
RC24091 (W0610-156) October 27, 2006
Computer Science

IBM Research Report

WebRB: A Different Way to Write Web-Applications

Avraham Leff, James T. Rayfield
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

WebRB: A Different Way To Write
Web-Applications

Avraham Leff James T. Rayfield

Abstract

Relational Blocks(RBLOCKS) is a visual language that enables developers to assemble enterprise appli-
cations without adding imperative code.WebRBis an implementation ofRBLOCKS for a web-application
environment. Its visual editor runs in a standard browser, and its assembled applications execute, as well,
in a standard browser. TheWebRBserver is responsible for storing applications and their data on behalf of
clients, and instantiating them as they are needed in client browsers. The server instantiates an application by
creating the web pages that run in the client browser and by providing the required inter-page navigation and
associated data-flows.

Index Terms

relational blocks, web relational blocks, programming web applications, visual programming languages,
declarative programming, relational algebra, relational model, software as a service

I. I NTRODUCTION

Relational Blocks(RBLOCKS) [1] is a visual language that allows developers to assemble enterprise
applications without adding any imperative code.WebRBis a client/server implementation ofRBLOCKS

for web-applications in which theWebRBserver provides the following services to standard web browser
clients:

• The server provides a visual editor that allows developers to assemble web-applications in a stan-
dard browser. Each web page is constructed by “dragging & dropping” prototype widget, algebra,
and model blocks from a palette, and wiring them together. Developers use the editor to specify
inter-page navigation and data flows.

• The server persistently stores a developer’sWebRBpage designs for later use.
• The server validatesWebRBpage designs and reports errors to the visual editor.
• The server instantiates theWebRBapplication as a web-application that executes in a standard

browser.
Typically, applications that require much user interaction – such as program editors – reside on the

client. The assumption is that having them reside on the server will result in unacceptable application
latency.WebRBshows that a powerful visual editorcanreside on the server and still provide a good user
experience. We therefore prefer to use the “Software as a Service” model (SaaS [2]) so thatWebRBis
deployed, managed, and updated to servers rather than to end-user computers. Having our application
reside on a server makes maintenance much simpler, since bug-fixes and improvements are installed only
on the server, and are immediately available to all clients. Another advantage is that collaboration between
multiple developers is facilitated since the server page-designs can be shared. Because theWebRBeditor
runs in a standard browser, it is especially suited to benefit from some of the advantages of the SaaS
model. First, no installation is required, in contrast to “rich” editors such as those based on GEF [3] and
Eclipse [4]. People prefer not to have to install yet-another-application which might break their computer,
be incompatible with existing applications, or require patches. Second, browsers are so ubiquitous that it’s

IBM T.J. Watson Research Center email: avraham@ibm.com
IBM T.J. Watson Research Center email: jtray@ibm.com

Leff & Rayfield: WebRB 2

Fig. 1. Blocks and Wires

hard to find yourself using a computer without a browser anymore. Users can access theWebRBservice
on their “home” computer, or even when using somebody else’s computer.

WebRBthus exhibits three interesting features. First, as an implementation ofRBLOCKS, developer
productivity can increase because of the language features discussed in [1]. Second, the visual editor’s
feature-set and responsiveness resemble “rich client” behavior (e.g., those developed using theGraphical
Editing Framework[3]) — even though it executes in a standard browser. Third,WebRBapplications are
deployed as standard web-applications, that execute in a standard browser, without developers adding any
client-side or server-side imperative code.

We discuss these features in this paper. After a summary of theRBLOCKS visual language, we discuss
the visual editor in Section II, and the runtime environment in Section III. We offer some conclusions
aboutWebRB’s use of web browsers in Section IV.

A. Relational Blocks Language

RBLOCKS is a visual language whose programs consist of blocks (of various types) that are inter-
connected to form a relational “circuit”. The circuit is relational because the language uses only the
relation data-type, and because data transformations are described using relational algebra. (See [5],
which provides a good introduction to a type system based on the relational model.)

