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ON THE INTEGRALITY OF THE UNCAPACITATED FACILITY

LOCATION POLYTOPE

MOURAD BAÏOU AND FRANCISCO BARAHONA

Abstract. We study a system of linear inequalities associated with the uncapacitated
facility location problem. We show that this system defines a polytope with integer
extreme points if and only if the graph does not contain a certain type of odd cycles.
We also derive odd cycle inequalities and give a separation algorithm.

1. Introduction

Let G = (V,A) be a directed graph, not necessarily connected, where each arc and
each node has a cost (or a profit) associated with it. We study the following version
of the uncapacitated facility location problem (UFLP), a set of nodes is selected, usually
called centers, and then each non-selected node can be assigned to a center. The goal is
to minimize the sum of the costs of the selected nodes plus the sum of the costs yielded
by the assignment. The linear system below defines a linear programming relaxation.

∑

(u,v)∈A

x(u, v) + y(u) ≤ 1 ∀u ∈ V,(1)

x(u, v) ≤ y(v) ∀(u, v) ∈ A,(2)

0 ≤ y(v) ≤ 1 ∀v ∈ V,(3)

x(u, v) ≥ 0 ∀(u, v) ∈ A.(4)

For each node u, the variable y(u) takes the value 1 if the node u is selected and 0
otherwise. For each arc (u, v) the variable x(u, v) takes the value 1 if u is assigned to v
and 0 otherwise. Inequalities (1) express the fact that either node u can be selected or it
can be assigned to another node. Inequalities (2) indicate that if a node u is assigned to
a node v then this last node should be selected. A variation of the UFLP that is common
in the literature is when V is partitioned into V1 and V2, and the nodes in V1 cannot be
selected but they should be assigned to a node in V2. This is obtained by fixing to zero
some of the variables y and setting into equation some of the inequalities (1).

Let P (G) be the polytope defined by (1)-(4), and let UFLP (G) be the convex hull of

P (G) ∩ {0, 1}|V |+|A|. Clearly
UFLP (G) ⊆ P (G).

In this paper we characterize the graphs G for which UFLP (G) = P (G). More precisely,
we show that UFLP (G) = P (G) if and only if G does not contain certain type of “odd”
cycles. We also give a polynomial algorithm to recognize the graphs in this class.

In [10] a slightly different model for the UFLP was transformed into a vertex packing
problem in an undirected graph, then necessary and sufficient conditions for this new
graph to be perfect were given. The facets of the uncapacitated facility location polytope
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have been studied in [11], [9], [4], [5], [3]. In [1, 2] we gave a description of UFLP (G) for
two special classes of graphs. The UFLP has also been studied from the point of view
of approximation algorithms in [6] [13] and others. Other references on this problem are
[8] and [12].

For a directed graph G = (V,A) and a set W ⊂ V , we denote by δ+(W ) the set of
arcs (u, v) ∈ A, with u ∈ W and v ∈ V \ W . Also we denote by δ−(W ) the set of arcs
(u, v), with v ∈ W and u ∈ V \ W . We write δ+(v) and δ−(v) instead of δ+({v}) and
δ−({v}), respectively. If there is a risk of confusion we use δ+

G and δ−G . A node u with
δ+(u) = ∅ is called a pendent node.

A simple cycle C is an ordered sequence

v0, a0, v1, a1, . . . , ap−1, vp,

where

• vi, 0 ≤ i ≤ p − 1, are distinct nodes,
• ai, 0 ≤ i ≤ p − 1, are distinct arcs,
• either vi is the tail of ai and vi+1 is the head of ai, or vi is the head of ai and

vi+1 is the tail of ai, for 0 ≤ i ≤ p − 1, and
• v0 = vp.

By setting ap = a0, we associate with C three more sets as below.

• We denote by Ĉ the set of nodes vi, such that vi is the head of ai−1 and also the
head of ai, 1 ≤ i ≤ p.

• We denote by Ċ the set of nodes vi, such that vi is the tail of ai−1 and also the
tail of ai, 1 ≤ i ≤ p.

• We denote by C̃ the set of nodes vi, such that either vi is the head of ai−1 and
also the tail of ai, or vi is the tail of ai−1 and also the head of ai, 1 ≤ i ≤ p.

Notice that |Ĉ| = |Ċ|. A cycle will be called odd if p + |Ċ| (or |C̃| + |Ċ|) is odd,

otherwise it will be called even. A cycle C with Ċ = ∅ is a directed cycle. The set of arcs
in C is denoted by A(C). We plan to prove that UFLP (G) = P (G) if and only if G has
no odd cycle.

