
RC24089 (W0610-133) October 24, 2006
Computer Science

IBM Research Report

Partial Materialized Views

Gang Luo
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

1

Partial Materialized Views

Gang Luo

IBM T.J. Watson Research Center

luog@us.ibm.com

Abstract
Early access to partial query results is highly desirable

during exploration of massive data sets. However, it is

challenging to provide transactionally consistent,

immediate partial results without significantly increasing

queries’ run-to-completion time. To address this problem,

this paper proposes a partial materialized view method to

cache some of the most frequently accessed results rather

than all the possible results. Compared to traditional

materialized views, the proposed partial materialized

views do not require maintenance during insertion into

base relations, and have much smaller storage and

maintenance overhead. Upon the arrival of a query, the

RDBMS first searches the partial materialized view and

returns to the user the cached partial results. Since a large

portion of the partial materialized view is cached in

memory, this usually finishes within a millisecond. Then

the RDBMS continues to execute the query to find the

remaining results. The proposed techniques can also be

extended to rank query result tuples according to their

popularity, which addresses the information overflow

problem. The efficiency of our partial materialized view

method is evaluated through a simulation study, a

theoretical analysis, and an initial implementation in

PostgreSQL.

1. Introduction
Large data sets are common in practice, and the sizes of

these data sets are becoming larger and larger. As a result,

the capability of efficiently exploring massive data sets is

urgently needed [HHW97]. It has been widely recognized

that early access to partial query results can provide the

following benefits and greatly facilitate the exploration of

massive data sets:

Benefit 1: The RDBMS becomes more user-friendly.

Benefit 2: Early termination of those queries with

unsatisfactory partial results (e.g., if users would like to

refine them) can greatly reduce the load on the RDBMS

and significantly speed up the exploration process.

In practice, it is important to provide transactionally

consistent, immediate partial results without significantly

increasing queries’ run-to-completion time, while

statistical guarantee for the partial results is often not

necessary.

For example, consider a retailer’s customer service call

center. When a customer calls in, the call center operator

can offer him on-sale items that are of his interest. The

operator first obtains all the items Ip that the customer

recently purchased and then performs a query Q on two

relations. From the first relation, Q retrieves all the items

Ir that are related to at least one of the items in Ip. From

the second relation Rsale, Q finds all the items in Ir that are

currently on sale with a discount of at least p%, where p is

determined based on the loyalty of the customer. The

operator only needs to see partial results of Q in order to

start making offers to the customer and no statistical

guarantee is needed for these partial results. Nevertheless,

these partial results have to be obtained quickly (before

the customer hangs up). In commercial databases, a

common practice is to use a separate Rsale for each store or

each department. Consequently, many query templates are

needed to support this application.

Database researchers have spent much effort on

investigating techniques for providing partial query

results. However, none of the existing techniques is

completely satisfactory. These techniques fall into three

categories:

(1) Use non-blocking query processing to generate output

tuples continuously [CCD+03, HH99, HHW97,

IFF+99, RH02].

(2) Use special optimization techniques to find the first or

top-k output tuples quickly [BCG02, CK97, DR99,

IAE04].

(3) Use asynchronously updated replicas to provide

output tuples quickly [BAK+03, GLR+04].

Non-blocking query processing often increases a

query’s run-to-completion time significantly. During

exploration of massive data sets, knowing beforehand

whether or not the user wants to see all the query results is

often infeasible. Hence, it is difficult to decide in advance

whether traditional (blocking) query processing should be

used to optimize the query’s run-to-completion time, or

non-blocking query processing should be used to generate

output tuples continuously.

The optimization techniques for quickly finding the first

or top-k output tuples are based on traditional (blocking)

query processing and often require expensive I/Os. Hence,

it can take much time (e.g., a few minutes) to generate the

first or top-k output tuples. Moreover, in order to use these

optimization techniques, the user needs to specify k, which

can be difficult to know beforehand. If the user is not

satisfied with the first or top-k output tuples and would

like to see all the results, he has to re-execute the query.

This re-execution wastes system resources and is slower

than requiring all the results at the first time.

In general, there is a delay before the data in the master

copy is transferred to an asynchronously updated replica.

Thus, the query results provided by the replica can be

 2

transactionally inconsistent with the data in the master

copy (e.g., a tuple is deleted from the master copy but still

exists in the replica). This is unacceptable to many

applications.

In this paper, we propose a partial materialized view

(PMV) method that can provide immediate partial results

without increasing queries’ run-to-completion time much.

These partial results are transactionally consistent and

suitable for those applications that do not require

statistical guarantee. Our idea is to reuse previous “hot”

results. More specifically, from previous queries’

execution, some of the most frequently accessed results

are remembered in the so-called PMVs. When a new

query Q comes, the corresponding PMV is first searched

and the found partial results are returned to the user. This

often finishes within a millisecond, because a large portion

of PMV is cached in memory. Then Q is executed to find

the remaining results.

Compared to traditional materialized views (MVs) that

store all possible results, our PMVs only store some of the

most frequently accessed results and have smaller sizes.

This saves most of the storage and maintenance overhead

of traditional MVs while many queries can still have early

access to partial results. Since PMVs are not used to

provide all the query results, no maintenance of PMV is

needed during insertion into base relations. To ensure that

a large portion of PMVs is cached in memory and thus the

return of partial results is quick, the size of each PMV has

an upper bound. To increase our chance of using a PMV

to provide partial results with only a limited storage, we

continuously update the content in the PMV to adapt to

the current query pattern, and restrict the maximum

number of tuples that can be stored in the PMV for any

single, so-called basic condition part. Whenever possible,

both the maintenance and the update of PMVs are coupled

with query execution for free. We investigate the

performance of the PMV method with a simulation study,

a theoretical analysis, and an initial implementation in

PostgreSQL. Our results show that PMVs have minor

overhead and can often provide partial results almost

instantly. Also, the RDBMS can afford storing many

PMVs.

Our proposed techniques can be extended to solve the

frequently encountered information overflow problem

[CCH04], where users get overwhelmed by the large

number of result tuples returned from SQL queries. Our

method is to rank result tuples according to their

popularity. More specifically, some data structure DS is

used to record the frequencies of “basic” query selection

conditions. These frequencies approximate the popularity

of result tuples. When a new query comes, the information

in DS is used to rank result tuples. An advantage of this

ranking method is that as query pattern changes, the

information in DS gets continuously updated. Hence, the

ranking result always reflects the current status.

The rest of the paper is organized as follows. Section 2

discusses the limitations of traditional MV method.

Section 3 presents the details of the proposed PMV

method. Section 4 shows how to extend the proposed

techniques to deal with the information overflow problem.

Section 5 investigates the performance of the PMV

method. Finally, we discuss related work in Section 6 and

conclude in Section 7.

2. Limitations of Materialized Views
A traditional method of speeding up query execution is

to use MVs [GM99]. In this section, we first describe the

queries that will be considered by the PMV method and

then discuss the limitations of traditional MV method.

2.1 Query Specification
In this work, we consider the following type of queries

that are frequently encountered in practice (e.g., in form-

based applications) – queries coming from templates of

the following form:

qt: select Ls from R1, R2, …, Rn where Cjoin and Cselect;

Here, Ls is the select list. Cjoin includes both the join

condition among the 1≥n relations R1, R2, …, and Rn, and

the selection conditions on a single relation that have no

parameters (e.g., R1.b=100).
i

m

i
select

CC
1=

∧= , where m is a

number. Each Ci (mi ≤≤1) is a selection condition on a

single relation
ihR (nh

i
≤≤1). Ci takes one of the

following two disjunctive forms, which accept one or

more parameters:

Equality form:).(,
1

rikh

u

r
vaR

ii

i

=∨
=

.

Interval form:).(,,
1

rikhri

u

r
waRv

ii

i

<<∨
=

. The intervals

),(1,1, ii wv ,),(2,2, ii wv , …, and),(,, ii uiui wv are disjoint from

each other.

Different queries from the same template can have

different ui’s (mi ≤≤1). In Section 3.6, we will show how

to extend our techniques to handle other forms of queries

(e.g., aggregate queries, nested queries).