Figure 1 shows three blocks (two text widgets and aJOIN block) connected so that theJOIN block’s
output is a relation consisting of a two-attribute tuple. (We prefer to avoid the “persistent database”
connotations associated with SQL terminology: e.g., we refer toattributes, rather thancolumns). Each
of the text widgets have anoutputpin (“outputValue”); theJOIN block has twoinput pins (“input0” and
“input1”), and one output pin (“output”). An input pin implies that the block can receive relation-valued
input from other blocks. An output pin implies that the block can transmit relation-valued output to other
blocks. Wires specify relational data-flow between two blocks by connecting input pins to output pins.

All “primitive” blocks fall into one of three categories:model, widgets, andalgebra. These correspond,
respectively, to the well-known Model/View/Controller paradigm. Model blocks are used to access and
update the state of the application. Model-block updates occur when a “GUI event” occurs; for example,
when a user clicks on a “submit” button. Broadly speaking, model blocks may be backed by either
persistent or transient storage; this is an application design issue and theRBLOCKS model API is the
same for both. A model block’s output is the current state of the relation; its input is the desired next state
of the relation.

In contrast, Algebra blocks in principle will update their outputs whenever their input value(s) change
(although they are not necessarily implemented this way). Thus, a Join block’s output is always the rela-
tional join of it’s two inputs. Algebra blocks are used to declaratively specify an application’s controller
logic. RBLOCKS uses a formulation of the relational algebra based onRelational A([5], Appendix A).
Relational algebra is in many ways a perfect match for a relational model because it provides a declarative
description of (1) what data should be extracted from the model and (2) how that data should be manipu-
lated [6]. Also, relational algebra operations are reasonably simple in isolation, small in number, and can

Leff & Rayfield: WebRB 3

be easily composed to form more complex operations.
Widget-block outputs are always based on the current contents of the widget; e.g. a text-input widget

always provides its current contents on its output pin. However, non-interactive widgets (e.g. text, tables)
are only updated when a GUI event occurs. Widget blocks are rendered at runtime as an HTML GUI
widget, but also implement the relational API. Program-writeable widgets have relation inputs (e.g., a
single-tuple input to a label block withtext andfont attributes). Program-readable widgets have relation
outputs (e.g., a single-tuple output from a slider block containing a “value” attribute). More complicated
widgets such as tables and lists are multi-tuple relations.

Because all blocks have the same visual representation and semantics,RBLOCKS does not place any
constraints on which blocks can talk to other blocks. For example, an algebra block’s inputs can include
the current state of model blocks or the current values of the readable widgets. Similarly, an algebra
block’s output can be wired to a model block or to a writeable widget block.

A developer assembles instances ofRBLOCKSprimitive blocks to producepageswith higher-level func-
tion. Such pages can be embedded in another page in a hierarchical approach to application construction.
Pages have exactly the same relational API and visual representation as primitive blocks.

II. W EBRB EDITOR

TheWebRBeditor runs in a standard Mozilla Firefox browser and is used to visually constructRBLOCKS

programs. BecauseRBLOCKS is a visual language, there is a good fit between the editor and the programs
that it constructs. Readers who wish to experienceWebRB“live” can currently access it as a free alpha-
Works service [7]. Figure 2 shows that theWebRBeditor is comprised of several frames. We focus here on
the “palette” (which contains the set of available primitive blocks); the “page editor” (used to edit a single
web-page); and the “property editor” (used to customize a primitive block instance).

As discussed in Section I, theWebRBeditor is a “service” in the sense that no code is down-loaded and
installed on a developer’s computer. Instead, a developer’sWebRBpage designs are stored on a server,
and loaded into the developer’s browser as needed. Once we decided that theWebRBeditor should be
a “service”, we faced the challenge of making it responsive and “feature-rich” despite the fact that no
software is installed on the developer’s computer. For example, developers can “drag and drop” blocks
from the palette to precise positions on the page editor. At runtime, corresponding GUI widgets are
rendered at precisely those positions on the web-page. This is much easier than using imperative code to
draw and position the widgets. A wire is drawn by “left-clicking” near an given pin, dragging the mouse
to the other pin while holding the left mouse-button down, and then releasing the mouse button. Wires can
be deleted by clicking (to select the wire) and hitting the “delete” key; blocks (and all of their wires) are
deleted by clicking (to select the block) and hitting the “delete” key. Also, whenever a developer selects
a block, a block-specific editor is loaded into the property editor frame, and populated with that block’s
state so it can be customized.

