IBM Research Report

On the Complexity of Cutting Plane Proofs Using Split Cuts

Sanjeeb Dash
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

On the complexity of cutting plane proofs using split cuts

Sanjeeb Dash
IBM Research

October 17, 2006

Abstract

We prove that cutting-plane proofs which use split cuts have exponential length in the worst case. Split cuts, defined by Cook, Kannan, Schrijver (1993), are known to be equivalent to a number of other classes of cuts, namely mixed-integer rounding (MIR) cuts, Gomory mixed-integer cuts, and disjunctive cuts. Our result thus implies the exponential worst-case complexity of cutting-plane proofs which use the above cuts.

Key words. cutting-plane proof, split cut, mixed-integer rounding, disjunctive cut, effective interpolation, monotone ciruits.

1 Introduction

The complexity of different types of cutting-plane proofs has been a much studied topic in recent years. Some well-known classes of cutting planes (linear inequalities satisfied by integral points in polyhedra) are Gomory-Chvátal cuts [10], split cuts [7], mixed-integer rounding (MIR) cuts [17, 16], and lift-and-project cuts [2]. Let $A x \leq b$ stand for a system of linear inequalities. A Gomory-Chvátal cutting plane (or cut) for $A x \leq b$ is a linear inequality $c^{T} x \leq\lfloor d\rfloor$ where c is integral, and $c^{T} x \leq d$ is satisfied by solutions of $A x \leq b$. For a class of cuts \mathcal{S}, an \mathcal{S} cutting-plane proof is a way of certifying that a linear inequality is satisfied by all integral solutions of $A x \leq b$ via cuts from \mathcal{S}. For example, a GomoryChvátal (GC) cutting-plane proof of $c^{T} x \leq d$ with length M is a sequence of M inequalities

$$
a_{i}^{T} x \leq d_{i}(i=1, \ldots, M)
$$

such that the last inequality in the sequence is $c^{T} x \leq d$, and for each $i \in\{1, \ldots, M\}$ the inequality $a_{i}^{T} x \leq d_{i}$ is a Gomory-Chvátal cut derived from the previous inequalities in the sequence and the inequalities in $A x \leq b$. The notion of a cutting-plane proof was introduced in [5]).

Any inequality satisfied by integral solutions of $A x \leq b$ has a Gomory-Chvátal cutting plane proof. This follows from the work of Gomory [10] and Chvátal [5]. In this paper, we focus on cutting-plane proofs of inequalities satisfied by $0-1$ solutions. In an important paper, Pudlák [18] proved that Gomory-Chvátal cutting plane proofs of inequalities satisfied by $0-1$ points in polyhedra have exponential length in the worst case. Dash [8] proved a similar result for lift-and-project cutting plane proofs. An inequality $c^{T} x \leq d$ is a lift-and-project cut for $P=\{x \mid A x \leq b\}$, if for some index $j, c^{T} x \leq d$ is satsfied by points in $P \cap\left\{x_{j}=0\right\}$ and $P \cap\left\{x_{j}=1\right\}$. Lift-and-project cuts polynomially simulate the "non-commutative" matrix cuts of Lovász and Schrijver (1991), or cuts arising from the N_{0} operator, and therefore, N_{0}-cutting plane proofs have exponential worst-case complexity [8]. A question left open in [8] is whether cutting-plane proofs using split cuts (or split-cut proofs) have exponential worst-case complexity. An inequality $c^{T} x \leq d$ is a split cut for $P=\left\{x \in R^{n} \mid A x \leq b\right\}$ with respect to x if $c^{T} x \leq d$ is satisfied by points in $P \cap\left\{\alpha^{T} x \leq \beta\right\}$ and $P \cap\left\{\alpha^{T} x \geq \beta\right\}$, where α, β are integral. We say that $c^{T} x \leq d$ is derived from the disjunction $\alpha^{T} x \leq \beta$ and $\alpha^{T} x \geq \beta+1$. All points in $P \cap\left\{x \in Z^{n}\right\}$ satisfy any split cut for P. Lift-and-project cuts and Gomory-Chvátal cuts are special cases of split cuts.

Here we show that split-cut proofs have exponential worst-case complexity, thus generalizing the results of Dash and Pudlák cited above. The proof technique, and the worstcase inequality systems, are essentially the same as those in Pudlák [18]. An important component of our proof is the equivalence between split cuts and mixed-integer rounding cuts proved in [17], which we discuss in the next section. As split cuts are also equivalent to the Gomory mixed-integer cuts [11] and disjunctive cuts [1], cutting-plane proofs with these cuts also have exponential worst-case complexity.

Krajíček [14] gave an exponential lower bound on the complexity of branch-and-cut proofs which use restricted Gomory-Chvátal cuts, and branching on inequalities (see also [12]). In his result, the cuts have polynomially bounded coefficient values, but branching on an arbitrary inequality $a^{T} x \leq b$ and its disjunction $a^{T} x \geq b+1$, where a and b, are integral is allowed. The results in this paper, combined with Lemma 5.7 in Dash [8], imply that branch-and-cut proofs which use split cuts but branch only on the inequalities $x_{i} \leq 0$ and $x_{i} \geq 1$ for $0-1$ variables x_{i}, have exponential worst-case complexity.

In the next section, we present MIR cuts in a form given in [9], and discuss their equivalence with split cuts. In Section 3 we discuss some well-known complexity results for boolean monotone circuits, and give our exponential lower bound results in Section 4.