In the interval form case,
ii kh

aR . is not restricted to

being a numerical attribute. For example,
ii kh aR . can be a

string attribute. Also,
riv ,
 (

iur ≤≤1) can be -∞ while
riw ,

can be +∞, and “<” can be replaced by “≤”. In other

words, the intervals can be either bounded or unbounded,

open or closed. For ease of presentation, in the remainder

of this paper, we always write an interval as an open

bounded one, with the understanding that it can be closed

and/or unbounded if necessary.

select R.a, S.e from R, S

where R.c=S.d and (R.f=f1 or R.f=f2 or … or R.f=fh)

and (S.g=g1 or S.g=g2 or … or S.g=gk);

Figure 1. An example query template Eqt.

data on

disk

partial materialized

view in memory

query query

partial result
remaining result

user

 3

For a large subset of queries of the qt form, traditional

query processing cannot produce output tuples quickly and

continuously. In this work, we focus specifically on such

type of queries. These queries include both queries whose

query plans are not fully pipelined and some queries

whose query plans are fully pipelined. To illustrate the

latter case, let us consider the template Eqt in Figure 1.

Suppose that an index exists on each selection/join

attribute. The query plan fetches tuples from R using the

index on R.f. For each retrieved tuple tR, the index on S.d

is used to search S for matching tuples. If the selectivity of

S.g is low, the index on S.d needs to be searched many

times before the first query result tuple is obtained. This

can take a few seconds in a lightly loaded RDBMS, and a

few minutes in a heavily loaded RDBMS.

2.2 Limitations of Large Materialized Views

 create materialized view VM as

 select R.a, S.e, R.f, S.g from R, S where R.c=S.d;

Figure 2. An example large materialized view.

Existing techniques for automatically selecting MVs

from query traces are based on “merging,” where the

definition of each suggested MV is based on the common

part of some of the queries [ACN00, DDD+04, ZRL+04].

For example, for the template Eqt in Figure 1, existing

automatic MV selection tools may suggest a materialized

view VM as shown in Figure 2. (The search procedure in

VM needs attributes R.f and S.g.) As VM needs to keep all

the possible results for queries from Eqt, VM is fairly large.

In general, due to the extreme storage and maintenance

overhead of MVs [GM99], the RDBMS cannot keep a

MV for each frequently used query template.

2.3 Limitations of Small Materialized Views

For the template Eqt in Figure 1, instead of using the big

VM in Figure 2 for all possible (fi, gj) pairs, one might

wonder whether we could create multiple small MVs, one

for each “hot” (fi, gj) pair, and use them to speed up query

processing. These small MVs have the following

advantages. First, a hot (fi, gj) pair appears frequently in

queries from Eqt. Therefore, the RDBMS can use a small

MV that is built for a hot (fi, gj) pair to partially answer a

lot of queries from Eqt. Second, the combined size of these

small MVs is a small percentage of that of the big VM.

Thus, the combined storage and maintenance overhead of

these small MVs is smaller than that of VM. Also,

compared to VM, these small MVs can be accessed more

quickly, as they are more likely to be cached in memory.

However, existing techniques for answering queries

using MVs [CKP+95, GL01, Hal01, PL00] focus on

shortening queries’ run-to-completion time. In a large

number of cases, they cannot use these small MVs to

shorten the run-to-completion time of queries from the

template Eqt. This is because typically, a query from Eqt

contains both several hot (fi, gj) pairs and several cold (fi,

gj) pairs. During the process of obtaining the results

corresponding to the cold (fi, gj) pairs, the results

corresponding to the hot (fi, gj) pairs can be computed

inexpensively without using these small MVs.

For example, suppose that (R.f=1, S.g=2) is the only hot

(fi, gj) pair. We create a small materialized view VsM for

(R.f=1, S.g=2) as follows:
create materialized view VsM as select R.a, S.e

from R, S where R.c=S.d and R.f=1 and S.g=2;

Consider the following query that comes from the

template Eqt in Figure 1:
select R.a, S.e from R, S

where R.c=S.d and (R.f=1 or R.f=3)

and (S.g=2 or S.g=4);

In order to obtain the results corresponding to the cold pair

(R.f=1, S.g=4), tuple(s) tR of R where R.f=1 are fetched.

Similarly, to obtain the results corresponding to (R.f=3,

S.g=2), tuple(s) tS of S where S.g=2 are retrieved. After

fetching tR and tS, computing the (possibly in-memory)

join between them is not expensive and thus there is no

need to use VsM.

3. The Partial Materialized View Method
In this section, we present our PMV method for

providing partial query results, which can overcome the

limitations of traditional MV method. We first describe

the main ideas. Then we go into the details of the method.

All discussions in Section 2.3 about small MVs are from

the viewpoint of minimizing queries’ run-to-completion

time. The main goal of our PMV method is to minimize

the time of generating partial results. In this case, these

small MVs for the hot (fi, gj) pairs become useful, as they

can quickly provide partial results to a large number of

queries from the template Eqt.

For example, consider a query Q from the template Eqt

in Figure 1. Q contains both several hot (fi, gj) pairs and

several cold (fi, gj) pairs. The RDBMS answers Q in the

following way:

Step 1: These small MVs are used to quickly obtain the

partial results corresponding to the hot (fi, gj) pairs. These

partial results are returned to the user and recorded in a

temporary in-memory data structure DS.

Step 2: Q is executed to obtain all the results. For each

result tuple t, we check whether t∈∈∈∈DS. If so (i.e., the user

has already obtained t at Step 1), t is removed from DS and

not returned to the user. Otherwise if t∉∉∉∉DS, the RDBMS

knows that t corresponds to some cold (fi, gj) pair and

returns t to the user. In this way, each result tuple is

returned to the user once and only once. (Query results can

contain duplicate tuples. In the case that t∈∈∈∈DS, if t is not

removed from DS and later another tuple t'=t comes, the

RDBMS can end up returning fewer result tuples to the

user than what it should.)

The above method will slightly increase query Q’s run-

to-completion time, as neither Step 1 nor the checking at

Step 2 is needed in traditional query processing. However,

this extra overhead is minor compared to the two benefits

(user-friendliness, load reduction) of providing partial

results that are mentioned in the introduction. Thus, for

those applications of exploring massive data sets, it is

R.f

S.g

1 3

4

2

 4

worth to make this tradeoff. For the purpose of easy

management, all the small MVs are combined into a single

so-called PMV. This becomes our PMV method. More

details of our method are described in the following

subsections.

3.1 Definitions
We first introduce some definitions.

Partial materialized view. Consider a MV definition VM.

VM may or may not exist in the RDBMS. Any subset of VM

is a partial materialized view VPM. VM is the containing

materialized view of VPM. The base relations of VM are also

called the base relations of VPM. (Both MVs and PMVs are

treated as multi-sets and thus can contain duplicate tuples.)

For the materialized view VM in Figure 2, we show an

example partial materialized view VPM in Figure 3.

Figure 3. An example partial materialized view.

Condition part. Consider the query template qt in Section

2.1. A condition part is an m-tuple (d1, d2, …, dm), where

for each i (mi ≤≤1):

(1) If the selection condition Ci is of equality form, di is

of the form
ikh baR

ii
=. .

(2) If Ci is of interval form, di is of the form

ikhi caRb
ii

<< . .

A query result tuple t belongs to a condition part (d1, d2,

…, dm) if t satisfies all conditions di (mi ≤≤1). A

condition part (d1, d2, …, dm) is contained in another

condition part (d1', d2', …, dm') if whenever conditions di

(mi ≤≤1) are true, conditions di' (mi ≤≤1) are also true.

For each selection condition Ci (mi ≤≤1) that is of

interval form, let Ei denote the entire range of all possible

intervals in Ci (e.g.,),(∞+−∞=iE). We assume that the

RDBMS knows multiple “dividing” values that can divide

Ei into multiple non-overlapping “basic” intervals and

these basic intervals fully cover Ei. Each basic interval is

assigned a different id. The purpose of this division is

discretization so that the problem becomes more tractable.

The criterion for choosing dividing values is that the

resulting basic intervals can be used to differentiate hot

results from cold results.

In a large number of form-based applications, for each

selection condition Ci (mi ≤≤1) that is of interval form,

the user is provided with both a list of from values and a

list of to values. Each (from value, to value) pair chosen

by the user forms an interval),(
,, riri

wv , where
iur ≤≤1 . In

this case, these from values and to values can serve as

dividing values. In other cases, we assume that either the

person (e.g., DBA) who defines the PMV for the query

template will specify the dividing values, or the

continuous feature discretization technique [DKS95] in

machine learning can be used to automatically learn

dividing values from query traces.

