
RC24097 (W0611-004) November 1, 2006
Computer Science

IBM Research Report

Bayesian Learning of Markov Network Structure:
Application to Class Probability Estimation

Aleks Jakulin
Department of Statistics

Columbia University
1255 Amsterdam Avenue

New York, NY 10027

Irina Rish
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Bayesian Learning of Markov Network Structure:
Application to Class Probability Estimation

Aleks Jakulin jakulin@acm.org

Department of Statistics, Columbia University, 1255 Amsterdam Ave, New York, NY 10027, USA

Irina Rish rish@us.ibm.com

IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA

Abstract

We propose a simple and efficient approach
to building undirected probabilistic classifica-
tion models (Markov networks) that extend
näıve Bayes classifiers and outperform exist-
ing directed probabilistic classifiers (Bayesian
networks) of similar complexity. Our Markov
network model is represented as a set of con-
sistent probability distributions on subsets of
variables. Inference with such a model can
be done efficiently in closed form for prob-
lems like class probability estimation. We
also propose a highly efficient Bayesian struc-
ture learning algorithm for conditional pre-
diction problems, based on integrating along
a hill-climb in the structure space. Our prior
based on the degrees of freedom effectively
prevents overfitting.

1. Introduction

Learning probabilistic models from data has been an
area of active and fruitful research in machine learn-
ing due to several reasons. First, despite its simplicity,
the näıve Bayes (NB) classifier demonstrated surpris-
ingly high accuracy in many domains, and became a
popular choice in practice. Its success also led to multi-
ple extensions that attempted to further improve the
performance of näıve Bayes by incorporating higher-
order dependencies (e.g., tree-augmented naive Bayes
and Bayesian networks (Friedman et al., 1997)). Sec-
ond, in practical applications we are often interested
not just in accurate classification, but also in accu-
rate estimation of class probability for solving ranking
and cost-based decision problems. Moreover, we may
need to learn joint distribution models that allow an-
swering various probabilistic queries besides comput-
ing the conditional class probability. A popular choice

are graphical probabilistic models such as Markov and
Bayesian networks, which also have an advantage of in-
terpretability as they explicitly represent interactions
among features.

In this paper, we propose a simple and efficient
Bayesian approach that learns undirected probabilistic
models (Markov networks). We evaluate our approach
on the tasks of class probability estimation and clas-
sification. We have chosen undirected models over di-
rected ones since computing the conditional class prob-
ability is an easy inference problem that does not re-
quire an explicit model of a joint distribution provided
by a Bayesian network; it suffices to have an unnor-
malized representation given by a set of potentials in
a Markov network. We also adopt a discriminative
structure learning approach (Grossman & Domingos,
2004; Pernkopf & Bilmes, 2005), using a conditional
likelihood function to score model structures. Be-
ing Bayesian about the structure, we integrate it out,
rather than search for a single optimal structure. Our
empirical results demonstrate that such Bayesian ap-
proach frequently outperforms existing directed proba-
bilistic classifiers of similar complexity (e.g., Bayesian
networks with same maximal clique size), while also
being extremely fast, sometimes order of magnitudes
faster than some competing approaches.

2. Related Work

Most of previous work on probabilistic classifiers fo-
cused on directed models, or Bayesian networks. How-
ever, we decided to focus on undirected graphical mod-
els (Markov networks) since learning explicit (normal-
ized) joint probability distribution P (X, Y), as in case
of Bayesian networks, is unnecessary if our goal is just
computing the conditional class probability P (Y |X).
This is an easy inference problem even with an un-
normalized distribution represented by a Markov net-

Bayesian Learning of Markov Network Structure

Figure 1. An n × n lattice Markov network has only
pairwise interactions (hyperedge cardinality 2), but the
treewidth of n.

work. Undirected models ignore the directionality of
associations between variables (e.g., a single Markov
net for a joint P (A,B) versus two Bayesian networks
A → B and B → A), reducing the complexity of the
hypothesis space. On the other hand, undirected mod-
els permit the inclusion of a larger number of connec-
tions between variables, as we are no longer restricted
by the decomposability requirements imposed by the
chain rule.

Previous approaches to learning Markov networks of-
ten focused on bounded-treewidth models (Chow &
Liu, 1968; Meilă & Jordan, 2000; Srebro, 2001; Bach
& Jordan, 2002), in order to bound the inference com-
plexity; again, this restriction is unnecessary if we
are only concerned with the queries described above.
In our approach, we only have to bound the origi-
nal hyperedge cardinality in a Markov network, for
the sake of representation efficiency. Note that re-
moving the bounded-treewidth constraint allows to ac-
count for important k-way interactions between the
variables than the corresponding bounded-treewidth
model would have to ignore. For example, consider
an n × n Markov network (e.g., Ising model) in Fig-
ure 1. It is well-known that its treewidth equals n, so
a bounded-treewidth model with bound k < n would
have to ignore many pairwise interactions, while our
approach could potentially include all of them.