2 Notation and Definitions

For a number v and an integer t, define $\hat{v}=v-\lfloor v\rfloor$. Define

$$
Q^{1}=\{v \in R, z \in Z: v+z \geq b, v \geq 0\}
$$

Lemma 1 [22] All points in Q^{1} satisfy the basic mixed-integer inequality

$$
\begin{equation*}
v+\hat{b} z \geq \hat{b}\lceil b\rceil \tag{1}
\end{equation*}
$$

If $\hat{b}=0$, then $v+\hat{b} z \geq \hat{b}\lceil b\rceil$ becomes $v \geq 0$. The basic mixed-integer inequality is a split cut for Q^{1} with respect to z derived from the disjunction $z \leq \bar{b}$ and $z \geq \bar{b}+1$. See the proof of Lemma 1 in [22]. In Figure 1(a), we depict the points in Q^{1} by horizotal lines. In Figure 1(b), the dashed line represents (1), and is satisfied by points in the shaded regions which are $Q^{1} \cap\{z \leq\lfloor b\rfloor\}$ and $Q^{1} \cap\{z \geq\lceil b\rceil\}$.

Figure 1: The basic mixed-integer inequality

Lemma $2 \operatorname{conv}\left(Q^{1}\right)=\{v, z \in R: v+z \geq b, v+\hat{b} z \geq \hat{b}\lceil b\rceil, \quad v \geq 0\}$.
Proof Let Q^{\prime} be the set on the right-hand side of the equation above. If $\hat{b}=0, Q^{\prime}$ has only one extreme point $(0, b)$, and this is contained in Q^{1}. If $\hat{b} \neq 0$, the extreme points of Q^{\prime} are $(0,\lceil b\rceil)$ and $(\hat{b},\lfloor b\rfloor)$, given by the intersections of the first and third inequalities with the second inequality. Both these points lie in Q^{1}, and thus $Q^{\prime} \subseteq \operatorname{conv}\left(Q^{1}\right)$.

Any linear inequality satisfied by points in Q^{1} is therefore implied by a non-negative linear combination of the inequalities $v \geq 0, v+z \geq b$ and the basic mixed-integer inequality. See Marchand and Wolsey [15] and Wolsey [22] for ways of using the basic mixed-integer inequality to derived valid inequalities for mixed-integer sets.

Let $P=\left\{x \in R^{n}: A x \leq b\right\}$. We assume that A and b have integral coefficients. Define $s=b-A x$, and $\bar{P}=\left\{s \in R^{m}, x \in R^{n}: A x+I s=b, s \geq 0\right\}$. Let $\lambda \in R^{m}$ be a
row vector such that λA is integral. Define $\bar{\alpha}, \beta$ and $\bar{\beta}$ as

$$
\bar{\alpha}=\lambda A, \beta=\lambda b, \bar{\beta}=\lfloor\beta\rfloor .
$$

By definition, $\hat{\beta}=\beta-\bar{\beta}$. Let λ^{+}satisfy $\lambda_{i}^{+} \geq \max \left\{\lambda_{i}, 0\right\}$. Then $\lambda s+\bar{\alpha} x=\lambda b$ is a valid inequality for \bar{P} and so is

$$
\begin{equation*}
\lambda^{+} s+\bar{\alpha} x \geq \beta \tag{2}
\end{equation*}
$$

For all points in P or $\bar{P}, \lambda^{+} s$ is non-negative and $\bar{\alpha} x$ is integral. Lemma 1 implies that

$$
\begin{equation*}
\lambda^{+} s+\hat{\beta} \bar{\alpha} x \geq \hat{\beta}(\bar{\beta}+1) \tag{3}
\end{equation*}
$$

is a valid inequality for $\bar{P} \cap\left\{x \in Z^{n}\right\}$; we call this inequality a mixed-integer rounding cut (MIR) for \bar{P}. We say that (3) is derived using the multipliers λ. Substituting out the slacks in (3), we get a valid inequality for $P \cap\left\{x \in Z^{n_{2}}\right\}$ which we call an MIR cut for P. Any valid inequality for P is trivially an MIR cut for P. This definition is different from, but equivalent to, the definition of MIR cuts in [17]. See [9] for a detailed discussion of different forms of MIR cuts.

Every MIR cut for P is a split cut for P derived from the disjunction $\bar{\alpha} x \leq \bar{\beta}$ and $\bar{\alpha} x \geq \bar{\beta}+1$. This is implied by the fact that (1) is a split cut for Q^{1} with respect to z derived from the disjunction $z \leq \bar{b}$ and $z \geq \bar{b}+1$. It follows from the work of Nemhauser and Wolsey [17] that every split cut for P is also an MIR cut for P.

Theorem 3 [17] Every split cut for P is an MIR cut for P.

