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Abstract 
Early access to partial query results is highly desirable 

during exploration of massive data sets. However, it is 

challenging to provide transactionally consistent, 

immediate partial results without significantly increasing 

queries’ run-to-completion time. To address this problem, 

this paper proposes a partial materialized view method to 

cache some of the most frequently accessed results rather 

than all the possible results. Compared to traditional 

materialized views, the proposed partial materialized 

views do not require maintenance during insertion into 

base relations, and have much smaller storage and 

maintenance overhead. Upon the arrival of a query, the 

RDBMS first searches the partial materialized view and 

returns to the user the cached partial results. Since a large 

portion of the partial materialized view is cached in 

memory, this usually finishes within a millisecond. Then 

the RDBMS continues to execute the query to find the 

remaining results. The proposed techniques can also be 

extended to rank query result tuples according to their 

popularity, which addresses the information overflow 

problem. The efficiency of our partial materialized view 

method is evaluated through a simulation study, a 

theoretical analysis, and an initial implementation in 

PostgreSQL. 
 

1. Introduction 
Large data sets are common in practice, and the sizes of 

these data sets are becoming larger and larger. As a result, 

the capability of efficiently exploring massive data sets is 

urgently needed [HHW97]. It has been widely recognized 

that early access to partial query results can provide the 

following benefits and greatly facilitate the exploration of 

massive data sets: 

Benefit 1: The RDBMS becomes more user-friendly. 

Benefit 2: Early termination of those queries with 

unsatisfactory partial results (e.g., if users would like to 

refine them) can greatly reduce the load on the RDBMS 

and significantly speed up the exploration process. 

In practice, it is important to provide transactionally 

consistent, immediate partial results without significantly 

increasing queries’ run-to-completion time, while 

statistical guarantee for the partial results is often not 

necessary. 

For example, consider a retailer’s customer service call 

center. When a customer calls in, the call center operator 

can offer him on-sale items that are of his interest. The 

operator first obtains all the items Ip that the customer 

recently purchased and then performs a query Q on two 

relations. From the first relation, Q retrieves all the items 

Ir that are related to at least one of the items in Ip. From 

the second relation Rsale, Q finds all the items in Ir that are 

currently on sale with a discount of at least p%, where p is 

determined based on the loyalty of the customer. The 

operator only needs to see partial results of Q in order to 

start making offers to the customer and no statistical 

guarantee is needed for these partial results. Nevertheless, 

these partial results have to be obtained quickly (before 

the customer hangs up). In commercial databases, a 

common practice is to use a separate Rsale for each store or 

each department. Consequently, many query templates are 

needed to support this application. 

Database researchers have spent much effort on 

investigating techniques for providing partial query 

results. However, none of the existing techniques is 

completely satisfactory. These techniques fall into three 

categories: 

(1) Use non-blocking query processing to generate output 

tuples continuously [CCD+03, HH99, HHW97, 

IFF+99, RH02]. 

(2) Use special optimization techniques to find the first or 

top-k output tuples quickly [BCG02, CK97, DR99, 

IAE04]. 

(3) Use asynchronously updated replicas to provide 

output tuples quickly [BAK+03, GLR+04]. 

Non-blocking query processing often increases a 

query’s run-to-completion time significantly. During 

exploration of massive data sets, knowing beforehand 

whether or not the user wants to see all the query results is 

often infeasible. Hence, it is difficult to decide in advance 

whether traditional (blocking) query processing should be 

used to optimize the query’s run-to-completion time, or 

non-blocking query processing should be used to generate 

output tuples continuously. 

The optimization techniques for quickly finding the first 

or top-k output tuples are based on traditional (blocking) 

query processing and often require expensive I/Os. Hence, 

it can take much time (e.g., a few minutes) to generate the 

first or top-k output tuples. Moreover, in order to use these 

optimization techniques, the user needs to specify k, which 

can be difficult to know beforehand. If the user is not 

satisfied with the first or top-k output tuples and would 

like to see all the results, he has to re-execute the query. 

This re-execution wastes system resources and is slower 

than requiring all the results at the first time. 

In general, there is a delay before the data in the master 

copy is transferred to an asynchronously updated replica. 

Thus, the query results provided by the replica can be 
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transactionally inconsistent with the data in the master 

copy (e.g., a tuple is deleted from the master copy but still 

exists in the replica). This is unacceptable to many 

applications. 

In this paper, we propose a partial materialized view 

(PMV) method that can provide immediate partial results 

without increasing queries’ run-to-completion time much. 

These partial results are transactionally consistent and 

suitable for those applications that do not require 

statistical guarantee. Our idea is to reuse previous “hot” 

results. More specifically, from previous queries’ 

execution, some of the most frequently accessed results 

are remembered in the so-called PMVs. When a new 

query Q comes, the corresponding PMV is first searched 

and the found partial results are returned to the user. This 

often finishes within a millisecond, because a large portion 

of PMV is cached in memory. Then Q is executed to find 

the remaining results. 

 
 

 

 

 

Compared to traditional materialized views (MVs) that 

store all possible results, our PMVs only store some of the 

most frequently accessed results and have smaller sizes. 

This saves most of the storage and maintenance overhead 

of traditional MVs while many queries can still have early 

access to partial results. Since PMVs are not used to 

provide all the query results, no maintenance of PMV is 

needed during insertion into base relations. To ensure that 

a large portion of PMVs is cached in memory and thus the 

return of partial results is quick, the size of each PMV has 

an upper bound. To increase our chance of using a PMV 

to provide partial results with only a limited storage, we 

continuously update the content in the PMV to adapt to 

the current query pattern, and restrict the maximum 

number of tuples that can be stored in the PMV for any 

single, so-called basic condition part. Whenever possible, 

both the maintenance and the update of PMVs are coupled 

with query execution for free. We investigate the 

performance of the PMV method with a simulation study, 

a theoretical analysis, and an initial implementation in 

PostgreSQL. Our results show that PMVs have minor 

overhead and can often provide partial results almost 

instantly. Also, the RDBMS can afford storing many 

PMVs. 

Our proposed techniques can be extended to solve the 

frequently encountered information overflow problem 

[CCH04], where users get overwhelmed by the large 

number of result tuples returned from SQL queries. Our 

method is to rank result tuples according to their 

popularity. More specifically, some data structure DS is 

used to record the frequencies of “basic” query selection 

conditions. These frequencies approximate the popularity 

of result tuples. When a new query comes, the information 

in DS is used to rank result tuples. An advantage of this 

ranking method is that as query pattern changes, the 

information in DS gets continuously updated. Hence, the 

ranking result always reflects the current status. 

The rest of the paper is organized as follows. Section 2 

discusses the limitations of traditional MV method. 

Section 3 presents the details of the proposed PMV 

method. Section 4 shows how to extend the proposed 

techniques to deal with the information overflow problem. 

Section 5 investigates the performance of the PMV 

method. Finally, we discuss related work in Section 6 and 

conclude in Section 7. 
 

2. Limitations of Materialized Views 
A traditional method of speeding up query execution is 

to use MVs [GM99]. In this section, we first describe the 

queries that will be considered by the PMV method and 

then discuss the limitations of traditional MV method. 
 

2.1 Query Specification 
In this work, we consider the following type of queries 

that are frequently encountered in practice (e.g., in form-

based applications) – queries coming from templates of 

the following form: 

qt:  select Ls from R1, R2, …, Rn where Cjoin and Cselect; 

Here, Ls is the select list. Cjoin includes both the join 

condition among the 1≥n  relations R1, R2, …, and Rn, and 

the selection conditions on a single relation that have no 

parameters (e.g., R1.b=100). 
i

m

i
select

CC
1=

∧= , where m is a 

number. Each Ci ( mi ≤≤1 ) is a selection condition on a 

single relation 
ihR  ( nh

i
≤≤1 ). Ci takes one of the 

following two disjunctive forms, which accept one or 

more parameters:  

Equality form: ).( ,
1

rikh

u

r
vaR

ii

i

=∨
=

.  

