
RC24090 (W0610-148) October 26, 2006
Computer Science

IBM Research Report

TxBeans: Light-Weight Enablement of Transactional,
Intermittently Connected, XML-Based Applications

Avraham Leff, James T. Rayfield
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

1

TxBeans: Light-Weight Enablement Of
Transactional, Intermittently Connected,

XML-Based Applications
Avraham Leff James T. Rayfield

Abstract

XML documents are the heart of many light-weight (e.g., Web 2.0) applications.TXBEANS is a light-
weight and unintrusive way for such applications to transactionally manipulate their XML documents.TXBEANS

also enables such applications to execute while disconnected from the server and then transparently merge this
work with the master-copy maintained on the server.TXBEANS is designed to support XML documents in
general, but is customized for Apache XMLBeans. Our implementation is easily modified to support other
XML Document APIs. This white-paper explains the function provided byTXBEANS, discusses the relation-
ship between XMLBeans andTXBEANS, and gives detailed examples of theTXBEANS API and programming
model.

Index Terms

XMLBeans, TxBeans, XML components, disconnected applications, method replay

I. I NTRODUCTION

XML documents are the heart of many light-weight (e.g., Web 2.0) applications, but are typically manip-
ulated without the benefit of persistence and transaction services. Although the benefits of such services
are well-known in the context of server-side applications, it is often assumed that they are too “heavy-
weight” for use in client environments. Also, while developers would like their applications to execute in
both “connected” and “disconnected” mode, in practice, this is difficult to accomplish. Because the master
copy of the application’s data is stored on the server, applications that cache their data in order to execute
in disconnected mode must somehow propagate their work when they reconnect to the server. It is often
assumed that this task (a “reconnection” service) is too difficult to perform for applications in a general
fashion.

TXBEANS shows that these services can be provided in a light-weight and unintrusive way to Java
developers. It provides:

• Light-weight file-based persistence and transactions. Two styles of transactions are provided to
developers:

– A JTA [2] implementation providing fine-grained transactions, under programmer control.
– “Auto-magical” transactions provided automatically to all methods declared on a specified

interface.
• Middleware that captures a disconnected client’s work and propagates it to the server. Sophisticated

“method-replay” algorithms merge the client’s work to the master-copy maintained on the server.

A. TxBeans, XMLBeans, & XML Documents

TXBEANS supports applications whose state derives from XML documents (in contrast, for example, to
relational databases). AlthoughTXBEANS is designed for XML documents in general, it is customized for

IBM T.J. Watson Research Center email: avraham@ibm.com
IBM T.J. Watson Research Center email: jtray@ibm.com

Leff & Rayfield: TXBEANS 2

use with XMLBeans applications. XMLBeans [5] provides a component model for XML documents using
a Java-language API. A document’s “types” are specified using an XML Schema [8]: when this schema
is compiled, XMLBeans generates Java classes corresponding to the schema’s types. Developers can
then access and navigate document instances with an API that is more “Java-friendly” (e.g., JavaBeans-
style accessors) than the XML Document Object Model (DOM) [7]. In thisXmlObject-based approach,
XMLBeans provides strongly-typed access to an XML document. XMLBeans also provides efficient low-
level access to the XML Infoset through anXmlCursor. More information about XMLBeans can be found
at [6].

Our experience with XMLBeans leads us to conclude that XMLBeans is the technology of choice for
building Java applications that use a “model” represented in XML. TheTXBEANS middleware enhances
the XMLBeans technology to provide transactional support [1] for access to the XML documents that
are encapsulated by XMLBeans. XMLBeans does not provide isolation between concurrent access to an
XML document, nor does it ensure that the document is updated in an atomic manner.TXBEANS supplies
this function in a way that is minimally invasive to existing XMLBeans applications.

Typically, an application using XMLBeans begins by using an XMLBeans “Factory” to parse an XML
document that is stored in a file (or string, HTTP URL, etc.) into a “Document” that corresponds to the
top-level element of a schema (see Code Fragment 1).

Code Fragment 1Hydrating a Stored XMLBeans Document

File orderEntry = new File("c:/orderEntry.xml");
OrderEntryDocument oeDocument = null;
try {

// Bind the stored XML to an XMLBeans type.
oeDocument = OrderEntryDocument.Factory.parse(orderEntry);

}
catch (Exception e) {

e.printStackTrace();
}

The application’s business logic then instantiates XMLBeans components as needed from the document
(see Code Fragment 2).

Finally, if the document is modified (e.g., an agent places a new order) the document is saved to a file
as shown in Code Fragment 3).