Proof Let $c^{T} x \leq d$ be a split cut for P. Then $c^{T} x \leq d$ is valid for $P_{1}=P \cap\{\bar{\alpha} x \leq \bar{\beta}\}$ and $P_{2}=P \cap\{\bar{\alpha} x \geq \bar{\beta}+1\}$, for some integral row vector $\bar{\alpha}$ and integer $\bar{\beta}$. There are multipliers $\lambda_{1}, \lambda_{2} \in R^{m}$ and $\mu_{1}, \mu_{2} \in R$ with $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \geq 0$ such that

$$
\begin{array}{cl}
c^{T}=\lambda_{1} A x+\mu_{1} \bar{\alpha}, & c^{T}=\lambda_{2} A x-\mu_{2} \bar{\alpha} \\
d \geq \lambda_{1} b+\mu_{1} \bar{\beta}, & d \geq \lambda_{2} b-\mu_{2}(\bar{\beta}+1)
\end{array}
$$

Assume (without loss of generality) that $\lambda_{2} b-\mu_{2}(\bar{\beta}+1) \geq \lambda_{1} b+\mu_{1} \bar{\beta}$ and let d^{\prime} stand for the first number. This implies that the following inequalities are valid for \bar{P} :

$$
\begin{align*}
& c^{T} x-\mu_{1}(\bar{\alpha} x-\bar{\beta})+\lambda_{1} s \leq d^{\prime} \tag{4}\\
& c^{T} x+\mu_{2}(\bar{\alpha} x-(\bar{\beta}+1))+\lambda_{2} s=d^{\prime} \tag{5}
\end{align*}
$$

For $c^{T} x \leq d$ to be a non-trivial split cut (i.e., not valid for P), $\mu_{1}+\mu_{2}$ has to be positive, and we assume this to be the case. Subtracting (4) from (5) and dividing by $\mu_{1}+\mu_{2}$, we obtain

$$
\frac{\lambda_{2} s-\lambda_{1} s}{\mu_{1}+\mu_{2}}+\bar{\alpha} x \geq \bar{\beta}+\frac{\mu_{2}}{\mu_{1}+\mu_{2}}
$$

as a valid inequality for \bar{P}. Let $\hat{\beta}=\mu_{2} /\left(\mu_{1}+\mu_{2}\right)$. It follows that

$$
\begin{equation*}
\frac{\lambda_{2} s}{\mu_{1}+\mu_{2}}+\hat{\beta} \bar{\alpha} x \geq \hat{\beta}(\bar{\beta}+1) \tag{6}
\end{equation*}
$$

is an MIR cut for $\bar{P}\left(\lambda_{1} s \geq 0\right.$ and $\left.\lambda_{1} s \geq \lambda_{1} s-\lambda_{2} s\right)$. Using equation (5) to substitute out $\lambda_{2} s$, and then multiplying (6) by $\mu_{1}+\mu_{2}$, we obtain $c^{T} x \leq d$ as an MIR for P.

Consider the multipliers $\lambda_{1}, \lambda_{2} \geq 0$ defined in the above proof. It is clear $c^{T} x \leq d$ can be viewed as split cut derived from the inequalities $\lambda_{1} A x \leq \lambda_{1} b$ and $\lambda_{2} A x \leq \lambda_{2} b$. We call these inequalities the base inequalities for $c^{T} x \leq d$.

Definition 4 The split closure of a polyhedron P, denoted by $s c(P)$, is the set of points satisfying all split cuts for the polyhedron.

It is well-known that $s c(P) \subseteq P$. The MIR closure is defined similarly in terms of MIR cuts. The split closure of a polyhedron is therefore the same as its MIR closure.

3 Boolean circuits

A boolean circuit can be thought of as a description of the elementary steps in an algorithm via a directed acyclic graph with two types of nodes: input nodes - nodes with no incoming arcs, and computation nodes (or gates), each of which is labelled by one of the boolean functions \wedge, \vee, and \neg. One of the computation nodes has no outgoing arcs is designated as the output node. For nodes i and j, an arc $i j$ means that the value computed at i is used as an input to the gate at node j. A computation is represented by placing $0-1$ values on the input gates, and then recursively applying the gates to inputs on incoming arcs, till the function at the output node is evaluated.

A monotone function is a real-valued non-decreasing function $f: R^{n} \rightarrow R$, that is, if $x \leq y$ with x, y in R^{n}, then $f(x) \leq f(y)$. Here, $x \leq y$ means $x_{i} \leq y_{i}$ for $i=1, \ldots, n$. Some monotone unary and binary functions (we call these monotone operations) are

$$
t x, \quad r+x, \quad x+y, \quad\lfloor x\rfloor, \quad \operatorname{thr}(x, 0)
$$

where t is a non-negative constant, x and y are real variables, and r is a real constant; $\operatorname{thr}(x, 0)$ is a threshold function which returns 0 , if $x<0$, and 1 otherwise. The functions \wedge and \vee are monotone operations over the domain $\{0,1\}$. On the other hand $f(x, y)=x-y$, where $x, y \in R$, is not a monotone function. A monotone boolean circuit is one which uses only \wedge gates and \vee gates; a monotone real circuit is one with arbitary monotone operations as gates. We will only consider monotone circuits with $0-1$ inputs and outputs.

Figure 2: A boolean circuit

Consider $C L I Q U E_{k, n}$ (say k is a function of n), the function which takes as input n node graphs (represented by incidence vectors of their edges) and returns 1 if the graph has a clique of size k or more, and 0 otherwise. This is monotone, as adding edges to a graph (changing some zeros to ones in the incidence vector) causes the maximum clique size to increase. Every monotone boolean function can be computed by a monotone boolean circuit. Razborov [20] established super-polynomial lower bounds on the sizes of monotone boolean circuits, and Alon and Boppana [3] strengthened his result.