We solved this challenge by structuring the life-cycle of a page-design so that the browser communicates
infrequently with the server. Communication is required for page life-cycle operations (create, load, save,
and delete a page design), page validation, and for some property-editor functions (such as loading page-
and table-selector widgets). Otherwise, we use “AJAX” [8] technologies such as DHTML, JavaScript,
and XmlHttpRequest to enable the editor to manipulate a page-design entirely within the browser. Every
primitive block is implemented as a JavaScript class in which the block itself is drawn with HTML. Wires
are drawn using SVG [9], since HTML does not have enough functionality to draw diagonal lines. Wires
are made easily “selectable” by using SVG to trace a transparent outline that is much thicker than the
visible outline itself. Once a block is selected, we use a combination of CSS absolute positioning and
mouse events to implement “dragging”. A block’s JavaScript code uses the DOM events API to track

Leff & Rayfield: WebRB 4

Fig. 2. TheWebRBEditor

events such as “mouseup” and “mousemove” to determine where a block has been dragged to. Methods
such as Firefox’sgetComputedStyle return the computed CSS for rendered HTML. We can thus
calculate a block’s height and width, and determine where to draw pins and selection outlines.

Page-design communication between theWebRBeditor and the server (e.g., a “save” or “load” op-
eration), is implemented with a framework based on XML DOM trees [10]. Each block type has a
getState() method that returns a DOM tree that contains all state (e.g., screen position and prop-
erty settings) needed to subsequently hydrate the block (via its JavaScript constructor method). Wires
also have agetState() method that returns a DOM tree indicating the endpoints (block and pin). We
use the Mozilla browser’s XMLSerializer API to serialize an entire page-design as an XML document that
contains the state of all the page’s DOM trees. Finally, we invoke theXmlHttpRequest API to transmit
the XML document to the server, where it is persistently stored in a database table. Loading a page-design
from the server into theWebRBeditor is the mirror image of this process.

III. W EBRB RUNTIME

The WebRBruntime is responsible for deploying the page-designs discussed in Section II as web-
applications that execute in a standard browser. We explain in this Section how our runtime can do this
without developers adding any code on either the client or the server. We also explain how individual
page-designs are assembled as a web-application.

Leff & Rayfield: WebRB 5

Fig. 3. Example: an eCommerce “Details” WebRB Page Design

The server does not have to directly manipulate theRBLOCKSvisual language because page-designs are
stored in their serialized XML representation. The XML representation serves as a canonical form of a
given block: it’s instantiated as an PHP object on the server, and as a JavaScript object in the browser. The
WebRBruntime renders aWebRBpage by creating server-side versions of eachRBLOCKS “block”. Model
blocks are implemented as a wrapping of connections to database tables; algebra blocks are implemented
to provide the required algebra function; and widget blocks are implemented so that theirgetHTML()
method produces the correspondingHTML that can be rendered in a web-browser. Block inter-connection
is implemented by driving the specified data-flow from output pins to their input pins, and so on, using a
recursive process.

The initial page of an application is displayed when the client’s browser issues anHTTP GET request:
the server’sWebRBruntime callsgetHTML() to create the initial page, and returns the web-page to
the browser. During initial-page evaluation, widgets with output pins will return empty strings. Once
launched, the server “forgets” about the page until the user interacts with the web-page, causing anHTTP

POSTof the page and its data to the server. TheWebRBruntime uses thePOSTdata to instantiate the cor-
responding server-side version of that web-page, supplies the user-supplied data (e.g., text-field input) to
the widget blocks, and evaluates the resulting relational “circuit”. The runtime must then determine which
web-page should be instantiated next. Consider, for example, Figure 3 which is a screen-shot of a “De-
tails” page-design from an eCommerce web-application. (This is taken from the eCommerce example that
can be imported by users of theWebRBalphaWorks service [7].) This page gives details about a specific
product (NAME, DESCRIPTION, andPRICE). It also shows how developers use “page-transition” blocks
(upper-right) to specify what web-page should be instantiated after a user interacts with the “product de-
tails” page. The “Home” and “Show Cart” navigation buttons are wired to the corresponding eCommerce
pages: only the button that the user clicked will produce theTRUE relation output – thus enabling the page
transition – the other button will produce aFALSE output. In general, exactly one page-transition block
must be enabled for any given evaluation of a page-design. Anything else signifies a logical error in the
design, and is detected and reported by the runtime.