Interval form: ).( ,,
1

rikhri

u

r
waRv

ii

i

<<∨
=

. The intervals 

),( 1,1, ii wv , ),( 2,2, ii wv , …, and ),( ,, ii uiui wv  are disjoint from 

each other. 

Different queries from the same template can have 

different ui’s ( mi ≤≤1 ). In Section 3.6, we will show how 

to extend our techniques to handle other forms of queries 

(e.g., aggregate queries, nested queries). 

In the interval form case, 
ii kh

aR .  is not restricted to 

being a numerical attribute. For example, 
ii kh aR .  can be a 

string attribute. Also, 
riv ,
 (

iur ≤≤1 ) can be -∞ while 
riw ,
 

can be +∞, and “<” can be replaced by “≤”. In other 

words, the intervals can be either bounded or unbounded, 

open or closed. For ease of presentation, in the remainder 

of this paper, we always write an interval as an open 

bounded one, with the understanding that it can be closed 

and/or unbounded if necessary. 
 

select R.a, S.e from R, S  

where R.c=S.d and (R.f=f1 or R.f=f2 or … or R.f=fh)  

and (S.g=g1 or S.g=g2 or … or S.g=gk); 

Figure 1. An example query template Eqt. 
 

data on 

disk 

partial materialized 

view in memory 

query query 

partial result 
remaining result 

user 
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For a large subset of queries of the qt form, traditional 

query processing cannot produce output tuples quickly and 

continuously. In this work, we focus specifically on such 

type of queries. These queries include both queries whose 

query plans are not fully pipelined and some queries 

whose query plans are fully pipelined. To illustrate the 

latter case, let us consider the template Eqt in Figure 1. 

Suppose that an index exists on each selection/join 

attribute. The query plan fetches tuples from R using the 

index on R.f. For each retrieved tuple tR, the index on S.d 

is used to search S for matching tuples. If the selectivity of 

S.g is low, the index on S.d needs to be searched many 

times before the first query result tuple is obtained. This 

can take a few seconds in a lightly loaded RDBMS, and a 

few minutes in a heavily loaded RDBMS. 
 

2.2 Limitations of Large Materialized Views 
 

 create materialized view VM as 

 select R.a, S.e, R.f, S.g from R, S where R.c=S.d; 

Figure 2. An example large materialized view. 

 

Existing techniques for automatically selecting MVs 

from query traces are based on “merging,” where the 

definition of each suggested MV is based on the common 

part of some of the queries [ACN00, DDD+04, ZRL+04]. 

For example, for the template Eqt in Figure 1, existing 

automatic MV selection tools may suggest a materialized 

view VM as shown in Figure 2. (The search procedure in 

VM needs attributes R.f and S.g.) As VM needs to keep all 

the possible results for queries from Eqt, VM is fairly large. 

In general, due to the extreme storage and maintenance 

overhead of MVs [GM99], the RDBMS cannot keep a 

MV for each frequently used query template. 
 

2.3 Limitations of Small Materialized Views 

For the template Eqt in Figure 1, instead of using the big 

VM in Figure 2 for all possible (fi, gj) pairs, one might 

wonder whether we could create multiple small MVs, one 

for each “hot” (fi, gj) pair, and use them to speed up query 

processing. These small MVs have the following 

advantages. First, a hot (fi, gj) pair appears frequently in 

queries from Eqt. Therefore, the RDBMS can use a small 

MV that is built for a hot (fi, gj) pair to partially answer a 

lot of queries from Eqt. Second, the combined size of these 

small MVs is a small percentage of that of the big VM. 

Thus, the combined storage and maintenance overhead of 

these small MVs is smaller than that of VM. Also, 

compared to VM, these small MVs can be accessed more 

quickly, as they are more likely to be cached in memory. 

However, existing techniques for answering queries 

using MVs [CKP+95, GL01, Hal01, PL00] focus on 

shortening queries’ run-to-completion time. In a large 

number of cases, they cannot use these small MVs to 

shorten the run-to-completion time of queries from the 

template Eqt. This is because typically, a query from Eqt 

contains both several hot (fi, gj) pairs and several cold (fi, 

gj) pairs. During the process of obtaining the results 

corresponding to the cold (fi, gj) pairs, the results 

corresponding to the hot (fi, gj) pairs can be computed 

inexpensively without using these small MVs. 

For example, suppose that (R.f=1, S.g=2) is the only hot 

(fi, gj) pair. We create a small materialized view VsM for 

(R.f=1, S.g=2) as follows: 
create materialized view VsM as select R.a, S.e  

from R, S where R.c=S.d and R.f=1 and S.g=2; 

Consider the following query that comes from the 

template Eqt in Figure 1: 
select R.a, S.e from R, S 

where R.c=S.d and (R.f=1 or R.f=3)  

and (S.g=2 or S.g=4); 

In order to obtain the results corresponding to the cold pair 

(R.f=1, S.g=4), tuple(s) tR of R where R.f=1 are fetched. 

Similarly, to obtain the results corresponding to (R.f=3, 

S.g=2), tuple(s) tS of S where S.g=2 are retrieved. After 

fetching tR and tS, computing the (possibly in-memory) 

join between them is not expensive and thus there is no 

need to use VsM. 
 

3. The Partial Materialized View Method 
In this section, we present our PMV method for 

providing partial query results, which can overcome the 

limitations of traditional MV method. We first describe 

the main ideas. Then we go into the details of the method. 

All discussions in Section 2.3 about small MVs are from 

the viewpoint of minimizing queries’ run-to-completion 

time. The main goal of our PMV method is to minimize 

the time of generating partial results. In this case, these 

small MVs for the hot (fi, gj) pairs become useful, as they 

can quickly provide partial results to a large number of 

queries from the template Eqt.  

For example, consider a query Q from the template Eqt 

in Figure 1. Q contains both several hot (fi, gj) pairs and 

several cold (fi, gj) pairs. The RDBMS answers Q in the 

following way: 

Step 1: These small MVs are used to quickly obtain the 

partial results corresponding to the hot (fi, gj) pairs. These 

partial results are returned to the user and recorded in a 

temporary in-memory data structure DS. 

Step 2: Q is executed to obtain all the results. For each 

result tuple t, we check whether t∈∈∈∈DS. If so (i.e., the user 

has already obtained t at Step 1), t is removed from DS and 

not returned to the user. Otherwise if t∉∉∉∉DS, the RDBMS 

knows that t corresponds to some cold (fi, gj) pair and 

returns t to the user. In this way, each result tuple is 

returned to the user once and only once. (Query results can 

contain duplicate tuples. In the case that t∈∈∈∈DS, if t is not 

removed from DS and later another tuple t'=t comes, the 

RDBMS can end up returning fewer result tuples to the 

user than what it should.)  

The above method will slightly increase query Q’s run-

to-completion time, as neither Step 1 nor the checking at 

Step 2 is needed in traditional query processing. However, 

this extra overhead is minor compared to the two benefits 

(user-friendliness, load reduction) of providing partial 

results that are mentioned in the introduction. Thus, for 

those applications of exploring massive data sets, it is 

R.f 

S.g 

1 3 

4 

2 
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worth to make this tradeoff. For the purpose of easy 

management, all the small MVs are combined into a single 

so-called PMV. This becomes our PMV method. More 

details of our method are described in the following 

subsections. 
 