Note that despite being related, our approach is also
different from the conditional random fields (CRFs)
(Lafferty et al., 2001) and other approaches such as
max-margin Markov networks for sequential classifi-
cation (Taskar et al., 2003). We focus on ‘standard”
i.i.d. rather than sequential non-i.i.d. classification
problem, and learn a Markov network over the features
and class, rather than (conditional) Markov network
(random field) over a sequence of dependent class la-
bels. Extending our approach to CRFs would be an
interesting direction for future work. Our Bayesian
prior which depends on the complexity of the struc-
ture can be seen as an approach to penalization of
complex structure, just as the maximum-margin crite-

rion penalizes unusually oriented decision boundaries.

3. Markov Network Models

3.1. Notation and Overview

Let X = {X1, . . . , Xn} be a set of observed random
variables, called attributes, and let x = (x1, . . . , xn) be
a vector of values assigned to variables in X. Herein,
we assume discrete-valued attributes, i.e. x ∈ X =
X1 × . . . × Xn where each range Xi is a set of possi-
ble values of Xi. Let Y denote an unobserved ran-
dom variable called the class, where y ∈ Y, |Y| = m.
The set of attributes together with the class (i.e.,
all variables) is denoted V = X ∪ {Y }. An assign-
ment v(i) = (x(i), y(i)) of values to the attributes and
the class is called an instance, or example with index
(i). We will use a short notation P (v) = P (x, y) =
P (x1, . . . , xn, y) to describe the joint probability dis-
tribution P (X1 = x1, . . . , Xn = xn, Y = y).

Our models will have the undirected structure of
Markov networks. We will define a Markov net-
work, or Markov random field on random variables
V as 〈M, T 〉 where M is an (undirected) hypergraph
M = {S1, S2, . . . , S`} and T = (Φ1, . . . , Φ`) is a set
of positive functions, called potentials for each of the
` hyperedges1 in M, such that the joint distribution
P̂ (v) factorizes over them: P̂ (v) = (1/Z)

∏`
i=1 Φ(vi)

where Z is a normalization constant. This latter form
is referred to as the Gibbs distribution. We use P̂ (·) as
a shorthand for P (·|〈M, T 〉). Each hyperedge SR con-
tains the variables linked to it. These variables form
a vector VR. The potential Φ(vR) corresponding to
each hyperedge then maps any combination of values
of vR into a positive real number.

We now outline our algorithm for class probability es-
timation. The outline contains many terms that will
be defined later, in the section referenced for each step.

1. Given V = X ∪ {Y }, and a bound k on hy-
peredge cardinality, select a set of hyperedges
M = {M |M ⊆ Y} using the approach described
in Sect. 4.2.

2. Given M, compute the region graph R using the
cluster variation method where each hyperedge
corresponds to an initial region (Sect. 3.2). The
region graph captures the overlap between hyper-
edges.

3. For each region R estimate the submodel P (VR)
from data (Sect. 4.1). Each submodel is an ordi-
nary probabilistic model, but for a subset of vari-

1Usually referred to as ‘cliques’, but with hypergraphs
the notion of a clique could be confusing.

Bayesian Learning of Markov Network Structure

ables.
4. Approximate P (V) by the (non-normalized)

product Φ(v) =
∏
〈R,cR〉∈R P (vR)cR where cR is

the counting number for region R in the region
graph (Sect. 3.2).

5. Compute P̂ (y|x) = Φ(x, y)/
∑

y′ Φ(x, y′) and pos-
sibly classify y∗(x) = arg maxy P (y|x).

3.2. Computing the Potentials

The general problem with learning Markov networks
from data once the structure is known is how to obtain
potentials from the data. Specifically, we tractably
express the potentials in terms of submodels, where a
submodel P (vR) is a probability distribution or mass
function on the subset of variables corresponding to
each hyperedge. Each submodel is estimated from the
data. We then make use of the following recursive
definition of potentials ΦR (Srebro, 2001):

ΦR(vR) , P (vR)∏
R′⊂R ΦR′(vR′)

. (1)

A particular P (vS), S ⊂ R1 is computed by marginal-
izing P (vR1), which in turn is modeled directly from
data. As S may be a part of another hyperedge
S ⊂ R2, there could be several versions of P (vS),
depending on what submodel is marginalized (R1 or
R2). To assure consistency we require that there ex-
ists some hypothetical P (V) so that each P (vR) is its
marginalization.

It is of practical convenience to construct an interme-
diate data structure called a region graph R (Yedidia
et al., 2005). Algorithm 1, known as the cluster vari-
ation method, shows how the region graph is con-
structed from the set of hyperedges. The region graph
is defined as R = {〈R, cR〉, R ⊆ V}, where for each re-
gion R, there is a corresponding counting number cR,
that accounts for the overlaps between regions, and
helps avoid the double-counting of evidence.