Basic condition part. A condition part (d1, d2, …, dm) is a

basic condition part, if for each selection condition Ci

(mi ≤≤1) that is of interval form, di is of the form

ikhi caRb
ii

<< . , where (bi, ci) is a basic interval.

A basic condition part (d1, d2, …, dm) is stored in the

following way:

(1) If di is of the form
ikh baR

ii
=. , value bi is stored.

(2) If di is of the form
ikhi caRb

ii
<< . , where (bi, ci) is a

basic interval, the id of (bi, ci) is stored.

3.2 Organization of Partial Materialized Views
Consider a frequently used query template qt (see

Section 2.1). Suppose that the RDBMS cannot afford to

keep a materialized view VM=(select Ls' from R1, R2, …,

Rn where Cjoin). Here, Ls' is the expanded select list that

includes all the attributes in both Cselect and the original

select list Ls. (The search procedure in VM needs the

attributes in Cselect.)

We build a partial materialized view VPM for qt as

follows:
create partial materialized view VPM as subset of

select Ls' from R1, R2, …, Rn

where Cjoin with selection condition template Cselect;

VM is the containing MV of VPM. All the tuples in VPM

satisfy the condition Cjoin.

The person who defines VPM specifies an upper bound

UB for the size of VPM. This UB is used to constrain the

storage and maintenance overhead of VPM, and ensure that

a significant portion of VPM is cached in memory so that

VPM can be accessed quickly. Initially, VPM is empty. Our

goal is to use VPM to provide immediate partial results to

as many queries from the template qt as possible.

In the template qt, the original select list Ls is replaced

with the expanded select list Ls'. This is to let all the

attributes in Cselect appear in query result tuples. As will be

shown later, some result tuples are stored in VPM. The

attributes in Cselect are needed to find partial results in VPM.

When the RDBMS obtains a query result tuple, it only

returns the attributes in Ls to the user. Hence, the user still

receives the same answer, as if VPM did not exist and Ls in

qt had not been replaced by Ls'.

Figure 4. Data structure of a partial materialized view VPM.

Each tuple of VPM is composed of two parts: the

“conceptual” basic condition part bcp=(d1, d2, …, dm), and

attributes ats. ats is a query result tuple that includes all

the attributes in the expanded select list Ls', and belongs to

bcp. bcp is “conceptual” in the sense that it is not actually

stored in the tuple. Whenever needed, bcp is recovered

from ats. We build an index I on bcp. If m>1, I is a multi-

a e f g

1 2 1 7

1 2 1 7

7 8 3 9

d e g

4 2 7

5 2 7

6 8 9

a c f

1 4 1

1 5 1

7 6 3

relation S relation R
materialized

view VM

partial materialized

view VPM

a e f g

1 2 1 7

bcp=(f, g) a e f g

… … … … …

index I

on bcp

 5

attribute index. For example, for the template Eqt in Figure

1, Figure 4 shows the corresponding PMV.

Our goal is to use VPM to provide immediate partial

results to as many queries as possible. Hence, it is

preferable to have a large number of basic condition parts

stored in VPM. In general, many query result tuples can

belong to a single basic condition part, and it is not

desirable to flood VPM with all these tuples. Therefore, the

person who defines VPM specifies a constant F. For a basic

condition part bcp, the RDBMS stores at most F result

tuples (rather than all the possible result tuples) that

belong to bcp in VPM. This is different from the case of

traditional MVs, where a materialized view VM stores all

the result tuples that satisfy the definition of VM. Given the

storage limit UB of VPM, for a query Q, this F makes a

tradeoff between (a) the probability that VPM can provide

some partial results to Q, and (b) in the case that VPM

contains some partial results of Q, the number of partial

result tuples that VPM can provide to Q.

Let L denote the number of basic condition parts in VPM.

At denotes the average size of the tuples in VPM. We have

tB AFLU ××≤ . If L=10K, F=2, and At=50B, then the

size of VPM is no more than 1MB and thus the memory can

hold many PMVs. As will be shown in Section 5.1,

L=10K can lead to a hit probability of 95%.

The design principles of our algorithm are as follows.

The storage budget UB is limited. Hence, VPM should store

hot basic condition parts. (A hot basic condition part

appears in a large number of queries.) This is to maximize

the chance that VPM can provide partial results to a query.

The query pattern can change from time to time. That is,

the basic condition parts that are hot can keep changing.

We want to automatically keep track of this change and

update VPM accordingly. Hence, all the basic condition

parts in VPM are managed by the CLOCK algorithm

[SGG02]: when VPM is full, the RDBMS replaces the basic

condition parts in VPM that are no longer hot with the

currently hot basic condition parts.

VPM is initially empty. Before VPM becomes full, content

is filled into VPM. When VPM becomes full, the content in

VPM is updated as query pattern changes. Both the fill in

process and the update process of VPM should be as

efficient as possible. Therefore, in the case that there is no

change to the base relations of VPM, the RDBMS only fills

content into VPM (if VPM is not full) or changes the content

of VPM (if VPM is full) for free when it obtains result tuples

from query execution. There is no separate process for

examining the base relations of VPM.

Similarly, in the case that the base relations of VPM get

changed, the maintenance of VPM should be as efficient as

possible. Hence, whenever possible, the RDBMS couples

the maintenance of VPM with the execution of subsequent

queries for free. Lastly, the use of VPM needs to have

minor influence on queries’ run-to-completion time.

3.3 Handling Queries

When a query Q comes, the RDBMS performs the

following operations:

Operation O1: The Cselect of Q is broken into one or more

non-overlapping condition parts. Each condition part is

either a basic condition part itself or contained in a basic

condition part.

Operation O2: For each generated condition part, the

RDBMS checks whether there is a corresponding entry in

VPM. If so, the related tuples in VPM are returned to the user

as partial results. In this way, the RDBMS finds all the

result tuples of Q that are in VPM.

Operation O3: Q is executed to obtain all the result tuples.

For those tuples that the user does not receive in Operation

O2, the RDBMS returns them to the user now. Also, the

content in VPM is updated to reflect the observed change in

the hot basic condition parts.

Operation O1: Cselect ⇒⇒⇒⇒ Condition Parts

i

m

i
select CC

1=
∧= . For each i (mi ≤≤1), there are two

possible cases:

(1) Ci is of equality form).(,
1

rikh

u

r
vaR

ii

i

=∨
=

. Let set

}1|.{ , irikhi urvaRS
ii

≤≤== .

(2) Ci is of interval form).(,,
1

rikhri

u

r
waRv

ii

i

<<∨
=

. For each r

(1≤r≤ui), the RDBMS finds all the basic intervals
riJ ,

that overlap with the interval),(
,, riri

wv . Let set

U
i

ii

u

r

ribbririkhi JIIwvaRS
1

,,, }|),(.{
=

∈∩∈= .

Cselect is broken into a number (1≥h) of “non-overlapping”

condition parts
}1|{

1

hjcpS j

m

i

i ≤≤=∏
=

. For each condition

part cpj (hj ≤≤1), there are two possible cases:

(1) cpj is a basic condition part bcpj itself.

(2) cpj is contained in a basic condition part bcpj.

In either case, bcpj is called the containing basic condition

part of cpj.

Suppose that in the template Eqt in Figure 1, the

selection condition on S.g is of interval form rather than of

equality form. Figure 5 shows an example of breaking the

Cselect of a query from Eqt into condition parts. The outer

rectangle represents the entire query space, which is

partitioned into non-overlapping basic condition parts as

shown by the dashed lines. The gray rectangle represents

the query. The Cselect of this query is broken into nine

condition parts. Each condition part is represented by the

intersection of the gray rectangle and a dashed rectangle

that is filled with either upward or downward diagonals.

Figure 5. An example of breaking the Cselect of a query

from Eqt into condition parts.