3.1 Definitions 
We first introduce some definitions.  

Partial materialized view. Consider a MV definition VM. 

VM may or may not exist in the RDBMS. Any subset of VM 

is a partial materialized view VPM. VM is the containing 

materialized view of VPM. The base relations of VM are also 

called the base relations of VPM. (Both MVs and PMVs are 

treated as multi-sets and thus can contain duplicate tuples.) 

For the materialized view VM in Figure 2, we show an 

example partial materialized view VPM in Figure 3. 

 

 

 

 

 
Figure 3. An example partial materialized view. 

 

Condition part. Consider the query template qt in Section 

2.1. A condition part is an m-tuple (d1, d2, …, dm), where 

for each i ( mi ≤≤1 ): 

(1) If the selection condition Ci is of equality form, di is 

of the form 
ikh baR

ii
=. .  

(2) If Ci is of interval form, di is of the form 

ikhi caRb
ii

<< . .  

A query result tuple t belongs to a condition part (d1, d2, 

…, dm) if t satisfies all conditions di ( mi ≤≤1 ). A 

condition part (d1, d2, …, dm) is contained in another 

condition part (d1', d2', …, dm') if whenever conditions di 

( mi ≤≤1 ) are true, conditions di' ( mi ≤≤1 ) are also true. 

For each selection condition Ci ( mi ≤≤1 ) that is of 

interval form, let Ei denote the entire range of all possible 

intervals in Ci (e.g., ),( ∞+−∞=iE ). We assume that the 

RDBMS knows multiple “dividing” values that can divide 

Ei into multiple non-overlapping “basic” intervals and 

these basic intervals fully cover Ei. Each basic interval is 

assigned a different id. The purpose of this division is 

discretization so that the problem becomes more tractable. 

The criterion for choosing dividing values is that the 

resulting basic intervals can be used to differentiate hot 

results from cold results. 

In a large number of form-based applications, for each 

selection condition Ci ( mi ≤≤1 ) that is of interval form, 

the user is provided with both a list of from values and a 

list of to values. Each (from value, to value) pair chosen 

by the user forms an interval ),(
,, riri

wv , where 
iur ≤≤1 . In 

this case, these from values and to values can serve as 

dividing values. In other cases, we assume that either the 

person (e.g., DBA) who defines the PMV for the query 

template will specify the dividing values, or the 

continuous feature discretization technique [DKS95] in 

machine learning can be used to automatically learn 

dividing values from query traces. 

Basic condition part. A condition part (d1, d2, …, dm) is a 

basic condition part, if for each selection condition Ci 

( mi ≤≤1 ) that is of interval form, di is of the form 

ikhi caRb
ii

<< . , where (bi, ci) is a basic interval. 

A basic condition part (d1, d2, …, dm) is stored in the 

following way: 

(1) If di is of the form 
ikh baR

ii
=. , value bi is stored.  

(2) If di is of the form 
ikhi caRb

ii
<< . , where (bi, ci) is a 

basic interval, the id of (bi, ci) is stored. 
 

3.2 Organization of Partial Materialized Views 
Consider a frequently used query template qt (see 

Section 2.1). Suppose that the RDBMS cannot afford to 

keep a materialized view VM=(select Ls' from R1, R2, …, 

Rn where Cjoin). Here, Ls' is the expanded select list that 

includes all the attributes in both Cselect and the original 

select list Ls. (The search procedure in VM needs the 

attributes in Cselect.)  

We build a partial materialized view VPM for qt as 

follows: 
create partial materialized view VPM as subset of 

select Ls' from R1, R2, …, Rn 

where Cjoin with selection condition template Cselect; 

VM is the containing MV of VPM. All the tuples in VPM 

satisfy the condition Cjoin.  

The person who defines VPM specifies an upper bound 

UB for the size of VPM. This UB is used to constrain the 

storage and maintenance overhead of VPM, and ensure that 

a significant portion of VPM is cached in memory so that 

VPM can be accessed quickly. Initially, VPM is empty. Our 

goal is to use VPM to provide immediate partial results to 

as many queries from the template qt as possible. 

In the template qt, the original select list Ls is replaced 

with the expanded select list Ls'. This is to let all the 

attributes in Cselect appear in query result tuples. As will be 

shown later, some result tuples are stored in VPM. The 

attributes in Cselect are needed to find partial results in VPM. 

When the RDBMS obtains a query result tuple, it only 

returns the attributes in Ls to the user. Hence, the user still 

receives the same answer, as if VPM did not exist and Ls in 

qt had not been replaced by Ls'. 

 

 

 

 
Figure 4. Data structure of a partial materialized view VPM. 

 

Each tuple of VPM is composed of two parts: the 

“conceptual” basic condition part bcp=(d1, d2, …, dm), and 

attributes ats. ats is a query result tuple that includes all 

the attributes in the expanded select list Ls', and belongs to 

bcp. bcp is “conceptual” in the sense that it is not actually 

stored in the tuple. Whenever needed, bcp is recovered 

from ats. We build an index I on bcp. If m>1, I is a multi-

a e f g 

1 2 1 7 

1 2 1 7 

7 8 3 9 

 

d e g 

4 2 7 

5 2 7 

6 8 9 

 

a c f 

1 4 1 

1 5 1 

7 6 3 

 

relation S relation R 
materialized 

view VM 

partial materialized 

view VPM 

a e f g 

1 2 1 7 

 

bcp=(f, g) a e f g 

     

… … … … … 

     

index I 

on bcp 
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attribute index. For example, for the template Eqt in Figure 

1, Figure 4 shows the corresponding PMV. 

Our goal is to use VPM to provide immediate partial 

results to as many queries as possible. Hence, it is 

preferable to have a large number of basic condition parts 

stored in VPM. In general, many query result tuples can 

belong to a single basic condition part, and it is not 

desirable to flood VPM with all these tuples. Therefore, the 

person who defines VPM specifies a constant F. For a basic 

condition part bcp, the RDBMS stores at most F result 

tuples (rather than all the possible result tuples) that 

belong to bcp in VPM. This is different from the case of 

traditional MVs, where a materialized view VM stores all 

the result tuples that satisfy the definition of VM. Given the 

storage limit UB of VPM, for a query Q, this F makes a 

tradeoff between (a) the probability that VPM can provide 

some partial results to Q, and (b) in the case that VPM 

contains some partial results of Q, the number of partial 

result tuples that VPM can provide to Q. 

Let L denote the number of basic condition parts in VPM. 

At denotes the average size of the tuples in VPM. We have 

tB AFLU ××≤ . If L=10K, F=2, and At=50B, then the 

size of VPM is no more than 1MB and thus the memory can 

hold many PMVs. As will be shown in Section 5.1, 

L=10K can lead to a hit probability of 95%. 

The design principles of our algorithm are as follows. 

The storage budget UB is limited. Hence, VPM should store 

hot basic condition parts. (A hot basic condition part 

appears in a large number of queries.) This is to maximize 

the chance that VPM can provide partial results to a query.  

The query pattern can change from time to time. That is, 

the basic condition parts that are hot can keep changing. 

We want to automatically keep track of this change and 

update VPM accordingly. Hence, all the basic condition 

parts in VPM are managed by the CLOCK algorithm 

[SGG02]: when VPM is full, the RDBMS replaces the basic 

condition parts in VPM that are no longer hot with the 

currently hot basic condition parts. 