Given the region graph, we can compute the joint
probability distributions as:

P̂ (v) =
1
Z

∏

〈R,cR〉∈R
P (vR)cR . (2)

It is well-known (Pearl, 1988) that when the Markov
network is triangulated and thus yields a clique tree,
the Gibbs distribution can be represented exactly
through (2) and no normalization is needed, as P (v) =∏

R∈RΦR(vR), where the potentials ΦR(vR) are de-
fined by (1). In general, when the counting numbers
are greater than zero only for the initial regions, the re-
cursive definition of potentials is exact (Yedidia et al.,
2005).

R0 ← {∅} {Redundancy-free set of hyperedges.}
for all S ∈M do {for each hyperedge}

if ∀S′ ∈ R0 : S * S′ then
R0 ←R0 ∪ {S} {S is not redundant}

end if
end for
R0 ← {〈S, 1〉; S ∈ R0}
k ← 1
while |Rk−1| > 2 do {there are feasible subsets}
Rk ← {∅}
for all I = S† ∩ S‡ : S†, S‡ ∈ Rk−1, I /∈ Rk do
{feasible intersections}

c ← 1 {the counting number}
for all 〈S′, c′〉 ∈ R, I ⊆ S′ do

c ← c− c′ {consider the counting numbers of all
regions containing the intersection}

end for
R← R∪ {〈I, c〉}
Rk ←Rk ∪ {I}

end for
end while
return {〈R, c〉 ∈ R; c 6= 0} {Region graph.}

Algorithm 1: Cluster variation method for construct-
ing the region graph given a set of hyperedges M =
{S1, S2, . . . , S`}.

3.3. Performing Inference

While in general it is NP-hard to compute P (Q|E),
where Q ⊆ V, E ⊆ V, in a Markov network rep-
resenting a joint distribution P (V), the problem be-
comes easy when the number of unobserved variables
V \ E is small, or when the treewidth of the network
is small. Treewidth, also known as induced width, is a
graph parameter that controls the complexity of some
commonly used probabilistic inference algorithms (the
complexity is exponential in the treewidth). The
treewidth of a networks, given a particular variable or-
dering, equals to largest clique size of the triangulated
network, where the triangulation is performed along
the given ordering and reflects the process of creating
new probabilistic functions by the inference algorithm.

Given a set of random variables V = X ∪ {Y }, a
set R = {R|R ⊆ V} of subsets (regions) of V,
where Y belongs to at least one region, and a prod-
uct Φ(v) = Φ(x, y) =

∏
R∈R ΦR(vR) of non-negative

functions (potentials) defined on these regions, let
P̂ (v) = (1/Z)Φ(v) be the corresponding joint proba-
bility distribution over V, where Z is a normalization
constant. It is very easy to see that:

1. Computing P̂ (Y |x) does not require global nor-
malization, i.e. P̂ (Y |x) = Φ(x, Y)/

∑
y′ Φ(x, y′);2

2Indeed, the first claim follows from P̂ (y|x) =

P̂ (x, y)/P̂ (x) = (1/Z)Φ(x, y)/
P

y′(1/Z)Φ(x, y′), since by

definition Φ(v) = Φ(x, y).

Bayesian Learning of Markov Network Structure

2. The classifier can be computed using a product of
only those potentials that contain Y , i.e. h∗(x) =
arg maxy

∏
{R∈R|Y ∈R} ΦR(vR).3

Of course, this holds also when we have several query
variables Y, but only the vector is short. More com-
plex queries (e.g. with missing data) might require
several iterations, where each individual iteration can
take the simple form as for inferring the class proba-
bility.

4. Bayesian Structure Learning

The above formulation of the Markov network model
allows efficient inference. The task for learning is to
determine the parameters of the model: the structure
and the submodels. We will adopt the Bayesian frame-
work, based on an explicit description of the model in
terms of its parameters φ = 〈M,Θ, ϑ〉, where M is
the model structure (hypergraph), while ϑ and Θ are
the submodel prior and the submodel parameters, re-
spectively. Each submodel VR is specified in terms of
a parameter vector θR, so that P (VR|θR).

We will assume a prior distribution over struc-
tures P (M), and a prior distribution over the
submodel parameters P (Θ|ϑ). The prior for the
whole model is then P (φ) = P (M)P (ϑ)P (Θ|ϑ) =
P (M)P (ϑ)

∏
R P (θR|ϑ). Because we assume indepen-

dence of Θ and M, the submodels remain the same
irrespectively of the structure: this results in a major
speed-up.

