1 , v∗2 , z∗1 , z∗2) of the first
minimization problem with objective value μ1 + μ2. As

v1 + b̂3z1 ≥ μ1 and v2 + b̂3z2 ≥ μ2

are valid inequalities for conv(P1) and conv(P2), respectively, (13) is implied by a nonneg-
ative combination of inequalities defining conv(P1) and conv(P2).

Lemma 8 Let x, y be vectors of integer variables, with no common components. Let

Q1 = {x : a1x ≤ e1, a2x ≤ e2},

Q2 = {y : c1y ≤ f1, c2y ≤ f2},

Q3 = {(x, y) : x ∈ Q1, y ∈ Q2},

where a1, a2, c1, c2 are vectors with appropriate dimensions. Let a3x + c3y ≤ d be a split
cut for Q3 derived from a1x + c1y ≤ e1 + f1 and a2x + c2y ≤ e2 + f2. Let g = max{a3x :
x ∈ sc(Q1)} and h = max{c3y : y ∈ sc(Q2)}. Then g + h ≤ d.

Proof Let a3x + c3y ≤ d be a split cut for Q3 derived as described above. It is also an
MIR cut derived from the system

a1x + c1y + s1 = e1 + f1

a2x + c2y + s2 = e2 + f2

s1, s2 ≥ 0
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More precisely, there are real numbers λ1 and λ2 such that the split cut above equals

λ+
1 s1 + λ+

2 s2+ β̂
(
(λ1a1 + λ2a2)x + (λ1c1 + λ2c2)y

)
≥ β̂ �β	 , (14)

where β = λ1(e1 + f1) + λ2(e2 + f2),

λ1a1 + λ2a2 and λ1c1 + λ2c2 are integral,

λ+
1 ≥ max{λ1, 0}, λ+

2 ≥ max{λ2, 0}.

Let s′1 and s′2 be slacks for the constraints defining Q1, i.e.,

a1x + s′1 = e1, a2x + s′2 = e2.

Similarly, let s′′1 and s′′2 be slacks for constraints defining Q2. Define

v1 = λ+
1 s′1 + λ+

2 s′2, z1 = λ1a1 + λ2a2, b1 = λ1e1 + λ2e2,

v2 = λ+
1 s′′1 + λ+

2 s′′2, z2 = λ1c1 + λ2c2, b2 = λ1f1 + λ2f2.

Clearly
s1 = s′1 + s′′1, s2 = s′2 + s′′2 , and β = b1 + b2.

Defining P1, P2 and P3 in Lemma 7 in terms of the variables v1, v2, z1, z2 with b3 = β,
we see that (14) can be written as

v1 + v2 + b̂3(z1 + z2) ≥ b̂3 �b3	 .

By the proof of Lemma 7, there are numbers μ1 and μ2 such that μ1 + μ2 ≥ b̂3 �b3	 and
for i = 1, 2, vi + b̂3zi ≥ μi is a non-negative combination of the inequalities defining Pi

and the basic mixed-integer inequality for Pi. Consider the case i = 1. Substituting out
the slacks s′1 and s′2, we see that v1 ≥ 0 and v1 + z1 ≥ b1 are both implied by non-negative
combinations of the inequalities defining Q1, and v1 + b̂1z1 ≥ b̂1 �b1	 defines an MIR cut
for Q1. Finally, v1 + b̂3z1 ≥ μ1 becomes a3x ≤ g′ for some g′.

Therefore, substituting out the slacks si, s
′
i, s

′′
i for i = 1, 2, we conclude that there are

numbers g′ and h′ such that

(i) g′ + h′ ≤ d,

(ii) a3x ≤ g′ is a non-negative linear combination of the inequalities defining Q1 and
some MIR cut for Q1,

(iii) c3x ≤ h′ is a non-negative linear combination of the inequalities defining Q2 and
some MIR cut for Q2.
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If we define
g = max{a3x : x ∈ sc(Q1)}, h = max{c3y : y ∈ sc(Q2)},

then g ≤ g′, h ≤ h′ and g + h ≤ d.

Definition 9 A split cut proof of an inequality is a simplified split cut proof if every
inequality is either a non-negative linear combination of previous inequalities or a split cut
derived from two previous inequalities.

It is clear that given a split cut proof of length L of some inequality with length L, there
is a simplified split cut proof of the same inequality with length 3L. The simplified proof
can be obtained by replacing each split cut in the proof with three inequalities: the two
base inequalities for the split cut followed by the cut itself.

Theorem 10 Let R be a simplified split cut proof of 0T x+0T y+0T z ≤ −1 from Ax+Cz ≤
e and By + Dz ≤ f of length L. Then there exists a monotone real circuit of size 2Ln3

solving CLIQUEk,n.

Proof Let aT
i x+bT

i y+cT
i z ≤ di be the ith inequality in R and call this Ri. Let R1, . . . ,Rm

be just the inequalities in Ax+Cz ≤ e and By +Dz ≤ f . For some k, let Rk be precisely
0T x + 0T y + 0T z ≤ −1. We can assume – by scaling inequalities and multipliers – that
R has integral inequalities. Let Ii stand for {1, . . . , i − 1}. By definition, for i > m

Ri is either a non-negative linear combination of the inequalities R1, . . . ,Ri−1 with the
multipliers λij ≥ 0 (j ∈ Ii), or a split cut derived from Rk and Rl for some k, l ≤ i − 1.