VPM is initially empty. Before VPM becomes full, content 

is filled into VPM. When VPM becomes full, the content in 

VPM is updated as query pattern changes. Both the fill in 

process and the update process of VPM should be as 

efficient as possible. Therefore, in the case that there is no 

change to the base relations of VPM, the RDBMS only fills 

content into VPM (if VPM is not full) or changes the content 

of VPM (if VPM is full) for free when it obtains result tuples 

from query execution. There is no separate process for 

examining the base relations of VPM. 

Similarly, in the case that the base relations of VPM get 

changed, the maintenance of VPM should be as efficient as 

possible. Hence, whenever possible, the RDBMS couples 

the maintenance of VPM with the execution of subsequent 

queries for free. Lastly, the use of VPM needs to have 

minor influence on queries’ run-to-completion time. 
 

3.3 Handling Queries 

When a query Q comes, the RDBMS performs the 

following operations: 

Operation O1: The Cselect of Q is broken into one or more 

non-overlapping condition parts. Each condition part is 

either a basic condition part itself or contained in a basic 

condition part.  

Operation O2: For each generated condition part, the 

RDBMS checks whether there is a corresponding entry in 

VPM. If so, the related tuples in VPM are returned to the user 

as partial results. In this way, the RDBMS finds all the 

result tuples of Q that are in VPM. 

Operation O3: Q is executed to obtain all the result tuples. 

For those tuples that the user does not receive in Operation 

O2, the RDBMS returns them to the user now. Also, the 

content in VPM is updated to reflect the observed change in 

the hot basic condition parts. 
 

Operation O1: Cselect ⇒⇒⇒⇒ Condition Parts 

i

m

i
select CC

1=
∧= . For each i ( mi ≤≤1 ), there are two 

possible cases: 

(1) Ci is of equality form ).( ,
1

rikh

u

r
vaR

ii

i

=∨
=

. Let set 

}1|.{ , irikhi urvaRS
ii

≤≤== . 

(2) Ci is of interval form ).( ,,
1

rikhri

u

r
waRv

ii

i

<<∨
=

. For each r 

(1≤r≤ui), the RDBMS finds all the basic intervals 
riJ ,
 

that overlap with the interval ),(
,, riri

wv . Let set 

U
i

ii

u

r

ribbririkhi JIIwvaRS
1

,,, }|),(.{
=

∈∩∈= . 

Cselect is broken into a number ( 1≥h ) of “non-overlapping” 

condition parts 
}1|{

1

hjcpS j

m

i

i ≤≤=∏
=

. For each condition 

part cpj ( hj ≤≤1 ), there are two possible cases: 

(1) cpj is a basic condition part bcpj itself. 

(2) cpj is contained in a basic condition part bcpj. 

In either case, bcpj is called the containing basic condition 

part of cpj. 

Suppose that in the template Eqt in Figure 1, the 

selection condition on S.g is of interval form rather than of 

equality form. Figure 5 shows an example of breaking the 

Cselect of a query from Eqt into condition parts. The outer 

rectangle represents the entire query space, which is 

partitioned into non-overlapping basic condition parts as 

shown by the dashed lines. The gray rectangle represents 

the query. The Cselect of this query is broken into nine 

condition parts. Each condition part is represented by the 

intersection of the gray rectangle and a dashed rectangle 

that is filled with either upward or downward diagonals. 

 

 

 

 

 

 

Figure 5. An example of breaking the Cselect of a query 

from Eqt into condition parts. 
 

Operation O2: Returning Partial Results 

R.f 

S.g 
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A temporary in-memory data structure DS is kept. For 

each condition part cpj ( hj ≤≤1 ) generated in Operation 

O1, a counter cj is kept for its containing basic condition 

part bcpj. Initially, DS is empty and cj=0 ( hj ≤≤1 ). For 

each cpj ( hj ≤≤1 ), the index I on bcp is used to check 

whether cpj’s containing basic condition part bcpj exists in 

VPM. There are two possible cases: 

(1) bcpj exists in VPM. cj is set to be the number of tuples 

in VPM that belong to bcpj. For each tuple t in VPM that 

belongs to bcpj, the RDBMS checks whether t 

belongs to cpj. This is equivalent to checking whether 

t satisfies the Cselect of query Q. If cpj is a basic 

condition part itself, t must belong to cpj. In contrast, 

if cpj is contained in a basic condition part, t may or 

may not belong to cpj. All the tuples in VPM satisfy the 

condition Cjoin. Hence, if t satisfies Cselect, t is returned 

to the user as a partial result, and recorded in DS.  

(2) bcpj does not exist in VPM. Nothing is done in this 

case. 

 

Operation O3: Returning Remaining Result Tuples and 

Updating Partial Materialized View 

Query Q is executed to obtain all the result tuples. For 

each such result tuple t, the data structure DS is checked to 

see whether the user has already obtained t in Operation 

O2. If t∈DS, t is removed from DS. If t∉DS, the RDBMS 

performs the following operations: 

(1) Return t to the user.  

(2) Find the containing basic condition part bcpj 

( hj ≤≤1 ) that t belongs to. For each basic condition 

part bcp, at most F query result tuples that belong to 

bcp can be stored in VPM. If the counter cj<F, t is 

added into VPM and cj is incremented by 1. This can 

require purging some basic condition part (and the 

associated query result tuples) from VPM if VPM has 

already been full. This case of cj<F is possible, e.g., 

as VPM is not maintained immediately during insertion 

into the base relations of VPM (see Section 3.4). In the 

case that cj=0, a new basic condition part bcpj is 

added into VPM. 

After all the result tuples have been processed, the data 

structure DS must be empty. DS is freed. 
 

3.4 Maintaining Partial Materialized Views 

When the base relations of VPM get changed, VPM is 

maintained in a different way from traditional MVs. This 

is because VPM is only a subset of its containing 

materialized view VM. VPM is not used to provide all the 

query results. As long as VPM does not provide incorrect 

partial results, there is no need to change VPM 

immediately. Rather, the maintenance of VPM is deferred 

to when the RDBMS obtains result tuples from the 

execution of future queries for free. This minimizes the 

influence of VPM on transactions that change the base 

relations of VPM. 

Upon a change ∆Ri to a base relation Ri ( ni ≤≤1 ) of 

VPM, there are three possible cases: 

(1) The change is an insert. This insert may generate new 

query result tuples. However, existing tuples in VPM 

are not affected by this insert. Hence, VPM is not 

maintained immediately. 

(2) The change is a delete. The join between ∆Ri and the 

other base relations Rj ( nj ≤≤1 , ij ≠ ) of VPM is 

computed. For each join result tuple t, the index I on 

bcp is used to check whether t∈VPM. (t must exist in 

VPM’s containing MV VM. However, since VPM⊆VM, t 

may or may not exist in VPM.) If t∈VPM, t is removed 

from VPM.  

(3) The change is an update. Recall that all the attributes 

in Cselect appear in the expanded select list Ls'. If this 

update does not change the attributes of Ri that appear 

in either Ls' or the condition Cjoin, it will not affect the 

existing tuples in VPM. Hence, there is no need to 

maintain VPM. (Deletion influences all the attributes of 

Ri and thus does not have this optimization.) 

Otherwise we proceed in a way similar to that in the 

case of deletion.  
 

3.5 Refinements 

In order to improve performance, we present several 

refinements to our approach. 
 