The Bayesian paradigm (to be distinguished from the
Bayes rule) is that one should be uncertain about what
the exact model is. Instead of finding the ‘best’ model
parameters, we assign probabilities to each setting of
φ, ‘averaging’ together a weighted ensemble of mod-
els (both structures and parameters). For prediction
we make use of all plausible structures instead of arbi-
trarily picking just the best one (Friedman & Koller,
2003). This has also been shown to improve results in
practice (Cerquides & López de Màntaras, 2003). In
a class probability estimation setting, the final result
of our inference based on data D will be the following
class predictive distribution:

P (y|x) ∝
∫

P (φ|D)P (y|x, φ)dφ (3)

3The second claim is easily obtained from the definition

of Bayesian classifier, h∗(x) = arg maxy P̂ (y|x), and

the following observation: P̂ (y|x) = Φ(x,y)P
y′ Φ(x,y′) =

Q
{Q∈R|Y /∈Q} Φ(vQ)P

y′ Φ(x,y)

Q
{R∈R|Y ∈R} ΦR(vR), where

(
Q
{Q∈R|Y /∈Q} Φ(vQ))/

P
y′ Φ(x, y) is independent of

Y .

Here, P (y|x, φ) is based on (2). For efficiency pur-
poses, we employ the formulation of Bayesian model
averaging (Hoeting et al., 1999), where only those pa-
rameter values with a sufficiently high posterior prob-
ability are remembered and used.

4.1. Parameters for Consistent Submodels

Our Markov network model is based on partially over-
lapping submodels. Although technically not neces-
sary, it is desirable for the submodels to be consistent
in the sense that all of them are marginalizations of
some joint model. We model the submodels on discrete
variables as multinomials with a symmetric Dirichlet
prior:

P (θR|ϑ) = Dirichlet(αR, . . . , αR), αR =
ϑ∏

V ∈R |V|

It is easy to prove that this prior assures that all the
posterior mean submodels are consistent if the same
value of ϑ was used for each of them. This prior is
best understood as the expected number of outliers:
to any data set, we add ϑ instances uniformly dis-
tributed across the space of variables. We have set the
parameter ϑ = 1, which means that one outlier per
dataset was assumed: we see this to be a reasonable
prior assumption that speeds up the learning. Due
to conjugacy of the Dirichlet prior, the desired poste-
rior mean probability given data D within region R is
simply

P (vR|D, ϑ) =
ϑ/|VR|+

∑|D|
i I{v(i)

R = vR}
|D|+ ϑ

.

4.2. Structure Learning

4.2.1. Parsimonious Structures

The structure in the context of our Markov network
model is simply a selection of the submodels. P (M)
models our prior expectations about the structure of
the model. We will now introduce a parsimonious prior
that asserts a higher prior probability to simpler selec-
tions of submodels, and a lower prior probability to
complex selections of submodels as to prevent over-
fitting. A quantification of complexity based on de-
grees of freedom is given by (Krippendorff, 1986). In
many practical applications we are not interested in
the joint model. Instead, we want to predict labels Y
from attributes X. In such cases, a considerable part
of uncertainty about the value of X gets canceled out,
and the effective degrees of freedom are fewer (“Con-
ditional density estimation is easier than joint density
estimation.”).

Bayesian Learning of Markov Network Structure

Let us assume a set of overlapping submodels of the
vector V, and the resulting region graph R obtained
using the CVM. The number of degrees of freedom of
the model M with a corresponding region graph R
intended for predicting Y from X is:

dfMY
,

∑

〈S,c〉∈R
c

(∏

V ∈S

|V| −
∏

V ∈S
V 6=Y

|V|
)

(4)

V is either Y or a part of X, and V is the number
of values V can take. This quantification accounts
for overlap between submodels in the same fashion
as cluster variation method does for probabilities. Of
course, conditional modeling corresponds to joint mod-
eling when Y = ∅.
The following prior corresponds to the assumption of
exponentially decreasing prior probability of a struc-
ture with an increasing number of degrees of freedom
(or effective parameters):

P (MY)
4∝ exp

{
− m dfMY

m− dfMY
− 1

}
(5)

We discourage the degrees of freedom from exceeding
the number of training instances m = |D|. This prior
also corresponds to the Akaike information criterion
(AIC) with small-sample correction (Burnham & An-
derson, 2002). However, due to dependence on the
number of instances m, some would not consider this
to be a Bayesian prior. An orthodox Bayesian choice
would then be P (M)

4∝ edfM .

The likelihood function for conditional modeling can
also be adjusted to account for the fact that we will
be using the model for predicting Y from X. The
non-Bayesian approach searches for the structure that
yields the maximum conditional likelihood (Grossman
& Domingos, 2004). A Bayesian approach instead
scores structures by the means of a conditional likeli-
hood function, as is customary in Bayesian regression
(Gelman et al., 2004). We hereby use the following
conditional likelihood function that assumes i.i.d.:

P (v(1)...(m)|φ) ,
m∏

i=1

P (y(i)|x(i), φ) (6)

Because M was assumed to be independent of ϑ and
Θ, we prepare Θ in advance, before assessing M. The
P (y(i)|x(i),M) is obtained using (2).