II. T RANSACTIONAL XMLB EANS APPLICATIONS

In a sense, one solution for transactionally enabling XMLBeans applications is trivial: simply store the
XML document in a database such as Derby or MySQL and require that every access to the correspond-
ing XMLBeans components be scoped in a transaction. The problem with this approach is that it runs
somewhat counter to the light-weight flavor of XMLBeans since it requires that a database be installed
everywhere that an XMLBeans application is developed and deployed.TXBEANS therefore takes the ap-
proach of requiring only that the XML document be stored in the local file system. Although a file-based
solution is less robust than a database solution, it is very simple to install.

In TXBEANS, a document’s global XMLBeansXmlObject is stored in aXmlDataBase , and the
association between the database and the file system is done by aXmlDataBaseFactory (see Code
Fragment 4).

TXBEANS requires only that XMLBeans developers:

Leff & Rayfield: TXBEANS 3

Code Fragment 2Using an XMLBeans Document

static Customer
getCustomerById(final OrderEntryDocument document, final String customerId)

{
final StringBuffer pathExpression =

new StringBuffer("\$this/ord:OrderEntry/ord:customers[ord:id=");
pathExpression.append(SQ+customerId+SQ);
pathExpression.append(’]’);
final XmlObject[] results = // Execute the query

document.selectPath(_namespaceDeclaration + pathExpression.toString());
Customer customer = null;
boolean hasResults = false;
if (1 == results.length)

customer = (Customer) results[0];
else

throw new RuntimeException
("Could not find Customer with id = "+customerId);

return (customer);
}

Code Fragment 3Saving an XMLBeans Document

try {
final OutputStream outputStream =

new FileOutputStream("c:/orderEntry.xml");
document.save(outputStream);
outputStream.close();

}
catch (IOException e) {

System.err.println ("Problem writing the xml document: "+e);
}

1. Access an XMLBeans document (the top-levelXmlObject) through theXmlDataBase API
discussed below.

2. Wrap all such access in a transaction (including the initialXmlDataBase.setDocument()).

A. Using an XmlDataBase

Code Fragment 5 shows how an XMLBeans document is read from a XmlDataBase and, once read,
used with the existing XMLBeans API.

As shown in Code Fragment 6, after an XMLBeans application reads and modifies the XML document,
it can write it back to the database.

Finally, the schema type of the documents stored in an XmlDataBase can be queried through the
getSchemaType() API.

Figure 1 shows the architecture through whichTXBEANS provides transactional support for XMLBeans
applications.

B. XmlDataBase Access & Transactions

As mentioned above, all application access of an XmlDataBase must be mediated through a transaction.
As shown in Code Fragment 7,TXBEANS provides an implementation of the standard
javax.transaction.UserTransaction interface [2].

Leff & Rayfield: TXBEANS 4

Code Fragment 4Creating aTXBEANS Database

final String directoryName = "c:/tmp/orderEntry";
final java.io.File dbDirectory = new File(directoryName);
dbDirectory.mkdir();
XmlDataBase xmldb = XmlDataBaseFactory.getSingleton().create

(directoryName, OrderEntryDocument.type);

xmldb.setDocument(OrderEntryDocument.Factory.newInstance());

Code Fragment 5An XMLBeans Application Reading a Document From a XmlDataBase

XmlObject db = xmldb.getDocument();
OrderEntry orderEntry = db.getOrderEntry();
int numberOfCurrentOrders = orderEntry.sizeOfOrdersArray();

Code Fragment 6Writing an XML Document To a XmlDataBase

XmlDateTime entryDate = XmlDateTime.Factory.newInstance();
entryDate.setCalendarValue(currentTime);
newOrder.xsetEntryDate(entryDate);
orderEntry.insertNewOrders(numberOfCurrentOrders);
orderEntry.setOrdersArray(numberOfCurrentOrders, newOrder);

XmlObject [Document]

XMLBeans

Transaction
Manager

Application

XMLDataBase

FileDataBase

File

Fig. 1. TXBEANS: Providing Transactions for XMLBeans

Code Fragment 7TXBEANS API for Creating and Using Transactions

final UserTransaction userTran = UTFactory.getUserTransaction();
userTran.begin();
db.setDocument(document);
userTran.commit();

Leff & Rayfield: TXBEANS 5

If using this approach, developers can take advantage of thecom.ibm.oats.txnengine.TxUtils
convenience methods such asTxUtils.begin() andTxUtils.commit() .

Alternatively,TXBEANS allows developers to specify that one or more Java interfaces be automatically
enhanced so that their methods execute transactionally. This is the same approach thatTXBEANS uses to
support intermittent client-side connectivity (Section III). Figure 8 shows how a developer:

1. Specifies a “PlaceOrder” interface,
2. Provides an implementation of that interface,
3. Gets an instance of the “PlaceOrder” interface from the “ProxyFactory” provided byTXBEANS,
4. Invokes “createOrder” and “placeOrder” methods in the application. At runtime, if the methods are

not already executing in a transaction,TXBEANS will automatically begin and commit the required
transactions.