Using Better Cache Management Method 

Consider a basic condition part bcp that exists in the 

partial materialized view VPM. Tuples in VPM often have 

either a large number of attributes or some long attributes 

(e.g., detailed description). As a result, the combined size 

of all the tuples in VPM that belong to bcp is usually much 

larger than the size of bcp. If we treat bcp as the page id, 

and all the tuples in VPM that belong to bcp as the page, 

then VPM looks much like a buffer pool. Hence, instead of 

using the CLOCK algorithm, the RDBMS can use other 

better buffer pool management algorithms (e.g., 2Q 

[JS94]) to manage VPM. This will increase the probability 

that VPM can provide partial results to queries from the 

template qt. The experimental section 5.1 gives a 

performance comparison between CLOCK and 2Q. 
 

Speeding Up Partial Materialized View Maintenance 
To speed up the maintenance of the partial materialized 

view VPM when some base relation of VPM gets changed, 

we can build indices on some attributes of VPM. For 

example, suppose that tuple t is deleted from base relation 

Ri ( ni ≤≤1 ) of VPM. Assume that the index I on bcp is the 

only index on VPM. Then in general, as mentioned in 

Section 3.4, in order to see whether any tuple in VPM is 

affected by this delete, the RDBMS needs to first compute 

the join between t and the other base relations Rj 

( nj ≤≤1 , ij ≠ ) of VPM. This join computation can be costly.  

Now suppose that attribute Ri.a exists in VPM and an 

index Ia is built on Ri.a. Ia is first searched to see whether 

there are tuples t' in VPM such that t'.a=t.a. If no such tuple 

exists, there is no need to maintain VPM. Otherwise the 

RDBMS deletes all the tuples t' in VPM such that t'.a=t.a. 
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In either case, the expensive join between t and the other 

base relations Rj ( nj ≤≤1 , ij ≠ ) is waived. In the latter 

case, more tuples can be deleted from VPM than necessary. 

However, this is acceptable, as VPM only needs to maintain 

the property that it is a subset of its containing 

materialized view VM. Also, deleting tuples from the 

(possibly in-memory) VPM is often cheaper than computing 

the join between t and Rj’s ( nj ≤≤1 , ij ≠ ). The RDBMS 

can get back (some of) the unnecessarily deleted tuples 

from the execution of subsequent queries for free. 
 

Ignoring Queries Whose Cselect is Complex 

In Operation O1, the Cselect of a query is broken into a 

number ( 1≥h ) of condition parts. It is not desirable to use 

the PMV method to handle queries whose Cselect can be 

broken into too many condition parts, as it can be costly to 

check all these condition parts. Hence, we have a 

threshold ht. The PMV method is not used to handle those 

queries whose h>ht. As will be shown in Section 5.2 

below, ht can be quite large. 
 

3.6 Discussions and Summary of Advantages 
Like traditional MVs, the standard locking protocol is 

used on PMVs to ensure serializability. When a query Q 

reads a partial materialized view VPM in Operation O2, Q 

puts an S lock on VPM. Then between Operations O2 and 

O3, no other transaction can change the correct (VPM) read 

result of Q by updating some base relation, as that would 

require updating VPM with the acquisition of an X lock on 

VPM. Hence, Q would not have read anomaly. 

With minor changes in our algorithm, PMVs can be 

used to handle queries with distinct clauses. In Operation 

O2, only distinct tuples in the partial results obtained from 

the PMV are returned to the user and stored in the data 

structure DS. In Operation O3, all distinct result tuples are 

first obtained from query execution. Then only those 

tuples that are not in DS are returned to the user. 

The above discussion focuses on non-aggregate queries, 

which are common these days. For example, both the call 

center scenario in the introduction and deep analytical 

tasks in real-time data warehouses require detailed data. 

With minor changes in the user interface, PMVs can also 

be used to handle aggregate queries (e.g., group by) or 

queries with order by clauses. In Operation O2, the partial 

results obtained from the PMV are first aggregated or 

sorted and then presented to the user as intermediate 

results, with the user’s understanding that (a) these 

intermediate results are used to get a feeling of the final 

results and (b) the final aggregate values or order sequence 

can be different. In Operation O3, after all the results are 

obtained, the intermediate results obtained in O2 are 

invalidated and the final results are presented to the user. 

In certain cases, with some extension, PMVs can be 

used to handle nested queries. For example, consider a 

two-level nested query. The subquery appears in the where 

clause of the main query after an EXISTS operator. 

Suppose that we can quickly obtain tuples from the main 

query but checking the EXISTS condition is time-

consuming. In this case, a PMV can be used to quickly 

generate partial results of the subquery. Then for some 

tuples from the main query, the process of checking the 

EXISTS condition can be sped up. Consequently, we can 

rapidly produce some partial results for the entire query.  

The partial materialized view VPM has the following 

advantages:  

(1) VPM has small storage and maintenance overhead.  

(2) VPM can provide immediate partial results to a large 

number of queries from the template qt.  

(3) A large portion of provided partial results are hot 

results – they are frequently accessed by other queries 

from qt. This is desirable for those applications where 

users care more about hot results than cold results. 

(For applications that users want to see random partial 

results, this can be a disadvantage. However, as 

shown in [CMN99], in general it is difficult to 

provide random partial results.)  

(4) VPM has minor influence on queries’ run-to-

completion time. 

The proposed techniques are not limited to providing 

early access to partial results. In the next section, we 

demonstrate the generality of our techniques by applying 

them to the problem of ranking query result tuples 

according to popularity. 
 

4. Ranking Query Result Tuples 
During exploration of massive data sets, users often get 

overwhelmed by the large number of result tuples returned 

from SQL queries, also known as the information 

overflow problem [CCH04]. In this case, unless an order 

by clause is specified in the SQL query, it is desirable to 

rank result tuples according to their popularity (i.e., the 

frequencies that users query them). For example, both 

AOL’s Shopping Search & Browse tool [AOL03] and the 

Direct Hit search engine [Fag02] rank search results based 

on popularity. As a second example, [Joa02, Zwi03] show 

that by considering popularity in the search result ranking 

algorithm, the performance of search engines is improved. 

(An RDBMS can be regarded as a search engine in the 

sense that both RDBMS and search engine do search.) In 

fact, due to lack of system support, a large number of web 

sites implement their own methods of ranking SQL query 

result tuples according to popularity [AOL03]. 
 

4.1 Overview of Our Approach 
We propose a new method for ranking query result 

tuples according to their popularity. The main idea of our 

method is as follows. SQL queries do associative search 

(search by value). For all tuples with the same selection 

attribute values, a SQL query selects either all of them or 

none of them. That is, all result tuples with the same 

selection attribute values have the same popularity. 

Therefore, popularity could be tracked based on selection 

attribute values. To reduce the space overhead, popularity 

is tracked continuously based on basic condition parts. To 

minimize the burden of ranking result tuples on the 

RDBMS, the data structure that is used for tracking 
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popularity is kept in memory. Hence, the exact popularity 

cannot be tracked for all the possible basic condition parts. 

Rather, approximate popularity is tracked. 

In the remainder of Section 4, we focus on queries 

coming from the same template qt in Section 2.1. 

Irrespective of query execution time, as long as a query 

returns a large number of result tuples, it is desirable to 

rank these tuples. 
 

4.2 Ranking Method 

Suppose that we want to rank result tuples for queries 

from the template qt. As will be shown later, in the 

ranking process, the attributes in Cselect are needed to 

decide which result tuple belongs to which basic condition 

part. Therefore, as in Section 3, in qt, the original select 

list Ls is replaced with the expanded select list Ls'. After all 

the result tuples have been ranked, their attributes in Ls are 

returned to the user. In this way, the user still receives the 

same answer (but ranked by popularity), as if Ls in qt had 

not been replaced by Ls'. 