Operation O2: Returning Partial Results

R.f

S.g

 6

A temporary in-memory data structure DS is kept. For

each condition part cpj (hj ≤≤1) generated in Operation

O1, a counter cj is kept for its containing basic condition

part bcpj. Initially, DS is empty and cj=0 (hj ≤≤1). For

each cpj (hj ≤≤1), the index I on bcp is used to check

whether cpj’s containing basic condition part bcpj exists in

VPM. There are two possible cases:

(1) bcpj exists in VPM. cj is set to be the number of tuples

in VPM that belong to bcpj. For each tuple t in VPM that

belongs to bcpj, the RDBMS checks whether t

belongs to cpj. This is equivalent to checking whether

t satisfies the Cselect of query Q. If cpj is a basic

condition part itself, t must belong to cpj. In contrast,

if cpj is contained in a basic condition part, t may or

may not belong to cpj. All the tuples in VPM satisfy the

condition Cjoin. Hence, if t satisfies Cselect, t is returned

to the user as a partial result, and recorded in DS.

(2) bcpj does not exist in VPM. Nothing is done in this

case.

Operation O3: Returning Remaining Result Tuples and

Updating Partial Materialized View

Query Q is executed to obtain all the result tuples. For

each such result tuple t, the data structure DS is checked to

see whether the user has already obtained t in Operation

O2. If t∈DS, t is removed from DS. If t∉DS, the RDBMS

performs the following operations:

(1) Return t to the user.

(2) Find the containing basic condition part bcpj

(hj ≤≤1) that t belongs to. For each basic condition

part bcp, at most F query result tuples that belong to

bcp can be stored in VPM. If the counter cj<F, t is

added into VPM and cj is incremented by 1. This can

require purging some basic condition part (and the

associated query result tuples) from VPM if VPM has

already been full. This case of cj<F is possible, e.g.,

as VPM is not maintained immediately during insertion

into the base relations of VPM (see Section 3.4). In the

case that cj=0, a new basic condition part bcpj is

added into VPM.

After all the result tuples have been processed, the data

structure DS must be empty. DS is freed.

3.4 Maintaining Partial Materialized Views

When the base relations of VPM get changed, VPM is

maintained in a different way from traditional MVs. This

is because VPM is only a subset of its containing

materialized view VM. VPM is not used to provide all the

query results. As long as VPM does not provide incorrect

partial results, there is no need to change VPM

immediately. Rather, the maintenance of VPM is deferred

to when the RDBMS obtains result tuples from the

execution of future queries for free. This minimizes the

influence of VPM on transactions that change the base

relations of VPM.

Upon a change ∆Ri to a base relation Ri (ni ≤≤1) of

VPM, there are three possible cases:

(1) The change is an insert. This insert may generate new

query result tuples. However, existing tuples in VPM

are not affected by this insert. Hence, VPM is not

maintained immediately.

(2) The change is a delete. The join between ∆Ri and the

other base relations Rj (nj ≤≤1 , ij ≠) of VPM is

computed. For each join result tuple t, the index I on

bcp is used to check whether t∈VPM. (t must exist in

VPM’s containing MV VM. However, since VPM⊆VM, t

may or may not exist in VPM.) If t∈VPM, t is removed

from VPM.

(3) The change is an update. Recall that all the attributes

in Cselect appear in the expanded select list Ls'. If this

update does not change the attributes of Ri that appear

in either Ls' or the condition Cjoin, it will not affect the

existing tuples in VPM. Hence, there is no need to

maintain VPM. (Deletion influences all the attributes of

Ri and thus does not have this optimization.)

Otherwise we proceed in a way similar to that in the

case of deletion.

3.5 Refinements

In order to improve performance, we present several

refinements to our approach.

Using Better Cache Management Method

Consider a basic condition part bcp that exists in the

partial materialized view VPM. Tuples in VPM often have

either a large number of attributes or some long attributes

(e.g., detailed description). As a result, the combined size

of all the tuples in VPM that belong to bcp is usually much

larger than the size of bcp. If we treat bcp as the page id,

and all the tuples in VPM that belong to bcp as the page,

then VPM looks much like a buffer pool. Hence, instead of

using the CLOCK algorithm, the RDBMS can use other

better buffer pool management algorithms (e.g., 2Q

[JS94]) to manage VPM. This will increase the probability

that VPM can provide partial results to queries from the

template qt. The experimental section 5.1 gives a

performance comparison between CLOCK and 2Q.

Speeding Up Partial Materialized View Maintenance
To speed up the maintenance of the partial materialized

view VPM when some base relation of VPM gets changed,

we can build indices on some attributes of VPM. For

example, suppose that tuple t is deleted from base relation

Ri (ni ≤≤1) of VPM. Assume that the index I on bcp is the

only index on VPM. Then in general, as mentioned in

Section 3.4, in order to see whether any tuple in VPM is

affected by this delete, the RDBMS needs to first compute

the join between t and the other base relations Rj

(nj ≤≤1 , ij ≠) of VPM. This join computation can be costly.

Now suppose that attribute Ri.a exists in VPM and an

index Ia is built on Ri.a. Ia is first searched to see whether

there are tuples t' in VPM such that t'.a=t.a. If no such tuple

exists, there is no need to maintain VPM. Otherwise the

RDBMS deletes all the tuples t' in VPM such that t'.a=t.a.

 7

In either case, the expensive join between t and the other

base relations Rj (nj ≤≤1 , ij ≠) is waived. In the latter

case, more tuples can be deleted from VPM than necessary.

However, this is acceptable, as VPM only needs to maintain

the property that it is a subset of its containing

materialized view VM. Also, deleting tuples from the

(possibly in-memory) VPM is often cheaper than computing

the join between t and Rj’s (nj ≤≤1 , ij ≠). The RDBMS

can get back (some of) the unnecessarily deleted tuples

from the execution of subsequent queries for free.

Ignoring Queries Whose Cselect is Complex

In Operation O1, the Cselect of a query is broken into a

number (1≥h) of condition parts. It is not desirable to use

the PMV method to handle queries whose Cselect can be

broken into too many condition parts, as it can be costly to

check all these condition parts. Hence, we have a

threshold ht. The PMV method is not used to handle those

queries whose h>ht. As will be shown in Section 5.2

below, ht can be quite large.

3.6 Discussions and Summary of Advantages
Like traditional MVs, the standard locking protocol is

used on PMVs to ensure serializability. When a query Q

reads a partial materialized view VPM in Operation O2, Q

puts an S lock on VPM. Then between Operations O2 and

O3, no other transaction can change the correct (VPM) read

result of Q by updating some base relation, as that would

require updating VPM with the acquisition of an X lock on

VPM. Hence, Q would not have read anomaly.

With minor changes in our algorithm, PMVs can be

used to handle queries with distinct clauses. In Operation

O2, only distinct tuples in the partial results obtained from

the PMV are returned to the user and stored in the data

structure DS. In Operation O3, all distinct result tuples are

first obtained from query execution. Then only those

tuples that are not in DS are returned to the user.

The above discussion focuses on non-aggregate queries,

which are common these days. For example, both the call

center scenario in the introduction and deep analytical

tasks in real-time data warehouses require detailed data.

With minor changes in the user interface, PMVs can also

be used to handle aggregate queries (e.g., group by) or

queries with order by clauses. In Operation O2, the partial

results obtained from the PMV are first aggregated or

sorted and then presented to the user as intermediate

results, with the user’s understanding that (a) these

intermediate results are used to get a feeling of the final

results and (b) the final aggregate values or order sequence

can be different. In Operation O3, after all the results are

obtained, the intermediate results obtained in O2 are

invalidated and the final results are presented to the user.

In certain cases, with some extension, PMVs can be

used to handle nested queries. For example, consider a

two-level nested query. The subquery appears in the where

clause of the main query after an EXISTS operator.

Suppose that we can quickly obtain tuples from the main

query but checking the EXISTS condition is time-

consuming. In this case, a PMV can be used to quickly

generate partial results of the subquery. Then for some

tuples from the main query, the process of checking the

EXISTS condition can be sped up. Consequently, we can

rapidly produce some partial results for the entire query.

The partial materialized view VPM has the following

advantages:

(1) VPM has small storage and maintenance overhead.

(2) VPM can provide immediate partial results to a large

number of queries from the template qt.

(3) A large portion of provided partial results are hot

results – they are frequently accessed by other queries

from qt. This is desirable for those applications where

users care more about hot results than cold results.

(For applications that users want to see random partial

results, this can be a disadvantage. However, as

shown in [CMN99], in general it is difficult to

provide random partial results.)

(4) VPM has minor influence on queries’ run-to-

completion time.