Code Fragment 8TXBEANS Declarative TxBeans Transactions

ProxyFactory proxyFactory = ProxyFactory.getSingleton();
boolean logMethodExecution = true;
PlaceOrder placeOrder = (PlaceOrder) proxyFactory.get

(new PlaceOrderImpl(), logMethodExecution);
placeOrder.createOrder(...);
placeOrder.placeOrder();

C. Implementation

The two main constructs in theTXBEANS implementation are theFileDataBaseand theXmlDataBase.
A FileDataBase:

• Manages a single file.
• Provides locking within the thread of one JVM.
• Provides locking across JVMs on a single machine by using ajava.nio.Channel class.
• Uses a Log file to implement atomic writes.

A XmlDataBase:
• Manages a single XML document that is stored in a single file. It thus builds on (and hides) the

FileDataBase API.
• Exposes a document as the top-level XMLBeans XmlObject construct

Listing 1 shows the relative size of theTXBEANS and XMLBeans jar files. (Note thatoatsutils and
txnengine contain many classes that are not needed forTXBEANS, and could potentially be reduced
made even smaller.)

=========================== TxBeans ================
9865 jta.jar

91100 oatsutils.jar
60547 txbeans.jar
52219 txnengine.jar

=========================== XMLBeans ================
23630 jsr173_1.0_api.jar

2289378 saxon8.jar
2635867 xbean.jar

5168 xbean_xpath.jar

Listing 1: TXBEANS and XMLBeans Code Size (Jar Files in Bytes)

Leff & Rayfield: TXBEANS 6

III. I NTERMITTENTLY DISCONNECTEDXMLB EANS APPLICATIONS

Currently, an XMLBeans application that executes on a disconnected device, must hand-code function
to propagate the modified document to the version that resides on the server. Ideally, such propagation
should be transactional: i.e., maintaining the transactional boundaries of the work performed on the dis-
connected deviceandthe work that was concurrently performed on the server.TXBEANS provides generic
middleware for this task and thus transparently supports intermittently disconnected XMLBeans applica-
tions. In contrast to a “data-replication” approach, we use the method-based approach discussed in [4][3].

In order for developers to exploit thisTXBEANS function, developers must provide one or more Java
interfaces with the methods that are to be (1) logged on client and (2) replayed on the server. The applica-
tion must then get instances of these interfacesvia the “ProxyFactory” singleton’sget method, passing
it an object (provided by the developer) that implements the required interface. Nothing else is done by
the developer! Whether in connected or disconnected mode, methods are invoked in the same fashion.
TXBEANS automatically supplies (optional transactional) and logging behavior for each method method
invocation. BecauseTXBEANS uses Java’s dynamic proxy support, no code generation is required.

The processing flow for an intermittently disconnected application running on top of theTXBEANS

middleware is the following:
1. Client device copies XML documents in preparation for disconnected operation.
2. Client executes one or more XMLBeans applications that access XML documents.TXBEANS pro-

vides automatic transaction begin/commit (begin/rollback when exceptions occur). In contrast to
the approach described in Section II, application code isnotmodified to specify transaction behav-
ior. Instead, a developer specifies which classes should beTXBEANS-enhanced, and theTXBEANS

middleware automatically provides the required transactional behavior on a per-method basis. In
addition,TXBEANS automatically logs the execution of top-level transactions for subsequent replay
on the server. The log records are stored in anTXBEANS XML database.

3. Upon reconnection to the server:
(a) The client accesses its set of logged methods from the

com.ibm.txbeans.methodlog.MethodLogger singleton
(b) The client transmits the logged methods to the server by transmitting them to the (com.ibm.txbeans.server.SyncServlet)

server middleware.
(c) TheSyncServlet replays the client’s logged methods against the server’s master copy of

the XML documents. This automatically propagates the client’s disconnected work to the
server.

REFERENCES

[1] J. Gray and A. Reuter.Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San
Francisco, CA, USA, 1993.

[2] Java Transaction API. http://java.sun.com/products/jta, 2006.
[3] A. Leff and J. T. Rayfield. Programming model alternatives for disconnected business applications.

IEEE Internet Computing, 10(3):50–57, May/June 2006.
[4] A. Leff and J. T. Rayfield. Programming models and synchronization techniques for disconnected

business applications.Advances in Computers, 67:85–130, 2006.
[5] XMLBeans. http://xmlbeans.apache.org, 2006.
[6] XMLBeans Documentation. http://xmlbeans.apache.org/documentation/index.html, 2006.
[7] Document object model (DOM). http://www.w3.org/TR/DOM-Level-2-Core/, 2006.
[8] XMLSchema. http://www.w3.org/XML/Schema, 2006. See also ’XML Schema’ published by

O’Reilly.