The RDBMS builds an in-memory data structure DS 

that is a table. The number of rows in DS has an upper 

bound UB. This UB is specified by the person who requires 

ranking result tuples for queries from the template qt. The 

criterion for choosing UB is to ensure that DS can be kept 

in memory all the time (or at least most of the time). Each 

row of DS is of the form (basic condition part bcp, count), 

where count represents the popularity of bcp. We build an 

index on bcp. Initially, DS is empty. 

The same techniques in Section 3 are used to divide the 

entire query space into basic condition parts. The data 

structure DS is used to continuously keep track of the 

(approximate) popularity of basic condition parts. If each 

basic condition part is treated as a value, this is the hot list 

query problem that is studied in [GM98]. [GM98] gives 

two solutions to this problem: the concise sample method 

and the counting sample method. The first solution has 

lower overhead while the second solution is more 

accurate. Either solution can be used for our purpose. 

When a new query Q comes, the same techniques in 

Section 3.3 are used to break the Cselect of Q into one or 

more condition parts and obtain the corresponding 

containing basic condition parts. The concise/counting 

sample method in [GM98] is used to update the data 

structure DS accordingly. Then Q is executed to obtain all 

the result tuples. For each such result tuple t, the RDBMS 

finds the containing basic condition part bcp that t belongs 

to. If bcp exists in DS, the count of bcp in DS is used to 

approximate the popularity of t. Otherwise the popularity 

of t is approximated as zero. Finally, all the result tuples of 

Q are ranked according to their (approximate) popularity. 

The core of our ranking method is the concise/counting 

sample method. The interested reader can find the 

performance study of both sample methods in [GM98]. 
 

5. Performance Evaluation of Partial 

Materialized View 

The performance of our PMV method has been 

evaluated from three perspectives: 

(1) The probability that a PMV can provide partial results 

to a query. 

(2) The influence of the PMV method on queries’ run-to-

completion time. 

(3) The maintenance overhead of a PMV when its base 

relations get changed. 
 

5.1 Probability of Being Useful 

We first perform a simulation study to show that in a 

large number of cases, PMVs can provide partial results to 

a query. Consider a read-only database. We focus on those 

queries that come from the same template qt. Assume that 

a partial materialized view VPM is built for qt. In Operation 

O1, the Cselect of each query is broken into the same 

number 1≥h  of condition parts, where each condition part 

is a basic condition part itself. The entire query space 

contains 1M basic condition parts bcpi ( Mi 11 ≤≤ ). For 

each basic condition part, the number of query result 

tuples that belong to it is greater than F. As a result, for 

each basic condition part that exists in VPM, F query result 

tuples are stored in VPM. For each basic condition part in 

the Cselect of a query, the probability that it is bcpi 

( Mi 11 ≤≤ ) is ei. All the ei’s ( Mi 11 ≤≤ ) follow a Zipfian 

distribution with parameter α. That is, αiei /1∝ .  

We compare the following two methods of managing all 

the basic condition parts in VPM: 

(1) The CLOCK algorithm. VPM is a queue with L entries 

that is managed by the CLOCK algorithm. Each entry 

can store one basic condition part bcp and F query 

result tuples that belong to bcp.  

(2) A simplified version of the 2Q algorithm [JS94]. VPM 

is composed of two queues: Am and A1. Am has N 

entries and is managed by the CLOCK algorithm. 

Each entry can store one basic condition part bcp and 

F query result tuples that belong to bcp. A1 has 

N'=50%×N entries and is a FIFO queue. Each entry 

stores one basic condition part. Upon the first time 

that a basic condition part bcp appears in the Cselect of 

a query, bcp is put into A1. If during its stay in A1, 

bcp appears again in the Cselect of another query, both 

bcp and F query result tuples that belong to bcp are 

moved to Am. Am is used to provide partial results to 

a query. 

We assume that the storage requirement of a basic 

condition part is 4% of that of F query result tuples. Thus, 

given the same storage budget UB of VPM for both the 

CLOCK and the 2Q algorithms, we have L=1.02×N. 

The purpose of the comparison between the CLOCK 

algorithm and the 2Q algorithm is to show that in a large 

number of cases, the simple CLOCK algorithm performs 

well. Also, CLOCK is not the best algorithm for managing 

all the basic condition parts in VPM. In many cases, 2Q 

performs better than CLOCK. We leave it as an interesting 

area for future work to identify other algorithms that 

perform better than both CLOCK and 2Q. 
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Figure  6. Hit probability (number of 

bcps experiment).
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Figure 7. Hit probability (PMV  size 

experiment).
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We performed the following two experiments: 

Number of bcps experiment. We fixed N=20K and 

tested two cases: 

(i) α=1.07. This is the high skew case. 10% of all the 

1M basic condition parts get 90% of the chance of 

appearing in the Cselect of a query. 

(ii) α=1.01. This is the moderate skew case. 21% of all 

the 1M basic condition parts get 90% of the chance of 

appearing in the Cselect of a query. 

In either case, we varied h from 1 to 5. Recall that h is the 

number of basic condition parts in the Cselect of a query. 

PMV size experiment. We fixed α=1.07 and h=2. We 

varied N from 10K to 30K. Recall that N determines the 

size of VPM. 

The hit probability is defined as the probability that VPM 

can provide some partial results to a query Q. That is, if 

any of the h basic condition parts in the Cselect of Q exists 

in VPM, Q is “hit.” This definition is different from that in 

traditional caching [JS94], as our case is about “partial 

hit” while traditional caching is about “full hit.” In each 

test case, 1M queries were used to “warm up” VPM. Then 

the hit probability was reported over the next 1M queries. 

(We also tested other numbers of “warm up” queries. The 

results were similar and thus omitted.) 

 
 

 

 

 

 

 

 

 

 

For the number of bcps experiment, Figure 6 shows the 

hit probability results. The y-axis starts from 50%. h is the 

number of basic condition parts in the Cselect of a query Q. 

If any basic condition part in the Cselect of Q is “hit,” Q is 

“hit.” Hence, the hit probability approaches 100% quickly 

as h increases. The larger the α, the more queries focus on 

a few basic condition parts and thus the more likely these 

basic condition parts are cached in VPM. Therefore, for a 

fixed algorithm (either CLOCK or 2Q) and a fixed h, the 

hit probability increases with α. For a fixed α and a fixed 

h, 2Q performs better than CLOCK, which is consistent 

with the results in [JS94]. 

Figure 7 shows the hit probability results from the PMV 

size experiment. The y-axis starts from 70%. The larger 

the N, the more basic condition parts and their 

corresponding query result tuples can be stored in VPM, 

and thus the more likely VPM can provide some partial 

results to a query. Therefore, the hit probability 

approaches 100% quickly as N increases. Again, for a 

fixed N, 2Q performs better than CLOCK. 
 

5.2 Influence on Queries’ Run-to-completion Time 

In order to show that the PMV method has negligible 

influence on queries’ run-to-completion time, we did a 

prototype implementation of our techniques in 

PostgreSQL Version 7.3.4 [Pos05] for read-only database. 

Our measurements were performed with the PostgreSQL 

client application and server running on a computer with 

one 2.2GHz processor, 512MB main memory, one 40GB 

disk, and running the Microsoft Windows XP operating 

system. The default setting of PostgreSQL was used, 

where the buffer pool size is 1,000 pages. (We also tested 

larger buffer pool sizes. The results were similar and thus 

omitted.) 

The relations used for the experiments followed the 

schema of the standard TPC-R Benchmark relations 

[TPC]: 
customer (custkey, nationkey, …), 

orders (orderkey, custkey, orderdate, …), 

lineitem (orderkey, suppkey, …). 
 