The proposed techniques are not limited to providing

early access to partial results. In the next section, we

demonstrate the generality of our techniques by applying

them to the problem of ranking query result tuples

according to popularity.

4. Ranking Query Result Tuples
During exploration of massive data sets, users often get

overwhelmed by the large number of result tuples returned

from SQL queries, also known as the information

overflow problem [CCH04]. In this case, unless an order

by clause is specified in the SQL query, it is desirable to

rank result tuples according to their popularity (i.e., the

frequencies that users query them). For example, both

AOL’s Shopping Search & Browse tool [AOL03] and the

Direct Hit search engine [Fag02] rank search results based

on popularity. As a second example, [Joa02, Zwi03] show

that by considering popularity in the search result ranking

algorithm, the performance of search engines is improved.

(An RDBMS can be regarded as a search engine in the

sense that both RDBMS and search engine do search.) In

fact, due to lack of system support, a large number of web

sites implement their own methods of ranking SQL query

result tuples according to popularity [AOL03].

4.1 Overview of Our Approach
We propose a new method for ranking query result

tuples according to their popularity. The main idea of our

method is as follows. SQL queries do associative search

(search by value). For all tuples with the same selection

attribute values, a SQL query selects either all of them or

none of them. That is, all result tuples with the same

selection attribute values have the same popularity.

Therefore, popularity could be tracked based on selection

attribute values. To reduce the space overhead, popularity

is tracked continuously based on basic condition parts. To

minimize the burden of ranking result tuples on the

RDBMS, the data structure that is used for tracking

 8

popularity is kept in memory. Hence, the exact popularity

cannot be tracked for all the possible basic condition parts.

Rather, approximate popularity is tracked.

In the remainder of Section 4, we focus on queries

coming from the same template qt in Section 2.1.

Irrespective of query execution time, as long as a query

returns a large number of result tuples, it is desirable to

rank these tuples.

4.2 Ranking Method

Suppose that we want to rank result tuples for queries

from the template qt. As will be shown later, in the

ranking process, the attributes in Cselect are needed to

decide which result tuple belongs to which basic condition

part. Therefore, as in Section 3, in qt, the original select

list Ls is replaced with the expanded select list Ls'. After all

the result tuples have been ranked, their attributes in Ls are

returned to the user. In this way, the user still receives the

same answer (but ranked by popularity), as if Ls in qt had

not been replaced by Ls'.

The RDBMS builds an in-memory data structure DS

that is a table. The number of rows in DS has an upper

bound UB. This UB is specified by the person who requires

ranking result tuples for queries from the template qt. The

criterion for choosing UB is to ensure that DS can be kept

in memory all the time (or at least most of the time). Each

row of DS is of the form (basic condition part bcp, count),

where count represents the popularity of bcp. We build an

index on bcp. Initially, DS is empty.

The same techniques in Section 3 are used to divide the

entire query space into basic condition parts. The data

structure DS is used to continuously keep track of the

(approximate) popularity of basic condition parts. If each

basic condition part is treated as a value, this is the hot list

query problem that is studied in [GM98]. [GM98] gives

two solutions to this problem: the concise sample method

and the counting sample method. The first solution has

lower overhead while the second solution is more

accurate. Either solution can be used for our purpose.

When a new query Q comes, the same techniques in

Section 3.3 are used to break the Cselect of Q into one or

more condition parts and obtain the corresponding

containing basic condition parts. The concise/counting

sample method in [GM98] is used to update the data

structure DS accordingly. Then Q is executed to obtain all

the result tuples. For each such result tuple t, the RDBMS

finds the containing basic condition part bcp that t belongs

to. If bcp exists in DS, the count of bcp in DS is used to

approximate the popularity of t. Otherwise the popularity

of t is approximated as zero. Finally, all the result tuples of

Q are ranked according to their (approximate) popularity.

The core of our ranking method is the concise/counting

sample method. The interested reader can find the

performance study of both sample methods in [GM98].

5. Performance Evaluation of Partial

Materialized View

The performance of our PMV method has been

evaluated from three perspectives:

(1) The probability that a PMV can provide partial results

to a query.

(2) The influence of the PMV method on queries’ run-to-

completion time.

(3) The maintenance overhead of a PMV when its base

relations get changed.

5.1 Probability of Being Useful

We first perform a simulation study to show that in a

large number of cases, PMVs can provide partial results to

a query. Consider a read-only database. We focus on those

queries that come from the same template qt. Assume that

a partial materialized view VPM is built for qt. In Operation

O1, the Cselect of each query is broken into the same

number 1≥h of condition parts, where each condition part

is a basic condition part itself. The entire query space

contains 1M basic condition parts bcpi (Mi 11 ≤≤). For

each basic condition part, the number of query result

tuples that belong to it is greater than F. As a result, for

each basic condition part that exists in VPM, F query result

tuples are stored in VPM. For each basic condition part in

the Cselect of a query, the probability that it is bcpi

(Mi 11 ≤≤) is ei. All the ei’s (Mi 11 ≤≤) follow a Zipfian

distribution with parameter α. That is, αiei /1∝ .

We compare the following two methods of managing all

the basic condition parts in VPM:

(1) The CLOCK algorithm. VPM is a queue with L entries

that is managed by the CLOCK algorithm. Each entry

can store one basic condition part bcp and F query

result tuples that belong to bcp.

(2) A simplified version of the 2Q algorithm [JS94]. VPM

is composed of two queues: Am and A1. Am has N

entries and is managed by the CLOCK algorithm.

Each entry can store one basic condition part bcp and

F query result tuples that belong to bcp. A1 has

N'=50%×N entries and is a FIFO queue. Each entry

stores one basic condition part. Upon the first time

that a basic condition part bcp appears in the Cselect of

a query, bcp is put into A1. If during its stay in A1,

bcp appears again in the Cselect of another query, both

bcp and F query result tuples that belong to bcp are

moved to Am. Am is used to provide partial results to

a query.

We assume that the storage requirement of a basic

condition part is 4% of that of F query result tuples. Thus,

given the same storage budget UB of VPM for both the

CLOCK and the 2Q algorithms, we have L=1.02×N.

The purpose of the comparison between the CLOCK

algorithm and the 2Q algorithm is to show that in a large

number of cases, the simple CLOCK algorithm performs

well. Also, CLOCK is not the best algorithm for managing

all the basic condition parts in VPM. In many cases, 2Q

performs better than CLOCK. We leave it as an interesting

area for future work to identify other algorithms that

perform better than both CLOCK and 2Q.

 9

Figure 6. Hit probability (number of

bcps experiment).

50%

60%

70%

80%

90%

100%

1 2 3 4 5
h

h
it

 p
ro

b
ab

il
it

y

2Q, alpha=1.07

CLOCK, alpha=1.07

2Q, alpha=1.01

CLOCK, alpha=1.01

Figure 7. Hit probability (PMV size

experiment).

70%

75%

80%

85%

90%

95%

100%

10000 20000 30000

N

h
it

 p
ro

b
a
b

il
it

y

2Q

CLOCK

We performed the following two experiments:

Number of bcps experiment. We fixed N=20K and

tested two cases:

(i) α=1.07. This is the high skew case. 10% of all the

1M basic condition parts get 90% of the chance of

appearing in the Cselect of a query.

(ii) α=1.01. This is the moderate skew case. 21% of all

the 1M basic condition parts get 90% of the chance of

appearing in the Cselect of a query.

In either case, we varied h from 1 to 5. Recall that h is the

number of basic condition parts in the Cselect of a query.

PMV size experiment. We fixed α=1.07 and h=2. We

varied N from 10K to 30K. Recall that N determines the

size of VPM.

The hit probability is defined as the probability that VPM

can provide some partial results to a query Q. That is, if

any of the h basic condition parts in the Cselect of Q exists

in VPM, Q is “hit.” This definition is different from that in

traditional caching [JS94], as our case is about “partial

hit” while traditional caching is about “full hit.” In each

test case, 1M queries were used to “warm up” VPM. Then

the hit probability was reported over the next 1M queries.

(We also tested other numbers of “warm up” queries. The

results were similar and thus omitted.)

For the number of bcps experiment, Figure 6 shows the

hit probability results. The y-axis starts from 50%. h is the

number of basic condition parts in the Cselect of a query Q.