Leff & Rayfield: WebRB 6

One final step is done by theWebRBruntime before instantiating the application’s next web-page. Note
the use of a “page input” block in the lower-left of Figure 3. The developer has specified that a “product
name” input must be provided before this page can be instantiated. (The value of this input isJOIN’d
with the product information database table to create theHTML labels that display the product details.)
Any page-design that specifies a transition to this “Details” page (via a “page-transition” block) will have
to also include a wire to the corresponding input pin of the “Details” page. Figure 4 shows how this
works in practice. The Figure shows screen-shots of two instantiated web-pages. The first is a “Search
Results” page that lets a user type a product query string. In this screen-shot, the user previously queried
for “staplers”, and the eCommerce application returned a populated web-page that allows the user to
drill-down to get more details about the product. The second screen-shot shows the web-page that the
WebRBruntime returns when the user clicks on the “details” button. The “details” button in the “Search
Results” page-design is wired to the “enable” pin of the “Details” page-transition block. In addition, the
table widgetblock feeds the value of that row’sNAME attribute to the “product name” input pin of the
“Details” page-transition block. Therefore, after evaluating theHTTP POSTof the “Search Results” page
(and determining that the “Details” page is to be instantiated next), theWebRBruntime flows theNAME

value into the “Details” page as it is instantiated. The result is shown in the second screen-shot of Figure 4.

IV. CONCLUSION

WebRBis a different way to write web-applications. Rather than using a mix of imperative code (e.g.,
PHP and JavaScript) on both the client and server, a single visual language is used which requires no
additional code from the developer. TheWebRBvisual editor runs in a standard browser, andWebRB
applications execute as web-applications that run in a standard browser.

We note in closing, that although browsers provide a more restricted user-interaction model than so-
called “rich client” editors, this is in some ways a benefit. Developers already understand how to interact
with a browser, and therefore already (mostly) know how to useWebRB. Also, becauseWebRBapplications
are themselves browser-based, we can immediately show the developer the results of any changes. There
is a one-to-one correspondence between a design-page and a web-page: when a developers edits aWebRB
page, she can immediately see the effects of that change in the visual editor, and also execute the page
immediately if desired.

We focused in this paper on the way thatWebRBis implemented as a “software service” in which
the server loads the visual editor into a user’s web browser, and page designs and application state are
stored on the server. The software service model has well-known advantages, but required us to make
the editor responsive and feature-rich while executing in a standard browser. We also explained how
applications written in theWebRBvisual language are translated in a straight-forward way to execute as a
web-applications. Readers can experienceWebRBas a live service [7].

REFERENCES

[1] Avraham Leff and James T. Rayfield. Relational blocks: Declarative visual assembly of enterprise
applications. http://domino.research.ibm.com/library/cyberdig.nsf/, 2006. RC24014.

[2] David Greschler and Tim Mangan. Networking Lessons in Delivering ’Software as a Service’ - Part
I. International Journal of Network Management, 12(5):317–321, September/October 2002.

[3] Graphical Editing Framework. http://www.eclipse.org/gef, 2006.
[4] Eclipse Project. http://www.eclipse.org/eclipse, 2006.
[5] C.J. Date and H. Darwen.Databases, Types and the Relational Model (3rd Edition). Addison-Wesley,

Boston, MA, 2006.

Leff & Rayfield: WebRB 7

Fig. 4. WebRB Pages Executing In the Browser

[6] E. F. Codd. A relational model of data for large shared data banks.Communications of the ACM,
13(6):377–387, 1970.

[7] alphaWorks Services: Web Relational Blocks. http://services.alphaworks.ibm.com/webrb/, 2006.
[8] Justin Gehtland, Dion Almaer, and Ben Galbraith.Pragmatic Ajax: A Web 2.0 Primer. Pragmatic

Bookshelf, 2006.
[9] Scalable Vector Graphics (SVG) 1.1 Specification. www.w3.org/TR/SVG/, 2006.
[10] Document object model (DOM). http://www.w3.org/TR/DOM-Level-2-Core/, 2006.