Table 1. Test data set. 

 number of tuples total size 

customer 0.15×s M 23×s MB 

orders 1.5×s M 114×s MB 

lineitem 6×s M 755×s MB 

 

s is the scale factor of the database. In our experiments, 

on average, each customer tuple matches ten orders tuples 

on the attribute custkey. Each orders tuple matches 4 

lineitem tuples on the attribute orderkey. 

We used the following two query templates: 

Template T1: Find lineitems whose parts were provided 

by certain suppliers and sold on certain days. 
select * from orders o, lineitem l where o.orderkey=l.orderkey  

and (o.orderdate=d1 or … or o.orderdate=de)  

and (l.suppkey=s1 or … or l.suppkey=sf);  

Template T2: Find lineitems whose parts were provided 

by certain suppliers and sold to certain customers on 

certain days. 
select * from orders o, lineitem l, customer c 

where o.orderkey=l.orderkey and o.custkey=c.custkey  

and (o.orderdate=d1 or … or o.orderdate=de)  

and (l.suppkey=s1 or … or l.suppkey=sf)  

and (c.nationkey=n1 or … or c.nationkey=ng);  

We built an index on each selection/join attribute. Before 

we ran queries, we ran the PostgreSQL statistics collection 

program on all the relations. For either template, due to 

the low selectivity of the selection attributes, the query 

plan is not fully pipelined and thus traditional query 

execution cannot provide any result until it almost 

finishes. 

For the template T1, each basic condition part is a 2-

tuple (di, sj). For the template T2, each basic condition part 

is a 3-tuple (di, sj, nk). We built two PMVs, one for T1 and 

the other for T2. Either PMV contains 20K entries. Each 

entry can store one basic condition part bcp and F query 

result tuples that belong to bcp. (For each basic condition 

part, the number of query result tuples that belong to it is 

greater than F.) 

For the template T1, its combination factor is defined as 

h=e×f. For the template T2, its combination factor is 

defined as h=e×f×g. In Operation O1, the Cselect of each 

query from T1/T2 is broken into the same number (h) of 

condition parts, where each condition part is a basic 
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condition part itself, and one of these h basic condition 

parts exists in the PMV. We performed three experiments. 

Each experiment was repeated a large number of times (a 

large number of runs). All the reported numbers are 

averaged over these runs. 
 

Number of Tuples 
In this experiment, we fixed h=4 and s=1. We varied F, 

the number of query result tuples stored in each entry of 

the PMV, from 1 to 5. 

Figure 8 shows the 

impact of F on the 

overhead of our 

techniques. For a fixed 

F, the overhead of our 

techniques for the 

template T2 is greater 

than that for the 

template T1. This is 

because T2 is more 

complex than T1: T2 joins three relations, while T1 joins 

two relations. As a result, the basic condition parts 

generated from T2 are more complex than those generated 

from T1. Also, the query result tuples of T2 are longer than 

that of T1. Recall that in our PMV method, both basic 

condition parts and query result tuples are checked. 

The overhead of our techniques increases with F. This is 

easy to understand, as for each entry of the PMV, F query 

result tuples stored there are checked. 
 

Combination Factor 

In this experiment, 

we fixed F=3 and s=1. 

We varied the 

combination factor h 

from 1 to 10. Figure 9 

shows the impact of h 

on the overhead of our 

techniques. The larger 

the h, the more basic 

condition parts a query 

generated. Then the 

RDBMS needs to spend more time on dealing with all 

these basic condition parts. As a result, the overhead of 

our techniques increases with h. Again, for a fixed h, the 

overhead of our techniques for the template T2 is greater 

than that for the template T1. 
 

Database Scale Factor 
In this experiment, we fixed h=4 and F=3. We varied 

the database scale factor s from 0.5 to 2. The purpose of 

this experiment is to show that our techniques have 

negligible influence on queries’ run-to-completion time. 

 Figure 10 shows both the overhead of our techniques 

and the query execution time. The lines for “PMV T1/T2” 

represent the overhead of our techniques. The lines for 

“execute T1/T2” represent the query execution time. The y-

axis uses logarithmic scale. 

Our techniques 

examine query result 

tuples rather than the 

data set. Also, our 

techniques mainly 

perform fast in-

memory operations 

(recall that a 

significant portion of 

the PMV is cached in 

memory). Hence, compared to the query execution time, 

the overhead of our techniques is more than five orders of 

magnitude smaller. Since the cost of Operations O1 and O2 

is less than the overhead of our techniques, the RDBMS 

can use the PMV to provide partial query results within a 

millisecond. 
 

5.3 Maintenance Overhead 

We use an analytical model to gain insight into the 

maintenance overhead of PMVs vs. MVs when their base 

relations get changed. A similar analytical model for MV 

maintenance has been validated in a commercial RDBMS 

(NCR Teradata) in [LNE+03]. The goal of this model is 

not to accurately predict exact performance numbers in 

specific scenarios. Rather, it is to identify and explore 

some of the main trends that dominate in the PMV 

method. (PostgreSQL currently does not support MVs. As 

a result, we were not able to compare the actual 

maintenance overhead of PMVs vs. MVs in PostgreSQL.) 

Consider the template in Figure 1 and its corresponding 

partial materialized view VPM. The materialized view VM 

in Figure 2 is the containing MV of VPM. The maintenance 

overhead of VM and VPM is compared. We make the 

following simplifying assumptions in this model: 

(1) VPM has an index Ia on R.a. VM has an index. Relation 

R (S) has an index IR (IS) on the join attribute. All the 

indices are non-clustered. 

(2) In a single transaction T, p×|∆R| tuples are inserted 

into R and (1-p)×|∆R| tuples are deleted from R. 

These |∆R| tuples are uniformly distributed on the 

join attribute. For each tuple tR, there are M matching 

tuples tS in S that satisfy tR.c=tS.d. Index nested loops 

is used for the join with S. 

(3) The overhead of searching the index IS once is a 

constant SEARCH. If M tuples tS of S are found to 

match a tuple tR through index search, the overhead of 

first fetching these M tuples tS and then joining them 

with tR is M×FETCH. 

(4) The overhead of inserting a tuple into VM is 

INSERTVM. The overhead of deleting a tuple from VM 

is DELETEVM. The overhead of searching the index Ia 

on VPM once is a constant SEARCH. 

(5) For each tuple tR that is to be removed from R, with 

probability q, no tuple exists in VPM that has the same 

a attribute value as tR and thus there is no need to 

maintain VPM. With probability 1-q, one or more 

tuples exist in VPM that have the same a attribute value 

Figure 8. Overhead of our techniques 

(number of tuples experiment).
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Figure  9. O verhead of our techniques 

(combination factor experiment).
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Figure  10. Query exe cution time vs. overhead of 

our techniques (database scale  factor experiment).
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Figure  11. TW  for transaction T .
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Figure 12. Speedup ratio gained by the  

partial material ized view method.
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as tR. Removing these tuples from VPM has overhead 

DELETEVPM. 

For each tuple tR, the total workload TW, which is 

defined as the total work done, is used as the cost metric. 

For both VM and VPM, the same updates must be performed 

on base relation R. Because of this, our model omits the 

cost of these updates and focuses on the maintenance cost 

of VM/VPM. The total workload for transaction T is |∆R| 

times the average TW for a tuple tR. 

 We first consider the materialized view VM. For each 

tuple tR, there are two possible cases: 

(1) With probability p, tR is inserted into R. In this case: 

(a) Searching the index IS once has overhead 

SEARCH. (b) Fetching the M matching tuples tS of S 

and then joining them with tR has overhead 

M×FETCH. (c) M join result tuples are obtained. 

Inserting them into VM has overhead M×INSERTVM. 