4.2.2. Sampling the Structure Space

In the process of structure learning, we perform a walk
in the space of structures. For all practical purposes,
we are not interested in the ‘best’ structure, but the

walk should nevertheless attempt to visit more struc-
tures with high posterior probability than structures
with low posterior probability, as the latter do not
affect the predictive distribution (3) much. While
MCMC approaches have been proposed in the past
(Friedman & Koller, 2003), we apply a simple hill-
climbing approach that yields good results for a lower
computational cost.

During the hill climb, we seek to greedily maximize
the posterior probability of a structure. Let us assume
that we are performing conditional modeling, with the
intention of predicting Y . Our initial structure will
have a single initial hyperedge of cardinality 1, {Y }.
In the successive step, we will consider all possible at-
tributes Xi creating hyperedges {Xi} ∪ {Y }, and pick
the one that yields the highest posterior probability:
this corresponds to step-wise forward selection algo-
rithm with one-step look-ahead. This approach is very
efficient, as observed also by (Caruana et al., 2004):
including a new hyperedge corresponds to just multi-
plying the predictions for an individual instance with
another term and renormalizing. With the consider-
able increase in performance that ensues, we can afford
to find the best hyperedge at every step of the forward
selection.

When no hyperedge of cardinality k results in an
increase of posterior probability, we start searching
through hyperedges of cardinality k + 1, and so on.
An example of a consequence of this stage-based search
is that we prevent immediately adding the hyperedge
ABY if adding AY and BY is just as good. We always
add hyperedges, and never delete them. Of course, a
larger hyperedge may cover smaller hyperedges, effec-
tively eliminating them. To limit the search time, we
terminate when k reaches a particular value (e.g. 4),
and we heuristically select a number (e.g., 1000) of
most promising hyperedges for each k. The promise of
a hyperedge is calculated from the results of its sub-
sets.

All the hyperedges we introduce include Y . As de-
scribed in Sect. 3.3, hyperedges that do not include
any of the variables in Y do not affect the predictions
for Y if the values for X are given. For that reason,
conditional modeling allows working with larger hy-
peredges with the combinatorial explosion occurring
later than with joint modeling. In a more complex
situation of structured labels, we could assume a par-
ticular pattern of hyperedges.

At some point, we will reach the local maximum pos-
terior probability peak, and no improvement in pos-
terior probability will be possible. However, we do
continue to search further for a few more iterations, as

Bayesian Learning of Markov Network Structure

Figure 2. Hyperedges of cardinality 4 are not merely a the-
oretical curiosity. In this illustration we show the tic-tac-
toe game board, which comprises 9 squares, each corre-
sponding to a 3-valued variable with the range {×, ◦, }.
The goal is to develop a predictive model that will indi-
cate if a board position is winning for × or not: this is
the 2-valued class variable. The illustration shows the hy-
peredges in the MAP model identified by our algorithm:
2-way hyperedges (5 green circles), 3-way hyperedges (4
blue serif lines), and 4-way hyperedges (6 red dashed lines).
Each hyperedge includes the class (not shown).

those structures may still have a high enough posterior
probability to affect the Bayesian model averaging. We
stop the search when the posterior probability is less
than a percent of the maximum posterior structure
probability. Furthermore, all the models that were
evaluated are included in the model average: even if
they were not selected, they might still have a rela-
tively high posterior probability.

With the above algorithm we can discover very inter-
esting structures in a very short amount of time. An
example of a maximum posterior probability structure
for the tic-tac-toe dataset is shown in Fig. 2: the struc-
ture was obtained in 0.03 seconds on an ordinary lap-
top computer. The hyperedges correspond to mean-
ingful notions of corner and center points, to connec-
tions between them, and finally to the diagonals and
edges: indeed these structures are what humans exam-
ine when playing the game. Another example of struc-
tures obtained with our algorithm appears in Fig. 3.