Theorem 5 (Razborov [20], Alon and Boppana [3]) Let C_{n} be a monotone boolean circuit which takes as input graphs on n nodes (given as incidence vectors of edges), and returns 1 if the input graph contains a clique of size $k=\left\lfloor n^{2 / 3}\right\rfloor$, and 0 if the graph contains a coloring of size $k-1$ (and returns 0 or 1 for all other graphs). Then

$$
\left|C_{n}\right| \geq 2^{\Omega\left((n / \log n)^{1 / 3}\right)} .
$$

Thus any monotone boolean circuit computing $C L I Q U E_{k, n}$, with k given as above, has exponentially many gates. This result is essentially true for monotone real circuits as well (Cook and Haken proved a slightly different statement).

Theorem 6 (Pudlák [18], Cook and Haken [6]) Let D_{n} be a monotone real circuit which has the same inputs and outputs as in Theorem 5. Then D_{n} must have exponentially many gates (the lower bound for $\left|C_{n}\right|$ given in Theorem 5 is also valid for $\left|D_{n}\right|$).

To use Theorem 6, we encode (in a sense) the problem of Theorem 5 using a system of inequalities. Let $k=\left\lfloor n^{2 / 3}\right\rfloor$. Consider the set of nodes $N=\{1, \ldots, n\}$. Let z be a vector
of $n(n-1) / 20-1$ variables, such that every 0-1 assignment to z corresponds to the incidence vector of a graph on n nodes. Let x be the $0-1$ vector of variables $\left(x_{i} \mid i=1, \ldots, n\right)$ and let y be the $0-1$ vector of variables $\left(y_{i j} \mid i=1, \ldots, n, j=1, \ldots, k-1\right)$. We want to impose the conditions:
the set of nodes $\left\{i \mid x_{i}=1\right\}$ forms a clique of size $\geq k$,
for all $j \in\{1, \ldots, k-1\}$, the set $\left\{i \mid y_{i j}=1\right\}$ is a stable set.
Thus, the variables $y_{i j}$ define a mapping of nodes in a graph to $k-1$ colors in a proper colouring. To this end, add the inequalities

$$
\begin{gather*}
\sum_{i} x_{i} \geq k, \tag{7}\\
x_{i}+x_{j} \leq 1+z_{i j}, \quad \forall i, j \in N, \text { with } i<j, \tag{8}\\
\sum_{j=1}^{k-1} y_{i j}=1, \quad \forall i \in N, \tag{9}\\
y_{i s}+y_{j s} \leq 2-z_{i j}, \quad \forall i, j \in N \text { with } i<j, \text { and } \forall s \in\{1, \ldots, k-1\} . \tag{10}
\end{gather*}
$$

Let $A x+C z \leq e$ stand for the inequalities (7) and (8), along with the bounds on $0 \leq x \leq 1$. Let $B y+D z \leq f$ stand for the inequalities (9) and (10), along with the bounds $0 \leq y \leq 1$ and $0 \leq z \leq 1$. Then any $0-1$ solution of $A x+C z \leq e$ and $B y+D z \leq f$ corresponds to a graph which has both a clique of size k, and a coloring of size $k-1$. Clearly, no such 0-1 solution exists. Note that the above inequalities have $O\left(n^{3}\right)$ variables and constraints; for technical reasons we will also need the fact that $C \leq 0$. Because of Theorem 6, every monotone real circuit which takes graphs on n nodes as input (in the form of a $0-1$ vector z^{\prime}) and has the property that output 0 implies $A x \leq e-C z^{\prime}$ has no $0-1$ solution and output 1 implies $B y \leq f-D z^{\prime}$ has no 0-1 solution, has exponential size.

4 Complexity of split-cut proofs

For $i=1,2$, let

$$
\begin{align*}
& P_{i}=\left\{v_{i}, z_{i}: v_{i}+z_{i} \geq b_{i}, v_{i} \geq 0, z_{i} \in Z\right\} \tag{11}\\
& P_{3}=\left\{v_{1}, v_{2}, z_{1}, z_{2}: v_{1}+v_{2}+z_{1}+z_{2} \geq b_{1}+b_{2}, v_{1}+v_{2} \geq 0, z_{1}+z_{2} \in Z\right\} \tag{12}
\end{align*}
$$

Lemma 7 Let P_{1}, P_{2} and P_{3} be defined as above. Let $b_{3}=b_{1}+b_{2}$. Then the inequality $\left(v_{1}+v_{2}\right)+\hat{b}_{3}\left(z_{1}+z_{2}\right) \geq \hat{b}_{3}\left\lceil b_{3}\right\rceil$ valid for P_{3} is implied by a non-negative combination of the inequalities defining P_{1} and P_{2} and the basic mixed-integer inequalities for P_{1} and P_{2}.