Thus the total workload TW for tR is 

SEARCH+M×FETCH+M×INSERTVM. 

(2) With probability 1-p, tR is removed from R. Compared 

to the case of insertion, the M join result tuples needs 

to be deleted (rather than inserted) from VM, which 

has overhead M×DELETEVM. Thus the TW for tR is 

SEARCH+M×FETCH+M×DELETEVM. 

So for VM, the average total workload TW for each tR is 

SEARCH+M×FETCH+M×[p×INSERTVM+(1-p)×DELETEVM]. 

Now we consider the partial materialized view VPM. For 

each tuple tR, there are two possible cases: 

(1) With probability p, tR is inserted into R. In this case, 

there is no need to maintain VPM. The total workload 

TW for tR is 0. 

(2) With probability 1-p, tR is removed from R. In this 

case (see Section 3.5): (a) The overhead of searching 

the index Ia on VPM once is SEARCH. (b) With 

probability 1-q, one or more tuples with the same a 

attribute value as tR are found in VPM. Removing these 

tuples from VPM has overhead DELETEVPM. 

So for VPM, the average total workload TW for each tR is 

(1-p)×[SEARCH+(1-q)×DELETEVPM].  

In the following, we assume that SEARCH takes 0.02 

I/O. FETCH takes one I/O. INSERTVM takes 0.02 I/O (in-

memory append). (A page can contain a large number of 

tuples. Hence, the average logging overhead for inserting 

a tuple into VM is a small percentage of one I/O.) 

DELETEVM takes two I/Os (one read plus one write). 

DELETEVPM takes 0.03 I/O (a significant portion of VPM is 

cached in memory). Our conclusion would remain 

unchanged by small variations in these assumptions. 

Setting q=95%, M=1, and |∆R|=1,000, we present in 

Figures 11 and 12 the resulting performance of both the 

MV method and the PMV method. Figure 11 shows the 

total workload for transaction T. The y-axis uses 

logarithmic scale. The maintenance of VPM mainly 

performs cheap in-memory operations, while the 

maintenance of VM requires a large number of expensive 

I/Os. Hence, for a fixed percentage of insertion p, 

maintaining VPM is at least two orders of magnitude 

cheaper than maintaining VM. 
 

 

 

 

 

 

 

 

 

 

 

Inserting a tuple into VM is less expensive than deleting 

a tuple from VM. Also, there is no need to maintain VPM in 

the presence of insertion into base relation R. As a result, 

both the maintenance overhead of VM and the maintenance 

overhead of VPM decrease as p increases. When p=100%, 

the maintenance overhead of VPM is 0. However, this 

cannot be shown in Figure 11, as the y-axis is on 

logarithmic scale. 

Figure 12 shows the speedup ratio gained by 

maintaining VPM over maintaining VM. This speedup ratio 

increases with the percentage of insertion p, as there is no 

need to maintain VPM during insertion into base relation R. 

We can use the techniques in [LNE+03] to extend the 

above analytical model so that it can handle the situation 

that indices are clustered, and/or transaction T is large 

enough for hash/sort-merge join to become the join 

algorithm of choice for the join with base relation S. Also, 

it is straightforward to apply the above analytical model to 

the situation of a (partial) MV defined on multiple base 

relations, and/or T contains updates. In either case, 

experiments with the extended model did not provide any 

insight not already given by the above two-relation model, 

so we omit them here. 
 

6. Related Work 
Partial Materialized Views 

To facilitate exploration of massive data sets, [HH99, 

HHW97] proposed using online aggregation to return 

approximate answers to the user immediately after a query 

is submitted to the RDBMS. Online aggregation focuses 

on aggregate queries. In contrast, our PMV method works 

for both aggregate and non-aggregate queries. 

[AC99, BCG01] proposed building histograms “for 

free” by analyzing query results rather than checking the 

relation. In our case, if base relations do not change, the 

RDBMS both fills content into and updates PMVs “for 

free” by analyzing query results. 

[SS95, Sto89] use partial indices to reduce index 

maintenance overhead. Upon an insertion into a relation R, 

the partial index Ip on R needs to be maintained 

immediately if this insertion satisfies the selection 

condition in the definition of Ip. In contrast, the PMV 

defined on R is not maintained immediately. 

[OR92] proposed using sample MVs to support 

approximate query answering. A sample MV is a random 

sample of tuples in a MV. The maintenance of sample 
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MVs is more expensive than that of PMVs, as randomness 

needs to be maintained in sample MVs. Also, since a 

sample MV does not focus on hot query result tuples, the 

probability that it can provide partial results to a query is 

low. In a read-only environment, [GLR00] proposed using 

icicles samples to support approximate query answering 

for key-foreign key join queries. In contrast, PMVs work 

in a general environment that allows updates. 

[DRS+98] uses chunks to cache OLAP query results in 

the middle tier. [DRS+98] focuses on aggregate queries in 

a read-only environment, and imposes an order on each 

dimension if no implicit order exists. In contrast, our 

method works for both aggregate and non-aggregate 

queries in a general environment that allows updates, and 

does not impose non-natural orders on attribute values. 

In a data stream environment, to speed up the 

processing of continuous multi-way windowed join 

queries, [BMW+05] proposed caching a subset of the join 

result tuples of some of the streams. If a key value v exists 

in the cache, all the join result tuples related to v must also 

exist in the cache. This requires maintaining the cache 

immediately upon arrival of new tuples from the streams. 

In contrast, upon insertion into base relations, PMVs are 

not maintained immediately. 

In a distributed data integration environment, [HZ96] 

and [Ora00] define a PMV as a MV whose definition 

contains a subset of all the attributes and a where clause, 

respectively. Both PMV definitions are different from the 

one used in this paper. 
 

Ranking Query Result Tuples 

[CDH+04] uses attributes that are not specified in the 

query to rank result tuples. Before it can take effect, the 

ranking method in [CDH+04] needs to first gain some 

knowledge by analyzing both some previous workload and 

the data set. This is the start-up cost. The gained 

knowledge is static and can become imprecise if either the 

query pattern or the data set changes. In contrast, our 

ranking method is more dynamic. It does not have a start-

up cost while the popularity information kept in the data 

structure gets continuously updated. This is especially 

advantageous if either no previous workload is available 

or the workload pattern changes significantly over time. 

To address the information overload problem, [CCH04] 

proposed categorizing query result tuples. This is 

orthogonal to our approach of ranking query result tuples. 

In the case that no tuple satisfies the query condition 

completely, [ACD+03, BCG02, Fuh90, Mot88] proposed 

ranking tuples according to their “proximity” to the query. 

In a data integration environment, [BM02] ranks query 

result tuples according to the credibility of data sources, 

while [Coh98] ranks query result tuples according to 

textual similarity. [ACD02, HP02] proposed keyword 

search in RDBMS. All these work focus on a different 

environment from ours. 
 

7. Conclusion 

We have presented a partial materialized view method 

that can provide transactionally consistent, immediate 

partial query results to the user without increasing queries’ 

run-to-completion time much, by caching hot query results 

in PMVs. Our experiments with a simulation study, a 

theoretical analysis, and a prototype implementation in 

PostgreSQL show that PMVs have low storage and 

maintenance overhead. In a large number of cases, they 

can provide partial results almost instantly. Many PMVs 

can reside in the RDBMS simultaneously. Also, our 

method has negligible influence on queries’ run-to-

completion time. Furthermore, our techniques are 

extended to address the information overflow problem, the 

result of which is a method for ranking query result tuples 

according to their popularity. Both the PMV method and 

the query result ranking method can facilitate the 

exploration of massive data sets. 
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