If any basic condition part in the Cselect of Q is “hit,” Q is

“hit.” Hence, the hit probability approaches 100% quickly

as h increases. The larger the α, the more queries focus on

a few basic condition parts and thus the more likely these

basic condition parts are cached in VPM. Therefore, for a

fixed algorithm (either CLOCK or 2Q) and a fixed h, the

hit probability increases with α. For a fixed α and a fixed

h, 2Q performs better than CLOCK, which is consistent

with the results in [JS94].

Figure 7 shows the hit probability results from the PMV

size experiment. The y-axis starts from 70%. The larger

the N, the more basic condition parts and their

corresponding query result tuples can be stored in VPM,

and thus the more likely VPM can provide some partial

results to a query. Therefore, the hit probability

approaches 100% quickly as N increases. Again, for a

fixed N, 2Q performs better than CLOCK.

5.2 Influence on Queries’ Run-to-completion Time

In order to show that the PMV method has negligible

influence on queries’ run-to-completion time, we did a

prototype implementation of our techniques in

PostgreSQL Version 7.3.4 [Pos05] for read-only database.

Our measurements were performed with the PostgreSQL

client application and server running on a computer with

one 2.2GHz processor, 512MB main memory, one 40GB

disk, and running the Microsoft Windows XP operating

system. The default setting of PostgreSQL was used,

where the buffer pool size is 1,000 pages. (We also tested

larger buffer pool sizes. The results were similar and thus

omitted.)

The relations used for the experiments followed the

schema of the standard TPC-R Benchmark relations

[TPC]:
customer (custkey, nationkey, …),

orders (orderkey, custkey, orderdate, …),

lineitem (orderkey, suppkey, …).

Table 1. Test data set.

 number of tuples total size

customer 0.15×s M 23×s MB

orders 1.5×s M 114×s MB

lineitem 6×s M 755×s MB

s is the scale factor of the database. In our experiments,

on average, each customer tuple matches ten orders tuples

on the attribute custkey. Each orders tuple matches 4

lineitem tuples on the attribute orderkey.

We used the following two query templates:

Template T1: Find lineitems whose parts were provided

by certain suppliers and sold on certain days.
select * from orders o, lineitem l where o.orderkey=l.orderkey

and (o.orderdate=d1 or … or o.orderdate=de)

and (l.suppkey=s1 or … or l.suppkey=sf);

Template T2: Find lineitems whose parts were provided

by certain suppliers and sold to certain customers on

certain days.
select * from orders o, lineitem l, customer c

where o.orderkey=l.orderkey and o.custkey=c.custkey

and (o.orderdate=d1 or … or o.orderdate=de)

and (l.suppkey=s1 or … or l.suppkey=sf)

and (c.nationkey=n1 or … or c.nationkey=ng);

We built an index on each selection/join attribute. Before

we ran queries, we ran the PostgreSQL statistics collection

program on all the relations. For either template, due to

the low selectivity of the selection attributes, the query

plan is not fully pipelined and thus traditional query

execution cannot provide any result until it almost

finishes.

For the template T1, each basic condition part is a 2-

tuple (di, sj). For the template T2, each basic condition part

is a 3-tuple (di, sj, nk). We built two PMVs, one for T1 and

the other for T2. Either PMV contains 20K entries. Each

entry can store one basic condition part bcp and F query

result tuples that belong to bcp. (For each basic condition

part, the number of query result tuples that belong to it is

greater than F.)

For the template T1, its combination factor is defined as

h=e×f. For the template T2, its combination factor is

defined as h=e×f×g. In Operation O1, the Cselect of each

query from T1/T2 is broken into the same number (h) of

condition parts, where each condition part is a basic

 10

condition part itself, and one of these h basic condition

parts exists in the PMV. We performed three experiments.

Each experiment was repeated a large number of times (a

large number of runs). All the reported numbers are

averaged over these runs.

Number of Tuples
In this experiment, we fixed h=4 and s=1. We varied F,

the number of query result tuples stored in each entry of

the PMV, from 1 to 5.

Figure 8 shows the

impact of F on the

overhead of our

techniques. For a fixed

F, the overhead of our

techniques for the

template T2 is greater

than that for the

template T1. This is

because T2 is more

complex than T1: T2 joins three relations, while T1 joins

two relations. As a result, the basic condition parts

generated from T2 are more complex than those generated

from T1. Also, the query result tuples of T2 are longer than

that of T1. Recall that in our PMV method, both basic

condition parts and query result tuples are checked.

The overhead of our techniques increases with F. This is

easy to understand, as for each entry of the PMV, F query

result tuples stored there are checked.

Combination Factor

In this experiment,

we fixed F=3 and s=1.

We varied the

combination factor h

from 1 to 10. Figure 9

shows the impact of h

on the overhead of our

techniques. The larger

the h, the more basic

condition parts a query

generated. Then the

RDBMS needs to spend more time on dealing with all

these basic condition parts. As a result, the overhead of

our techniques increases with h. Again, for a fixed h, the

overhead of our techniques for the template T2 is greater

than that for the template T1.

Database Scale Factor
In this experiment, we fixed h=4 and F=3. We varied

the database scale factor s from 0.5 to 2. The purpose of

this experiment is to show that our techniques have

negligible influence on queries’ run-to-completion time.

 Figure 10 shows both the overhead of our techniques

and the query execution time. The lines for “PMV T1/T2”

represent the overhead of our techniques. The lines for

“execute T1/T2” represent the query execution time. The y-

axis uses logarithmic scale.

Our techniques

examine query result

tuples rather than the

data set. Also, our

techniques mainly

perform fast in-

memory operations

(recall that a

significant portion of

the PMV is cached in

memory). Hence, compared to the query execution time,

the overhead of our techniques is more than five orders of

magnitude smaller. Since the cost of Operations O1 and O2

is less than the overhead of our techniques, the RDBMS

can use the PMV to provide partial query results within a

millisecond.

5.3 Maintenance Overhead

We use an analytical model to gain insight into the

maintenance overhead of PMVs vs. MVs when their base

relations get changed. A similar analytical model for MV

maintenance has been validated in a commercial RDBMS

(NCR Teradata) in [LNE+03]. The goal of this model is

not to accurately predict exact performance numbers in

specific scenarios. Rather, it is to identify and explore

some of the main trends that dominate in the PMV

method. (PostgreSQL currently does not support MVs. As

a result, we were not able to compare the actual

maintenance overhead of PMVs vs. MVs in PostgreSQL.)

Consider the template in Figure 1 and its corresponding

partial materialized view VPM. The materialized view VM

in Figure 2 is the containing MV of VPM. The maintenance

overhead of VM and VPM is compared. We make the

following simplifying assumptions in this model:

(1) VPM has an index Ia on R.a. VM has an index. Relation

R (S) has an index IR (IS) on the join attribute. All the

indices are non-clustered.

(2) In a single transaction T, p×|∆R| tuples are inserted

into R and (1-p)×|∆R| tuples are deleted from R.

These |∆R| tuples are uniformly distributed on the

join attribute. For each tuple tR, there are M matching

tuples tS in S that satisfy tR.c=tS.d. Index nested loops

is used for the join with S.

(3) The overhead of searching the index IS once is a

constant SEARCH. If M tuples tS of S are found to

match a tuple tR through index search, the overhead of

first fetching these M tuples tS and then joining them

with tR is M×FETCH.

(4) The overhead of inserting a tuple into VM is

INSERTVM. The overhead of deleting a tuple from VM

is DELETEVM. The overhead of searching the index Ia

on VPM once is a constant SEARCH.

(5) For each tuple tR that is to be removed from R, with

probability q, no tuple exists in VPM that has the same

a attribute value as tR and thus there is no need to

maintain VPM. With probability 1-q, one or more

tuples exist in VPM that have the same a attribute value

Figure 8. Overhead of our techniques

(number of tuples experiment).

0

0.00001

0.00002

0.00003

0.00004

0.00005

1 2 3 4 5

F

o
v

e
rh

e
a
d

 (
se

c
o

n
d

)

T 1

T 2

Figure 9. O verhead of our techniques

(combination factor experiment).

0

0.00002

0.00004

0.00006

0.00008

1 2 3 4 5 6 7 8 9 10

h

o
v

e
rh

ea
d

 (
se

co
n

d
)

T1

T2

Figure 10. Query exe cution time vs. overhead of

our techniques (database scale factor experiment).