Proof By Lemma 2, for $i=1,2$,

$$
\operatorname{conv}\left(P_{i}\right)=\left\{v_{i}, z_{i}: v_{i}+z_{i} \geq b_{i}, v_{i}+\hat{b}_{i} z_{i} \geq \hat{b}_{i}\left\lceil b_{i}\right\rceil, v_{i} \geq 0\right\}
$$

By applying the basic mixed-integer inequality, we can see that

$$
\begin{equation*}
v_{1}+v_{2}+\hat{b}_{3}\left(z_{1}+z_{2}\right) \geq \hat{b}_{3}\left\lceil b_{3}\right\rceil \tag{13}
\end{equation*}
$$

is valid for P_{3}. Therefore

$$
\begin{aligned}
\hat{b}_{3}\left\lceil b_{3}\right\rceil & \leq \min \left\{v_{1}+v_{2}+\hat{b}_{3}\left(z_{1}+z_{2}\right) \mid\left(v_{1}, v_{2}, z_{1}, z_{2}\right) \in P_{3}\right\} \\
& \leq \min \left\{v_{1}+\hat{b}_{3} z_{1} \mid\left(v_{1}, z_{1}\right) \in P_{1}\right\}+\min \left\{v_{2}+\hat{b}_{3} z_{2} \mid\left(v_{2}, z_{2}\right) \in P_{2}\right\}
\end{aligned}
$$

as optimal solutions $\left(v_{1}^{*}, z_{1}^{*}\right)$ and $\left(v_{2}^{*}, z_{2}^{*}\right)$ of the last two minimization problems with optimal values μ_{1} and μ_{2}, respectively, yield a feasible solution $\left(v_{1}^{*}, v_{2}^{*}, z_{1}^{*}, z_{2}^{*}\right)$ of the first minimization problem with objective value $\mu_{1}+\mu_{2}$. As

$$
v_{1}+\hat{b}_{3} z_{1} \geq \mu_{1} \text { and } v_{2}+\hat{b}_{3} z_{2} \geq \mu_{2}
$$

are valid inequalities for $\operatorname{conv}\left(P_{1}\right)$ and $\operatorname{conv}\left(P_{2}\right)$, respectively, (13) is implied by a nonnegative combination of inequalities defining $\operatorname{conv}\left(P_{1}\right)$ and $\operatorname{conv}\left(P_{2}\right)$.

Lemma 8 Let x, y be vectors of integer variables, with no common components. Let

$$
\begin{aligned}
& Q_{1}=\left\{x: a_{1} x \leq e_{1}, a_{2} x \leq e_{2}\right\} \\
& Q_{2}=\left\{y: c_{1} y \leq f_{1}, c_{2} y \leq f_{2}\right\} \\
& Q_{3}=\left\{(x, y): x \in Q_{1}, y \in Q_{2}\right\},
\end{aligned}
$$

where $a_{1}, a_{2}, c_{1}, c_{2}$ are vectors with appropriate dimensions. Let $a_{3} x+c_{3} y \leq d$ be a split cut for Q_{3} derived from $a_{1} x+c_{1} y \leq e_{1}+f_{1}$ and $a_{2} x+c_{2} y \leq e_{2}+f_{2}$. Let $g=\max \left\{a_{3} x\right.$: $\left.x \in s c\left(Q_{1}\right)\right\}$ and $h=\max \left\{c_{3} y: y \in s c\left(Q_{2}\right)\right\}$. Then $g+h \leq d$.

Proof Let $a_{3} x+c_{3} y \leq d$ be a split cut for Q_{3} derived as described above. It is also an MIR cut derived from the system

$$
\begin{gathered}
a_{1} x+c_{1} y+s_{1}=e_{1}+f_{1} \\
a_{2} x+c_{2} y+s_{2}=e_{2}+f_{2} \\
s_{1}, s_{2} \geq 0
\end{gathered}
$$

More precisely, there are real numbers λ_{1} and λ_{2} such that the split cut above equals

$$
\begin{array}{cl}
\lambda_{1}^{+} s_{1}+\lambda_{2}^{+} s_{2}+ & \hat{\beta}\left(\left(\lambda_{1} a_{1}+\lambda_{2} a_{2}\right) x+\left(\lambda_{1} c_{1}+\lambda_{2} c_{2}\right) y\right) \geq \hat{\beta}\lceil\beta\rceil \tag{14}\\
\text { where } & \beta=\lambda_{1}\left(e_{1}+f_{1}\right)+\lambda_{2}\left(e_{2}+f_{2}\right) \\
& \lambda_{1} a_{1}+\lambda_{2} a_{2} \text { and } \lambda_{1} c_{1}+\lambda_{2} c_{2} \text { are integral } \\
& \lambda_{1}^{+} \geq \max \left\{\lambda_{1}, 0\right\}, \lambda_{2}^{+} \geq \max \left\{\lambda_{2}, 0\right\}
\end{array}
$$

Let s_{1}^{\prime} and s_{2}^{\prime} be slacks for the constraints defining Q_{1}, i.e.,

$$
a_{1} x+s_{1}^{\prime}=e_{1}, a_{2} x+s_{2}^{\prime}=e_{2}
$$

Similarly, let $s_{1}^{\prime \prime}$ and $s_{2}^{\prime \prime}$ be slacks for constraints defining Q_{2}. Define

$$
\begin{array}{ll}
v_{1}=\lambda_{1}^{+} s_{1}^{\prime}+\lambda_{2}^{+} s_{2}^{\prime}, & z_{1}=\lambda_{1} a_{1}+\lambda_{2} a_{2}, b_{1}=\lambda_{1} e_{1}+\lambda_{2} e_{2} \\
v_{2}=\lambda_{1}^{+} s_{1}^{\prime \prime}+\lambda_{2}^{+} s_{2}^{\prime \prime}, & z_{2}=\lambda_{1} c_{1}+\lambda_{2} c_{2}, b_{2}=\lambda_{1} f_{1}+\lambda_{2} f_{2}
\end{array}
$$