5. Empirical Evaluation

To validate our modeling approach from Sections 3 and
4, we have applied the methodology to the problem of
class-probability estimation. Numerous techniques ex-
ist for this purpose, and they can be roughly divided
into those that pursue a discriminative structure, yet
employ the generative chain rule (such as the näıve
Bayes, tree-augmented näıve Bayes (Friedman et al.,
1997) and general Bayesian network classifiers (Gross-
man & Domingos, 2004)) and those that employ both
discriminative structure and discriminative parameter

1:Number
children

5.8%

3:Wife
age

3.3%

6:1.8%

2:Wife
education

4.6%

4:Media
exposure

1.0%

8:-0.5%7:0.3%

5:Wife
working

0.1%

1:sex

16%

2:status

6.5%

4:-0.3%

3:age

0.7%

5:1.2%

CMC Titanic

Figure 3. This figure shows the Bayesian model average for
two real-life datasets: CMC (contraception use in Indone-
sia) and Titanic (survival of Titanic passengers). All the
posterior mass for Titanic is concentrated in the model that
assumes two 3-variable hyperedges, [status of the passen-
ger, age, survival] and [status, sex, survival]. Each node
and each connection is numbered with the step of the hill-
climb when it was selected. If the posterior probability
is high enough, a number between 0 and 1 indicates the
relative weight of that model in the class-predictive distri-
bution. For CMC three structures are used to make pre-
dictions. The percentages indicate the interaction infor-
mation expressed as a proportion of class entropy: which
helps understand the nature of the hyperedge.

values (Pernkopf & Bilmes, 2005; Greiner et al., 2005;
Jing et al., 2005). It is widely recognized that it is
generally too hard to perform both general structure
search and optimization of discriminative parameter
values. Still, a limited amount of structure selection is
performed even with discriminative parameter values,
such as step-wise model selection (Roos et al., 2005;
Madigan et al., 2005) or TAN-like structures (Pernkopf
& Bilmes, 2005; Jing et al., 2005), but rarely one can
afford an exhaustive search for interactions.

We will evaluate the benefit gained by a) allowing hy-
peredges that result in cyclic dependencies, b) the ben-
efits of Bayesian model averaging, and c) verifying if
our prior protects against overfitting. Furthermore, we
compare our approach to other related approaches.

To evaluate a class-probability estimate, we will use
the expected negative log-likelihood (log-loss) of class
assignment −E[log P (y|x)]. For each of the 39 UCI
data sets, we performed 5 replications of 5-fold cross-
validation. The data sets were all discretized with the
Fayyad-Irani method beforehand, and the missing val-
ues were interpreted as special values. The structure
learning time with our procedure for all the 39 datasets
using our method was less 54 seconds on a laptop com-
puter using our implementation in Python and C++.
Of course, one has to account for the fact that each
dataset is trained 25 times (5 folds, 5 replications).

Judging from the rankings in Table 1, we can conclude
that the single best-performing feature is Bayesian

Bayesian Learning of Markov Network Structure

log-loss / instance
domain NB TN BC M2 M3 M4 M2 BT B3 B4
adult ·0.42 0.33 0.39 0.31 0.30 0.30 0.31 0.30 0.30 0.30