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0.5 1 1.5 2
s

ex
e

c
u

ti
o

n
 t

im
e

 o
r

o
v

e
rh

e
a

d
 (

se
c

o
n

d
)

execute T1

PMV T1

execute T2

PMV T2

 11

Figure 11. TW for transaction T .

1

10

100

1000

10000

0% 20% 40% 60% 80% 100%

p

T
W

 i
n

 I
/O

s

MV

PMV

Figure 12. Speedup ratio gained by the

partial material ized view method.

0

100

200

300

400

500

600

0% 20% 40% 60% 80% 100%

p

sp
e
ed

u
p

 r
at

io

as tR. Removing these tuples from VPM has overhead

DELETEVPM.

For each tuple tR, the total workload TW, which is

defined as the total work done, is used as the cost metric.

For both VM and VPM, the same updates must be performed

on base relation R. Because of this, our model omits the

cost of these updates and focuses on the maintenance cost

of VM/VPM. The total workload for transaction T is |∆R|

times the average TW for a tuple tR.

 We first consider the materialized view VM. For each

tuple tR, there are two possible cases:

(1) With probability p, tR is inserted into R. In this case:

(a) Searching the index IS once has overhead

SEARCH. (b) Fetching the M matching tuples tS of S

and then joining them with tR has overhead

M×FETCH. (c) M join result tuples are obtained.

Inserting them into VM has overhead M×INSERTVM.

Thus the total workload TW for tR is

SEARCH+M×FETCH+M×INSERTVM.

(2) With probability 1-p, tR is removed from R. Compared

to the case of insertion, the M join result tuples needs

to be deleted (rather than inserted) from VM, which

has overhead M×DELETEVM. Thus the TW for tR is

SEARCH+M×FETCH+M×DELETEVM.

So for VM, the average total workload TW for each tR is

SEARCH+M×FETCH+M×[p×INSERTVM+(1-p)×DELETEVM].

Now we consider the partial materialized view VPM. For

each tuple tR, there are two possible cases:

(1) With probability p, tR is inserted into R. In this case,

there is no need to maintain VPM. The total workload

TW for tR is 0.

(2) With probability 1-p, tR is removed from R. In this

case (see Section 3.5): (a) The overhead of searching

the index Ia on VPM once is SEARCH. (b) With

probability 1-q, one or more tuples with the same a

attribute value as tR are found in VPM. Removing these

tuples from VPM has overhead DELETEVPM.

So for VPM, the average total workload TW for each tR is

(1-p)×[SEARCH+(1-q)×DELETEVPM].

In the following, we assume that SEARCH takes 0.02

I/O. FETCH takes one I/O. INSERTVM takes 0.02 I/O (in-

memory append). (A page can contain a large number of

tuples. Hence, the average logging overhead for inserting

a tuple into VM is a small percentage of one I/O.)

DELETEVM takes two I/Os (one read plus one write).

DELETEVPM takes 0.03 I/O (a significant portion of VPM is

cached in memory). Our conclusion would remain

unchanged by small variations in these assumptions.

Setting q=95%, M=1, and |∆R|=1,000, we present in

Figures 11 and 12 the resulting performance of both the

MV method and the PMV method. Figure 11 shows the

total workload for transaction T. The y-axis uses

logarithmic scale. The maintenance of VPM mainly

performs cheap in-memory operations, while the

maintenance of VM requires a large number of expensive

I/Os. Hence, for a fixed percentage of insertion p,

maintaining VPM is at least two orders of magnitude

cheaper than maintaining VM.

Inserting a tuple into VM is less expensive than deleting

a tuple from VM. Also, there is no need to maintain VPM in

the presence of insertion into base relation R. As a result,

both the maintenance overhead of VM and the maintenance

overhead of VPM decrease as p increases. When p=100%,

the maintenance overhead of VPM is 0. However, this

cannot be shown in Figure 11, as the y-axis is on

logarithmic scale.

Figure 12 shows the speedup ratio gained by

maintaining VPM over maintaining VM. This speedup ratio

increases with the percentage of insertion p, as there is no

need to maintain VPM during insertion into base relation R.

We can use the techniques in [LNE+03] to extend the

above analytical model so that it can handle the situation

that indices are clustered, and/or transaction T is large

enough for hash/sort-merge join to become the join

algorithm of choice for the join with base relation S. Also,

it is straightforward to apply the above analytical model to

the situation of a (partial) MV defined on multiple base

relations, and/or T contains updates. In either case,

experiments with the extended model did not provide any

insight not already given by the above two-relation model,

so we omit them here.

6. Related Work
Partial Materialized Views

To facilitate exploration of massive data sets, [HH99,

HHW97] proposed using online aggregation to return

approximate answers to the user immediately after a query

is submitted to the RDBMS. Online aggregation focuses

on aggregate queries. In contrast, our PMV method works

for both aggregate and non-aggregate queries.

[AC99, BCG01] proposed building histograms “for

free” by analyzing query results rather than checking the

relation. In our case, if base relations do not change, the

RDBMS both fills content into and updates PMVs “for

free” by analyzing query results.

[SS95, Sto89] use partial indices to reduce index

maintenance overhead. Upon an insertion into a relation R,

the partial index Ip on R needs to be maintained

immediately if this insertion satisfies the selection

condition in the definition of Ip. In contrast, the PMV

defined on R is not maintained immediately.

[OR92] proposed using sample MVs to support

approximate query answering. A sample MV is a random

sample of tuples in a MV. The maintenance of sample

 12

MVs is more expensive than that of PMVs, as randomness

needs to be maintained in sample MVs. Also, since a

sample MV does not focus on hot query result tuples, the

probability that it can provide partial results to a query is

low. In a read-only environment, [GLR00] proposed using

icicles samples to support approximate query answering

for key-foreign key join queries. In contrast, PMVs work

in a general environment that allows updates.

[DRS+98] uses chunks to cache OLAP query results in

the middle tier. [DRS+98] focuses on aggregate queries in

a read-only environment, and imposes an order on each

dimension if no implicit order exists. In contrast, our

method works for both aggregate and non-aggregate

queries in a general environment that allows updates, and

does not impose non-natural orders on attribute values.

In a data stream environment, to speed up the

processing of continuous multi-way windowed join

queries, [BMW+05] proposed caching a subset of the join

result tuples of some of the streams. If a key value v exists

in the cache, all the join result tuples related to v must also

exist in the cache. This requires maintaining the cache

immediately upon arrival of new tuples from the streams.

In contrast, upon insertion into base relations, PMVs are

not maintained immediately.

In a distributed data integration environment, [HZ96]

and [Ora00] define a PMV as a MV whose definition

contains a subset of all the attributes and a where clause,

respectively. Both PMV definitions are different from the

one used in this paper.

Ranking Query Result Tuples

[CDH+04] uses attributes that are not specified in the

query to rank result tuples. Before it can take effect, the

ranking method in [CDH+04] needs to first gain some

knowledge by analyzing both some previous workload and

the data set. This is the start-up cost. The gained

knowledge is static and can become imprecise if either the

query pattern or the data set changes. In contrast, our

ranking method is more dynamic. It does not have a start-

up cost while the popularity information kept in the data

structure gets continuously updated. This is especially

advantageous if either no previous workload is available

or the workload pattern changes significantly over time.

To address the information overload problem, [CCH04]

proposed categorizing query result tuples. This is

orthogonal to our approach of ranking query result tuples.

In the case that no tuple satisfies the query condition

completely, [ACD+03, BCG02, Fuh90, Mot88] proposed

ranking tuples according to their “proximity” to the query.

In a data integration environment, [BM02] ranks query

result tuples according to the credibility of data sources,

while [Coh98] ranks query result tuples according to

textual similarity. [ACD02, HP02] proposed keyword

search in RDBMS. All these work focus on a different

environment from ours.

7. Conclusion

We have presented a partial materialized view method

that can provide transactionally consistent, immediate

partial query results to the user without increasing queries’

run-to-completion time much, by caching hot query results

in PMVs. Our experiments with a simulation study, a

theoretical analysis, and a prototype implementation in

PostgreSQL show that PMVs have low storage and

maintenance overhead. In a large number of cases, they

can provide partial results almost instantly. Many PMVs

can reside in the RDBMS simultaneously. Also, our

method has negligible influence on queries’ run-to-

completion time. Furthermore, our techniques are

extended to address the information overflow problem, the

result of which is a method for ranking query result tuples

according to their popularity. Both the PMV method and

the query result ranking method can facilitate the

exploration of massive data sets.