Clearly

$$
s_{1}=s_{1}^{\prime}+s_{1}^{\prime \prime}, s_{2}=s_{2}^{\prime}+s_{2}^{\prime \prime}, \text { and } \beta=b_{1}+b_{2}
$$

Defining P_{1}, P_{2} and P_{3} in Lemma 7 in terms of the variables $v_{1}, v_{2}, z_{1}, z_{2}$ with $b_{3}=\beta$, we see that (14) can be written as

$$
v_{1}+v_{2}+\hat{b}_{3}\left(z_{1}+z_{2}\right) \geq \hat{b}_{3}\left\lceil b_{3}\right\rceil .
$$

By the proof of Lemma 7 , there are numbers μ_{1} and μ_{2} such that $\mu_{1}+\mu_{2} \geq \hat{b}_{3}\left\lceil b_{3}\right\rceil$ and for $i=1,2, v_{i}+\hat{b}_{3} z_{i} \geq \mu_{i}$ is a non-negative combination of the inequalities defining P_{i} and the basic mixed-integer inequality for P_{i}. Consider the case $i=1$. Substituting out the slacks s_{1}^{\prime} and s_{2}^{\prime}, we see that $v_{1} \geq 0$ and $v_{1}+z_{1} \geq b_{1}$ are both implied by non-negative combinations of the inequalities defining Q_{1}, and $v_{1}+\hat{b}_{1} z_{1} \geq \hat{b}_{1}\left\lceil b_{1}\right\rceil$ defines an MIR cut for Q_{1}. Finally, $v_{1}+\hat{b}_{3} z_{1} \geq \mu_{1}$ becomes $a_{3} x \leq g^{\prime}$ for some g^{\prime}.

Therefore, substituting out the slacks $s_{i}, s_{i}^{\prime}, s_{i}^{\prime \prime}$ for $i=1$, 2 , we conclude that there are numbers g^{\prime} and h^{\prime} such that
(i) $g^{\prime}+h^{\prime} \leq d$,
(ii) $a_{3} x \leq g^{\prime}$ is a non-negative linear combination of the inequalities defining Q_{1} and some MIR cut for Q_{1},
(iii) $c_{3} x \leq h^{\prime}$ is a non-negative linear combination of the inequalities defining Q_{2} and some MIR cut for Q_{2}.

If we define

$$
\begin{gathered}
g=\max \left\{a_{3} x: x \in s c\left(Q_{1}\right)\right\}, \quad h=\max \left\{c_{3} y: y \in s c\left(Q_{2}\right)\right\}, \\
\text { then } g \leq g^{\prime}, \quad h \leq h^{\prime} \text { and } g+h \leq d .
\end{gathered}
$$

Definition 9 A split cut proof of an inequality is a simplified split cut proof if every inequality is either a non-negative linear combination of previous inequalities or a split cut derived from two previous inequalities.

It is clear that given a split cut proof of length L of some inequality with length L, there is a simplified split cut proof of the same inequality with length $3 L$. The simplified proof can be obtained by replacing each split cut in the proof with three inequalities: the two base inequalities for the split cut followed by the cut itself.

Theorem 10 Let \mathcal{R} be a simplified split cut proof of $0^{T} x+0^{T} y+0^{T} z \leq-1$ from $A x+C z \leq$ e and $B y+D z \leq f$ of length L. Then there exists a monotone real circuit of size $2{L n^{3}}^{3}$ solving CLIQU $E_{k, n}$.

Proof Let $a_{i}^{T} x+b_{i}^{T} y+c_{i}^{T} z \leq d_{i}$ be the i th inequality in \mathcal{R} and call this \mathcal{R}_{i}. Let $\mathcal{R}_{1}, \ldots, \mathcal{R}_{m}$ be just the inequalities in $A x+C z \leq e$ and $B y+D z \leq f$. For some k, let \mathcal{R}_{k} be precisely $0^{T} x+0^{T} y+0^{T} z \leq-1$. We can assume - by scaling inequalities and multipliers - that \mathcal{R} has integral inequalities. Let I_{i} stand for $\{1, \ldots, i-1\}$. By definition, for $i>m$ \mathcal{R}_{i} is either a non-negative linear combination of the inequalities $\mathcal{R}_{1}, \ldots, \mathcal{R}_{i-1}$ with the multipliers $\lambda_{i j} \geq 0\left(j \in I_{i}\right)$, or a split cut derived from \mathcal{R}_{k} and \mathcal{R}_{l} for some $k, l \leq i-1$.

Let z^{\prime} stand for some 0-1 assignment to z. The sequence of inequalities \mathcal{R}^{\prime}, where

$$
\mathcal{R}_{i}^{\prime} \text { is } a_{i}^{T} x+b_{i}^{T} y \leq d_{i}-c_{i}^{T} z^{\prime},
$$

is a simplified split cut proof of infeasibility of $A x \leq e-C z^{\prime}$ and $B y \leq f-D z^{\prime}$, with the same length as \mathcal{R}. Further,

$$
\mathcal{R}_{i}^{\prime} \text { is derived with the same multipliers as } \mathcal{R}_{i} \text {. }
$$