Let z′ stand for some 0-1 assignment to z. The sequence of inequalities R′, where

R′
i is aT

i x + bT
i y ≤ di − cT

i z′,

is a simplified split cut proof of infeasibility of Ax ≤ e− Cz′ and By ≤ f − Dz′, with the
same length as R. Further,

R′
i is derived with the same multipliers as Ri.

Define d′i = di − cT
i z′. We construct a sequence of inequalities S involving only x, and

another sequence T , involving only y, such that

Si ≡ aT
i x ≤ gi, Ti ≡ cT

i y ≤ hi, and gi + hi ≤ d′i,

Si,Ti are valid for integral solutions of Ax ≤ e − Cz′ and By ≤ f − Dz′. (15)

10



Thus Si + Ti has the same left hand side as R′
i, but an equal or smaller right-hand side.

For i = 1, . . . ,m, if R′
i involves only x, then set Si to R′

i and Ti to 0T y ≤ 0, otherwise
set Si to 0T x ≤ 0 and Ti to R′

i. Define subsequent terms of S and T as follows. For
i = m+1, . . . , k, if R′

i is a non-negative linear combination of inequalities R′
j (j ∈ I ′i ⊆ Ii)

with the multipliers λij > 0 (j ∈ I ′i), then let Si and Ti be non-negative linear combinations
of Sj (j ∈ I ′i) and Tj (j ∈ I ′i), respectively, with the same multipliers λij(j ∈ I ′i). If R′

i is a
split cut derived from R′

k and R′
l for some k, l ≤ i − 1, then define

Q1 = {x : aT
k x ≤ gk, a

T
l x ≤ gl}, Q2 = {y : cT

k y ≤ hk, c
T
l y ≤ hl}.

It follows from Lemma 8 that R′
i is implied by the inequalities defining Q1 and Q2 and

some split cuts for these sets. More precisely, if we define

gi = max{aT
i x : x ∈ sc(Q1)}, hi = max{cT

i y : y ∈ sc(Q2)}, then gi + hi ≤ d′i. (16)

We then define Si to be aT
i x ≤ gi, and Ti to be cT

i y ≤ hi.

Observe that the inequality gi + hi ≤ d′i in (15) and (16) is by definition true for
i = 1, . . . ,m; either gi = d′i and hi = 0, or hi = d′i and gi = 0. Let i > m, and assume
by induction that (15) is true for smaller values of i. If Ri is a non-negative combination
of inequalities, then (15) is clearly true. If Ri is a split cut derived from two previous
inequalities, then again (15) is true because of Lemma 8: Si is valid for the split closure of
Sj(j ∈ Ii), and Ti is valid for the split closure of Tj(j ∈ Ii). Therefore the last inequalities
in S and T are, respectively, 0T x ≤ gk and 0T y ≤ hk. As d′k = dk = −1, one of gk and hk

is less than 0, and we have a proof of infeasibility of either Ax ≤ e−Cz′ or By ≤ f −Dz′.

We now define a monotone circuit C as follows. It takes as input the vector z′ and first
computes e − Cz′ by monotone operations (recall C ≤ 0). It then computes g1, g2, . . . , gk

by monotone operations as follows. First, g1, . . . , gm are trivially obtained from d′1, . . . , d
′
m:

either gi = d′i if the ith inequality is from Ax + Cz ≤ e, or 0 otherwise. For i > m, if
Ri =

∑
j∈I′i

λijRj, then gi =
∑

j∈I′i
λijgj. We can assume that |I ′i| ≤ n3. Therefore we can

assume C computes gi using at most 2n3 monotone operations from (3) (the λijs are fixed
as R is fixed; they are also non-negative). If Ri is a split cut derived from two previous
inequalities, then C computes gi as in (16). Note that only gk and gl are variable in this
computation, and thus the computation of gi is a monotone operation. Finally, the circuit
returns thr(gk, 0), which is a monotone operation. Therefore, if the circuit returns 0, then
gk < 0 and Ax ≤ e−Cz′ has no integral solutions. If the output is 1, we know that hk < 0
and By ≤ f − Dz′ has no 0-1 solutions.

Corollary 11 Every split cut proof of 0T x + 0T y + 0T z ≤ −1 from Ax + Cz ≤ e and
By + Dz ≤ f has exponential length.
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Dash [8, Lemma 5.7] proved that a branch-and-cut proof of (integer) infeasibility R
using lift-and-project cuts and Gomory-Chvátal cuts and branching on 0-1 variables can
be transformed into a cutting plane proof of infeasibility S with length s + t, where s

and t are the number of cuts and branching decisions in R, respectively. In this proof,
every branching decision is replaced by a lift-and-project cut. One can easily obtain the
following result using the proof technique for the result above.

Theorem 12 Let R be a branch-and-cut proof of the fact that a polyhedron P has no inte-
gral solutions using s split cuts, and branching on 0-1 variables with t branching decisions.
There is a split-cut proof showing P has no integral solutions with length s + t.

Corollary 13 Every branch-and-cut proof of (integer) infeasibility of Ax + Cz ≤ e and
By + Dz ≤ f of the type described in Theorem 12 has exponential size.

The technique of deriving a polynomial size circuit from a proof of infeasibility as
in the theorem above is called effective interpolation, and monotone interpolation if the
circuit only uses monotone operations. It was proposed by Kraj́ıček [13, 14] to establish
lower bounds on the lengths of proofs in different proof systems. Razborov [21], and Bonet,
Pitassi, and Raz [4], first used this idea to prove exponential lower bounds for some proof
systems.
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Electronic Colloquium on Computational Complexity Report TR03-012 (2003).
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