glass 1.25 ·1.76 1.21 1.12 1.12 1.12 0.99 0.99 0.99 0.99

horse-colic 1.67 ·5.97 3.36 0.83 0.83 0.83 0.82 0.82 0.82 0.82

iris 0.27 0.32 0.20 0.27 0.27 0.27 0.18 0.18 0.18 0.18

lymph 1.10 1.25 1.23 0.98 0.98 0.98 0.79 0.79 0.79 0.79

monk2 0.65 0.63 0.61 ·0.65 0.54 0.45 0.65 0.60 0.53 0.45

p-tumor* 3.17 ·4.76 2.84 2.65 2.65 2.65 2.55 2.55 2.55 2.55

tic-tac-toe ·0.55 0.49 0.52 0.53 0.42 0.08 0.53 0.52 0.42 0.07

titanic 0.52 0.48 0.48 ·0.52 0.48 0.48 0.52 0.48 0.48 0.48

vehicle ·1.78 1.14 1.29 0.82 0.69 0.69 0.80 0.66 0.66 0.66

voting ·0.60 0.53 0.48 0.16 0.21 0.21 0.14 0.14 0.14 0.14

zoo* 0.38 0.46 0.51 0.40 0.40 0.40 0.38 0.38 0.38 0.38

breast-wisc 0.21 0.23 ·0.25 0.17 0.21 0.21 0.16 0.16 0.16 0.16

cmc 1.00 ·1.03 1.00 0.93 0.93 0.93 0.93 0.92 0.92 0.92

hepatitis 0.78 ·1.31 1.11 0.48 0.48 0.48 0.40 0.39 0.39 0.39

ionosphere 0.64 0.74 ·1.70 0.38 0.39 0.39 0.31 0.30 0.30 0.30

wdbc 0.26 0.29 0.39 0.14 0.15 0.15 0.13 0.13 0.13 0.13

australian 0.46 ·0.94 0.78 0.37 0.39 0.41 0.35 0.37 0.38 0.37

balance 0.51 ·1.13 0.74 0.51 0.51 0.51 0.51 0.51 0.51 0.51

breast-LJ 0.62 0.89 0.80 0.57 0.67 0.67 0.56 0.58 0.58 0.58

crx 0.49 ·0.93 0.91 0.36 0.37 0.37 0.35 0.35 0.35 0.35

german 0.54 ·1.04 1.00 0.53 0.64 0.65 0.52 0.58 0.59 0.59

heart 1.25 ·1.53 1.38 1.10 1.11 1.11 1.09 1.09 1.09 1.09

lung* 5.41 ·6.92 3.05 2.37 2.37 2.37 1.18 1.18 1.18 1.18

pima 0.50 0.49 0.50 0.48 0.49 0.51 0.48 0.48 0.48 0.48

post-op 0.93 1.78 1.25 0.79 0.79 0.79 0.67 0.67 0.67 0.67

segment 0.38 1.06 ·1.29 0.17 0.17 0.17 0.17 0.17 0.17 0.17

hayes-roth 0.46 ·1.18 0.76 0.45 0.45 0.45 0.45 0.45 0.45 0.45

lenses 2.44 ·2.99 1.15 0.34 0.34 0.34 0.40 0.40 0.40 0.40

monk1 ·0.50 0.09 0.09 0.49 0.08 0.01 0.49 0.08 0.08 0.02

ecoli 0.89 0.94 0.67 0.85 0.85 0.85 0.81 0.81 0.81 0.81

monk3 0.20 0.11 0.08 0.20 0.11 0.11 ·0.20 0.11 0.11 0.11

o-ring 0.83 0.76 0.59 1.41 1.41 1.41 0.67 0.67 0.67 0.67

bupa 0.62 0.60 0.61 0.62 0.62 0.62 0.63 0.61 0.61 0.61

car ·0.32 0.18 0.18 0.32 0.19 0.19 0.32 0.19 0.19 0.19

mushroom ·0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

shuttle 0.16 0.06 0.06 0.17 0.07 0.07 ·0.17 0.07 0.07 0.07

soy-small* 0.00 0.00 ·0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00

wine 0.06 0.29 ·0.46 0.19 0.19 0.19 0.11 0.11 0.11 0.11

rank/LL 7.8 7.8 7.4 6.0 5.8 5.7 4.7 3.4 3.4 3.1
rank/ER 5.8 7.0 5.8 6.5 5.6 5.5 6.1 4.7 4.5 4.5

Table 1. A comparison of different undirected and directed
probability models on 39 datasets. NB is näıve Bayes,
TN is tree-augmented näıve Bayes, BC is the discrimi-
native search for Bayesian network classifiers (Grossman
& Domingos, 2004), M2-M4 is the maximum a posteriori
Markov network with structure search with maximum hy-
peredge cardinality of 2 through 4, B2-B4 are correspond-
ing Bayesian model averaged Markov networks, and BT is
the Bayesian model averaging (BMA) on cycle-free Markov
hypertrees with hyperedges of cardinality less than 4. The
best result is typeset in bold, the results of those meth-
ods that outperformed the best method in at least 2 of
the 25 experiments are underlined, and the worst result is
marked with (·). At the bottom we list the average rank
of a method across all the datasets, both for log-loss (LL)
and error rate (ER).

method time LL ER
Bayesian multinomial regression 4.84m 2.7 3.7
LIBSVM dot product kernel 9.11m 3.5 4.2
LIBSVM RBF kernel 12.72m 3.2 4.0
Markov nets k = 4 + BMA 6.2m 4.0 5.0
C4.5 0.03m 4.9 5.7
näıve Bayes 0.01m 6.3 5.7
TAN 0.05m 6.6 6.2

Table 2. A rank comparison achieved by several types of
models on an extended set of 46 UCI datasets.

model averaging: it has consistently outperformed the
maximum a posteriori structures. The second impor-
tant conclusion is that our Bayesian prior successfully
prevents overfitting in a systematic way: as we increase
the depth of structure search, the results improve (al-
though B2 does win by performing essentially just fea-
ture selection in a number of cases when there seem
to be no higher-order hyperedges). The third conclu-
sion is that Markov networks perform well regardless
of whether the task is classification (error rate, ER), or
class probability estimation (log-loss, LL). The fourth
conclusion is that allowing cycles does help, but not in
a radical way (of course this may be simply due to our
simplified way of computing potentials).

Discriminative Bayes network classifiers, TAN and
NBC are quite consistently outperformed by Markov
networks. B4 was significantly outperformed by TAN
on datasets car, mushroom, and soy-small. It seems
that the prior is a bit too conservative on artificial
datasets such as car and mushroom, and on small
datasets with a large number of attributes.

Comparisons beyond graphical models. We
also performed a ‘reality check’, performing compar-
ison with top methods outside of the graphical model
family. A discriminative structure with generative
submodels seems to be on average outweighed by dis-
criminative parameters without structure search. In
Table 2 we show the results of several popular types of
learning algorithms that require no tuning. SVM does
outperform our Markov network model. We have used
LIBSVM (Chang & Lin, 2005), a very well-performing
implementation of support vector machines which also
supports class probability estimation and multiclass
problems. But the recently introduced implemen-
tation of Bayesian multinomial regression (Madigan
et al., 2005) outperforms SVM both in log-loss, in er-
ror rate and in performance. BMR is a fully linear
model which includes no structure search.