Define $d_{i}^{\prime}=d_{i}-c_{i}^{T} z^{\prime}$. We construct a sequence of inequalities \mathcal{S} involving only x, and another sequence \mathcal{T}, involving only y, such that

$$
\begin{align*}
& \mathcal{S}_{i} \equiv a_{i}^{T} x \leq g_{i}, \quad \mathcal{T}_{i} \equiv c_{i}^{T} y \leq h_{i}, \text { and } g_{i}+h_{i} \leq d_{i}^{\prime} \\
& \mathcal{S}_{i}, \mathcal{T}_{i} \text { are valid for integral solutions of } A x \leq e-C z^{\prime} \text { and } B y \leq f-D z^{\prime} \tag{15}
\end{align*}
$$

Thus $\mathcal{S}_{i}+\mathcal{T}_{i}$ has the same left hand side as \mathcal{R}_{i}^{\prime}, but an equal or smaller right-hand side.
For $i=1, \ldots, m$, if \mathcal{R}_{i}^{\prime} involves only x, then set \mathcal{S}_{i} to \mathcal{R}_{i}^{\prime} and \mathcal{T}_{i} to $0^{T} y \leq 0$, otherwise set \mathcal{S}_{i} to $0^{T} x \leq 0$ and \mathcal{T}_{i} to \mathcal{R}_{i}^{\prime}. Define subsequent terms of \mathcal{S} and \mathcal{T} as follows. For $i=m+1, \ldots, k$, if \mathcal{R}_{i}^{\prime} is a non-negative linear combination of inequalities $\mathcal{R}_{j}^{\prime}\left(j \in I_{i}^{\prime} \subseteq I_{i}\right)$ with the multipliers $\lambda_{i j}>0\left(j \in I_{i}^{\prime}\right)$, then let \mathcal{S}_{i} and \mathcal{T}_{i} be non-negative linear combinations of $\mathcal{S}_{j}\left(j \in I_{i}^{\prime}\right)$ and $\mathcal{T}_{j}\left(j \in I_{i}^{\prime}\right)$, respectively, with the same multipliers $\lambda_{i j}\left(j \in I_{i}^{\prime}\right)$. If \mathcal{R}_{i}^{\prime} is a split cut derived from \mathcal{R}_{k}^{\prime} and \mathcal{R}_{l}^{\prime} for some $k, l \leq i-1$, then define

$$
Q_{1}=\left\{x: a_{k}^{T} x \leq g_{k}, a_{l}^{T} x \leq g_{l}\right\}, Q_{2}=\left\{y: c_{k}^{T} y \leq h_{k}, c_{l}^{T} y \leq h_{l}\right\}
$$

It follows from Lemma 8 that \mathcal{R}_{i}^{\prime} is implied by the inequalities defining Q_{1} and Q_{2} and some split cuts for these sets. More precisely, if we define

$$
\begin{equation*}
g_{i}=\max \left\{a_{i}^{T} x: x \in s c\left(Q_{1}\right)\right\}, h_{i}=\max \left\{c_{i}^{T} y: y \in s c\left(Q_{2}\right)\right\}, \text { then } g_{i}+h_{i} \leq d_{i}^{\prime} . \tag{16}
\end{equation*}
$$

We then define \mathcal{S}_{i} to be $a_{i}^{T} x \leq g_{i}$, and \mathcal{T}_{i} to be $c_{i}^{T} y \leq h_{i}$.
Observe that the inequality $g_{i}+h_{i} \leq d_{i}^{\prime}$ in (15) and (16) is by definition true for $i=1, \ldots, m$; either $g_{i}=d_{i}^{\prime}$ and $h_{i}=0$, or $h_{i}=d_{i}^{\prime}$ and $g_{i}=0$. Let $i>m$, and assume by induction that (15) is true for smaller values of i. If \mathcal{R}_{i} is a non-negative combination of inequalities, then (15) is clearly true. If \mathcal{R}_{i} is a split cut derived from two previous inequalities, then again (15) is true because of Lemma 8: \mathcal{S}_{i} is valid for the split closure of $\mathcal{S}_{j}\left(j \in I_{i}\right)$, and \mathcal{T}_{i} is valid for the split closure of $\mathcal{T}_{j}\left(j \in I_{i}\right)$. Therefore the last inequalities in \mathcal{S} and \mathcal{T} are, respectively, $0^{T} x \leq g_{k}$ and $0^{T} y \leq h_{k}$. As $d_{k}^{\prime}=d_{k}=-1$, one of g_{k} and h_{k} is less than 0 , and we have a proof of infeasibility of either $A x \leq e-C z^{\prime}$ or $B y \leq f-D z^{\prime}$.

We now define a monotone circuit \mathcal{C} as follows. It takes as input the vector z^{\prime} and first computes $e-C z^{\prime}$ by monotone operations (recall $C \leq 0$). It then computes $g_{1}, g_{2}, \ldots, g_{k}$ by monotone operations as follows. First, g_{1}, \ldots, g_{m} are trivially obtained from $d_{1}^{\prime}, \ldots, d_{m}^{\prime}$: either $g_{i}=d_{i}^{\prime}$ if the i th inequality is from $A x+C z \leq e$, or 0 otherwise. For $i>m$, if $\mathcal{R}_{i}=\sum_{j \in I_{i}^{\prime}} \lambda_{i j} R_{j}$, then $g_{i}=\sum_{j \in I_{i}^{\prime}} \lambda_{i j} g_{j}$. We can assume that $\left|I_{i}^{\prime}\right| \leq n^{3}$. Therefore we can assume \mathcal{C} computes g_{i} using at most $2 n^{3}$ monotone operations from (3) (the $\lambda_{i j}$ s are fixed as \mathcal{R} is fixed; they are also non-negative). If \mathcal{R}_{i} is a split cut derived from two previous inequalities, then \mathcal{C} computes g_{i} as in (16). Note that only g_{k} and g_{l} are variable in this computation, and thus the computation of g_{i} is a monotone operation. Finally, the circuit returns $\operatorname{thr}\left(g_{k}, 0\right)$, which is a monotone operation. Therefore, if the circuit returns 0 , then $g_{k}<0$ and $A x \leq e-C z^{\prime}$ has no integral solutions. If the output is 1 , we know that $h_{k}<0$ and $B y \leq f-D z^{\prime}$ has no 0-1 solutions.