Acknowledgements
We would like to thank Jiuxing Liu, Jeffrey F.

Naughton, Ying-li Tian, Michail Vlachos, Haijing Wang,

Michael W. Watzke, and Hao Yang for helpful

discussions.

References
[AC99] A. Aboulnaga, S. Chaudhuri. Self-tuning Histograms:

Building Histograms without Looking at Data. SIGMOD Conf.

1999: 181-192.

[ACD02] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A

System for Keyword-Based Search over Relational Databases.

ICDE 2002: 5-16.

[ACD+03] S. Agrawal, S. Chaudhuri, and G. Das et al.

Automated Ranking of Database Query Results. CIDR 2003.

[ACN00] S. Agrawal, S. Chaudhuri, and V.R. Narasayya.

Automated Selection of Materialized Views and Indexes in SQL

Databases. VLDB 2000: 496-505.

[AOL03] AOL. Understanding Search Results.

http://merchants.aol.com/shopsearch/resultbasics.htm, 2003.

[BAK+03] C. Bornhövd, M. Altinel, and S. Krishnamurthy et al.

DBCache: Middle-tier Database Caching for Highly Scalable e-

Business Architectures. SIGMOD Conf. 2003: 662.

[BCG01] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A

Multidimensional Workload-Aware Histogram. SIGMOD Conf.

2001: 211-222.

[BCG02] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k

Selection Queries over Relational Databases: Mapping Strategies

and Performance Evaluation. TODS 27(2): 153-187, 2002.

[BM02] J. Berlin, A. Motro. TupleRank: Ranking Discovered

Content in Virtual Databases. Technical Report ISE-TR-02-03.

George Mason University, 2002.

[BMW+05] S. Babu, K. Munagala, and J. Widom et al. Adaptive

Caching for Continuous Queries. ICDE 2005: 118-129.

[CCD+03] S. Chandrasekaran, O. Cooper, and A. Deshpande et

al. TelegraphCQ: Continuous Dataflow Processing for an

Uncertain World. CIDR 2003.

[CCH04] K. Chakrabarti, S. Chaudhuri, and S. Hwang.

Automatic Categorization of Query Results. SIGMOD Conf.

2004: 755-766.

[CDH+04] S. Chaudhuri, G. Das, and V. Hristidis et al.

Probabilistic Ranking of Database Query Results. VLDB 2004:

888-899.

 13

[CK97] M.J. Carey, D. Kossmann. On Saying "Enough

Already!" in SQL. SIGMOD Conf. 1997: 219-230.

[CKP+95] S. Chaudhuri, R. Krishnamurthy, and S. Potamianos et

al. Optimizing Queries with Materialized Views. ICDE 1995:

190-200.

[CMN99] S. Chaudhuri, R. Motwani, and V.R. Narasayya. On

Random Sampling over Joins. SIGMOD Conf. 1999: 263-274.

[Coh98] W.W. Cohen. Integration of Heterogeneous Databases

without Common Domains Using Queries Based on Textual

Similarity. SIGMOD Conf. 1998: 201-212.

[DDD+04] B. Dageville, D. Das, and K. Dias et al. Automatic

SQL Tuning in Oracle 10g. VLDB 2004: 1098-1109.

[DKS95] J. Dougherty, R. Kohavi, and M. Sahami. Supervised

and Unsupervised Discretization of Continuous Features. ICML

1995: 194-202.

[DR99] D. Donjerkovic, R. Ramakrishnan. Probabilistic

Optimization of Top N Queries. VLDB 1999: 411-422.

[DRS+98] P. Deshpande, K. Ramasamy, and A. Shukla et al.

Caching Multidimensional Queries Using Chunks. SIGMOD

Conf. 1998: 259-270.

[Fag02] Faganfinder. Search Result Ranking.

http://www.faganfinder.com/search/popularity.shtml, 2002.

[Fuh90] N. Fuhr. A Probabilistic Framework for Vague Queries

and Imprecise Information in Databases. VLDB 1990: 696-707.

[GL01] J. Goldstein, P. Larson. Optimizing Queries Using

Materialized Views: A Practical, Scalable Solution. SIGMOD

Conf. 2001: 331-342.

[GLR00] V. Ganti, M. Lee, and R. Ramakrishnan. ICICLES:

Self-Tuning Samples for Approximate Query Answering. VLDB

2000: 176-187.

[GLR+04] H. Guo, P. Larson, and R. Ramakrishnan et al.

Relaxed Currency and Consistency: How to Say "Good Enough"

in SQL. SIGMOD Conf. 2004: 815-826.

[GM98] P.B. Gibbons, Y. Matias. New Sampling-Based

Summary Statistics for Improving Approximate Query Answers.

SIGMOD Conf. 1998: 331-342.

[GM99] A. Gupta, I.S. Mumick. Materialized Views:

Techniques, Implementations, and Applications. MIT Press,

1999.

[Hal01] A.Y. Halevy. Answering Queries Using Views: A

Survey. VLDB J. 10(4): 270-294, 2001.

[HHW97] J.M. Hellerstein, P.J. Haas, and H. Wang. Online

Aggregation. SIGMOD Conf. 1997: 171-182.

[HH99] P.J. Haas, J.M. Hellerstein. Ripple Joins for Online

Aggregation. SIGMOD Conf. 1999: 287-298.

[HP02] V. Hristidis, Y. Papakonstantinou. DISCOVER:

Keyword Search in Relational Databases. VLDB 2002: 670-681.

[HZ96] R. Hull, G. Zhou. A Framework for Supporting Data

Integration Using the Materialized and Virtual Approaches.

SIGMOD Conf. 1996: 481-492.

[IAE04] I.F. Ilyas, W.G. Aref, and A.K. Elmagarmid. Supporting

Top-k Join Queries in Relational Databases. VLDB J. 13(3):

207-221, 2004.

[IFF+99] Z.G. Ives, D. Florescu, and M. Friedman et al. An

Adaptive Query Execution System for Data Integration.

SIGMOD Conf. 1999: 299-310.

[Joa02] T. Joachims. Optimizing Search Engines Using

Clickthrough Data. KDD 2002: 133-142.

[JS94] T. Johnson, D. Shasha. 2Q: A Low Overhead High

Performance Buffer Management Replacement Algorithm.

VLDB 1994: 439-450.

[LNE+03] G. Luo, J.F. Naughton, and C.J. Ellmann et al. A

Comparison of Three Methods for Join View Maintenance in

Parallel RDBMS. ICDE 2003: 177-188.

[Mot88] A. Motro. VAGUE: A User Interface to Relational

Databases that Permits Vague Queries. TOIS 6(3): 187-214,

1988.

[OR92] F. Olken, D. Rotem. Maintenance of Materialized Views

of Sampling Queries. ICDE 1992: 632-641.

[Ora00] Oracle Label Security. http://www.oracle.com

/technology/docs/deploy/security/pdf/olsag.pdf, 2000.

[PL00] R. Pottinger, A.Y. Levy. A Scalable Algorithm for

Answering Queries Using Views. VLDB 2000: 484-495.

[Pos05] PostgreSQL homepage, 2005.

http://www.postgresql.org.

[RH02] V. Raman, J.M. Hellerstein. Partial Results for Online

Query Processing. SIGMOD Conf. 2002: 275-286.

[SGG02] A. Silberschatz, P. Galvin, and G. Gagne. Operating

System Concepts, Sixth Edition. John Wiley, 2002.

[SS95] P. Seshadri, A.N. Swami. Generalized Partial Indexes.

ICDE 1995: 420-427.

[Sto89] M. Stonebraker: The Case for Partial Indexes. SIGMOD

Record 18(4): 4-11, 1989.

[TPC] TPC Homepage. TPC-R benchmark, www.tpc.org.

[ZRL+04] D.C. Zilio, J. Rao, and S. Lightstone et al. DB2

Design Advisor: Integrated Automatic Physical Database

Design. VLDB 2004: 1087-1097.

[Zwi03] R. Zwicky. A Way for Search Engines to Improve.

http://www.website-promotion-ranking-services.com

/comp/article_93.shtml, 2003.