Bayesian Learning of Markov Network Structure

6. Conclusion

In summary, we feel that undirected models have many
advantages over directed models, especially as it is not
possible or at least controversial to establish causal
direction from observational data. Undirected mod-
els should deserve more attention. Our priors and
Bayesian model averaging work surprisingly well and
effectively prevent overfitting. Our heuristic structure
search is also much faster than most alternatives; we
could dare to say that it is one of the best, but could
definitely be made less ad hoc. As for other further
work, it would be highly desirable to combine the han-
dling of higher-order interactions in Markov networks
with effective discriminative parameter learning in re-
gression models. This could perhaps be achieved by
finding discriminative parameters for well-performing
discriminative structures, or by finding an equally effi-
cient way of performing inference on Markov networks
but for the specific purpose of conditional prediction.

References
Bach, F., & Jordan, M. (2002). Thin junction trees.

Advances in Neural Information Processing Systems 14
(pp. 569–576).

Burnham, K. P., & Anderson, D. R. (2002). Model selection
and multimodel inference. Springer. 2nd edition.

Caruana, R., Niculescu, A., Crew, G., & Ksikes, A. (2004).
Ensemble selection from libraries of models. Proc. 21st
ICML. Banff, Alberta, Canada.

Cerquides, J., & López de Màntaras, R. (2003). Tractable
Bayesian learning of tree augmented naive Bayes classi-
fiers. Proc. 20th ICML (pp. 75–82).

Chang, C.-C., & Lin, C.-J. (2005). LIBSVM: a li-
brary for support vector machines. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Chow, C. K., & Liu, C. N. (1968). Approximating discrete
probability distributions with dependence trees. IEEE
Trans. on Information Theory, 14, 462–467.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997).
Bayesian network classifiers. Machine Learning, 29, 131–
163.

Friedman, N., & Koller, D. (2003). Being Bayesian about
network structure: A Bayesian approach to structure
discovery in Bayesian networks. Machine Learning, 50,
95–126.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B.
(2004). Bayesian data analysis. Boca Raton, FL: Chap-
man & Hall/CRC. 2nd edition.

Greiner, R., Su, X., Shen, B., & Zhou, W. (2005). Struc-
tural extension to logistic regression: Discriminative pa-
rameter learning of belief net classifiers. Machine Learn-
ing, 59, 297–322.

Grossman, D., & Domingos, P. (2004). Learning Bayesian
network classifiers by maximizing conditional likelihood.
Proc. 21st ICML (pp. 361–368). Banff, Canada: ACM
Press.

Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky,
C. T. (1999). Bayesian model averaging: A tutorial.
Statistical Science, 14, 382–417.

Jing, Y., Pavlovic, V., & Rehg, J. M. (2005). Efficient
discriminative learning of Bayesian network classifiers
via boosted augmented naive Bayes. Proc. 22nd ICML
(pp. 369–376). Bonn, Germany: ACM Press.

Krippendorff, K. (1986). Information theory: Structural
models for qualitative data, vol. 07–062. Beverly Hills,
CA: Sage Publications, Inc.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tional random fields: Probabilistic models for segment-
ing and labeling sequence data. Proc. of the Interna-
tional Conference on Machine Learning (ICML) (pp.
282–289).

Madigan, D., Genkin, A., Lewis, D. D., & Fradkin, D.
(2005). Bayesian multinomial logistic regression for au-
thor identification. 25th MaxEnt Workshop. San Jose.

Meilă, M., & Jordan, M. I. (2000). Learning with mixtures
of trees. Journal of Machine Learning Research, 1, 1–48.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems. San Francisco, CA, USA: Morgan Kaufmann.

Pernkopf, F., & Bilmes, J. (2005). Discriminative versus
generative parameter and structure learning of Bayesian
network classifiers. Proc. 22nd ICML (pp. 657–664).
Bonn, Germany: ACM Press.

Roos, T., Wettig, H., Grünwald, P., Myllymäki, P., &
Tirri, H. (2005). On discriminative Bayesian network
classifiers and logistic regression. Machine Learning, 59,
267–296.

Srebro, N. (2001). Maximum likelihood bounded tree-
width Markov networks. Proceedings of the 17th Confer-
ence on Uncertainty in Artificial Intelligence (UAI) (pp.
504–511).

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin
Markov networks. Neural Information Processing Sys-
tems Conference 16. Vancouver, Canada.

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2005).
Constructing free-energy approximations and general-
ized belief propagation algorithms. IEEE Transactions
on Information Theory, 51, 2282–2312.