Corollary 11 Every split cut proof of $0^{T} x+0^{T} y+0^{T} z \leq-1$ from $A x+C z \leq e$ and $B y+D z \leq f$ has exponential length.

Dash [8, Lemma 5.7] proved that a branch-and-cut proof of (integer) infeasibility \mathcal{R} using lift-and-project cuts and Gomory-Chvátal cuts and branching on 0-1 variables can be transformed into a cutting plane proof of infeasibility \mathcal{S} with length $s+t$, where s and t are the number of cuts and branching decisions in \mathcal{R}, respectively. In this proof, every branching decision is replaced by a lift-and-project cut. One can easily obtain the following result using the proof technique for the result above.

Theorem 12 Let \mathcal{R} be a branch-and-cut proof of the fact that a polyhedron P has no integral solutions using s split cuts, and branching on 0-1 variables with t branching decisions. There is a split-cut proof showing P has no integral solutions with length $s+t$.

Corollary 13 Every branch-and-cut proof of (integer) infeasibility of $A x+C z \leq e$ and $B y+D z \leq f$ of the type described in Theorem 12 has exponential size.

The technique of deriving a polynomial size circuit from a proof of infeasibility as in the theorem above is called effective interpolation, and monotone interpolation if the circuit only uses monotone operations. It was proposed by Krajíček [13, 14] to establish lower bounds on the lengths of proofs in different proof systems. Razborov [21], and Bonet, Pitassi, and Raz [4], first used this idea to prove exponential lower bounds for some proof systems.

References

[1] E. Balas, Disjunctive programming, Annals of Discrete Mathematics 5 3-51 (1979).
[2] E. Balas, S. Ceria, and G. Cornuéjols, A lift-and-project cutting plane algorithm for mixed 0-1 programs, Mathematical Programming 58 295-324 (1993).
[3] N. Alon and R. Boppana, The monotone circuit complexity of Boolean functions, Combinatorica 7 1-22 (1987).
[4] M. Bonet, T. Pitassi, and R. Raz, Lower bounds for cutting planes proofs with small coefficients, Journal of Symbolic Logic 62 708-728 (1997).
[5] V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Mathematics 4 305-337 (1973).
[6] S. A. Cook and A. Haken, An exponential lower bound for the size of monotone real circuits, Journal of Computer and System Sciences 58 326-335 (1999).
[7] W. Cook, R. Kannan, A. J. Schrijver, Chvatal closures for mixed integer programming problems, Mathematical Programming 47 155-174 (1990).
[8] S. Dash, An exponential lower bound on the length of some classes of branch-and-cut proofs, Mathematics of Operations Research 30(3) 678-700 (2005).
[9] S. Dash, O. Günlük and A. Lodi. On the MIR closure of polyhedra. Manuscript (2006).
[10] R. E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin of the American Mathematical Society 64 275-278 (1958).
[11] Gomory, R. E. 1960. An algorithm for the mixed integer problem, RM-2597, The Rand Corporation.
[12] E. A. Hirsch, A. Kojevnikov, Several notes on the power of Gomory-Chvátal cuts, Electronic Colloquium on Computational Complexity Report TR03-012 (2003).
[13] J. Krajíček, Lower bounds to the size of constant-depth propositional proofs, Journal of Symbolic Logic 59 73-86 (1994).
[14] J. Krajíček, Interpolation theorems, lower bounds for proof systems and independence results for bounded arithmetic, Journal of Symbolic Logic 62 457-486 (1997).
[15] H. Marchand and L. Wolsey, Aggregation and mixed integer rounding to solve MIPs, Operations Research 49, 363-371 (2001).
[16] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, Wiley, New York (1988).
[17] G. Nemhauser and L. A. Wolsey, A recursive procedure to generate all cuts for 0-1 mixed integer programs, Mathematical Programming 46, 379-390 (1990).
[18] P. Pudlák, Lower bounds for resolution and cutting plane proofs and monotone computations, Journal of Symbolic Logic 62 981-998 (1997).
[19] P. Pudlák, On the complexity of propositional calculus, Sets and Proofs, Invited papers from Logic Colloquium 1997, Cambridge University Press, Cambridge, UK, 1999, pp. 197-218.
[20] A. A. Razborov, Lower bounds for the monotone complexity of some boolean functions, Dokladi Akademii Nauk SSSR 281 798-801 (1985) (in Russian). English translation in: Soviet Mathematics - Doklady 31 354-357 (1985).
[21] A. A. Razborov, Unprovability of lower bounds on the circuit size in certain fragments of bounded arithmetic, Izvestiiya of the RAN 59 201-224 (1995).
[22] L.A. Wolsey, Integer Programming, Wiley, New York (1998).