If we do not require v0 = vp we have a path P . In a similar way we define Ṗ , P̂ and

P̃ , excluding v0 and vp. We say that P is odd if p + |Ṗ | is odd, otherwise it is even. For
the path P , the nodes v1, . . . , vp−1 are called internal.

If G is a connected graph and there is a node u such that its removal disconnects G,
we say that u is an articulation point. A graph is said to be two-connected if at least two
nodes should be removed to disconnect it. For simplicity, sometimes we use z to denote
the vector (x, y), i. e. z(u) = y(u) and z(u, v) = x(u, v). Also for S ⊆ V ∪A we use z(S)
to denote z(S) =

∑

a∈S z(a).

A polyhedron P is defined by a set of linear inequalities. i. e., P = {x |Ax ≤ b}. A face

of P is obtained by setting into equation some of these inequalities. An extreme point of
P is given by a face that contains a unique element. In other words, some inequalities
are set to equation so that this system has a unique solution.

This paper is organized as follows. In Section 2 we give a decomposition theorem that
shows that one has to concentrate on two-connected graphs. In Section 3 we describe
some transformations of the graph that are needed in the following section. Section 4 is
devoted to two-connected graphs. In Section 5 we study graphs with odd cycles. The
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separation problem for the so-called odd cycle inequalities is studied in Section 6. In
Section 7 we show how to test the existence of an odd cycle.

2. Decomposition

In this section we consider a graph G = (V,A) that decomposes into two graphs
G1 = (V1, A1) and G2 = (V2, A2), with V = V1 ∪ V2, V1 ∩ V2 = {u}, A = A1 ∪ A2,
A1 ∩ A2 = ∅. We define G′

1 that is obtained from G1 after replacing u by u′. We also
define G′

2, obtained from G2 after replacing u by u′′. See Figure 1. The theorem below
shows that we have to concentrate on two-connected graphs.
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G′
2

u′ u′′

G′
1

Figure 1

Theorem 1. Suppose that the system

Az′ ≤ b(5)

z′
(

δ+
G′

1

(u′)
)

+ z′(u′) ≤ 1(6)

describes UFLP (G′
1). Suppose that (5) contains the inequalities (1)-(4) except for (6).

Similarly suppose that

Cz′′ ≤ d(7)

z′′
(

δ+
G′

2

(u′′)
)

+ z′′(u′′) ≤ 1(8)

describes UFLP (G′
2). Also (7) contains the inequalities (1)-(4) except for (8). Then the

system below describes an integral polyhedron.

Az′ ≤ b(9)

Cz′′ ≤ d(10)

z′
(

δ+
G′

1

(u′)
)

+ z′′
(

δ+
G′

2

(u′′)
)

+ z′(u′) ≤ 1(11)

z′(u′) = z′′(u′′)(12)

Proof. Let (z̄′, z̄′′) be an extreme point of the polytope defined by the above system. We
study two cases.

Case 1: z̄′(u′) = 0.
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We have that z̄′ ∈ UFLP (G′
1) and z̄′′ ∈ UFLP (G′

2). If z̄′ is an extreme point of
UFLP (G′

1), we have to consider two sub-cases:

• z̄′
(

δ+
G′

1

(u′)
)

= 0.

If z̄′′ is not an extreme point of UFLP (G′
2), z̄′′ = 1/2λ1 + 1/2λ2, with λ1, λ2

in UFLP (G′
2), λ1 6= λ2. Since λ1

(

δ+
G′

2

(u′′)
)

≤ 1, λ2

(

δ+
G′

2

(u′′)
)

≤ 1, we have that

(z̄′, z̄′′) = 1/2(z̄′, λ1) + 1/2(z̄′, λ2), with (z̄′, λ1) and (z̄′, λ2) satisfying (9)-(12), a
contradiction. Thus z̄ ′′ is an extreme point and (z̄ ′, z̄′′) is an integral vector.

• z̄′
(

δ+
G′

1

(u′)
)

= 1.

This implies z̄′′
(

δ+
G′

2

(u′′)
)

= 0. If z̄′′ is not an extreme point, z̄ ′′ = 1/2λ1 +

1/2λ2, with λ1, λ2 in UFLP (G′
2), λ1 6= λ2. Since λ1

(

δ+
G′

2

(u′′)
)

= 0 = λ2

(

δ+
G′

2

(u′′)
)

,

we have that (z̄′, z̄′′) = 1/2(z̄′, λ1) + 1/2(z̄′, λ2), with (z̄′, λ1) and (z̄′, λ2) satis-
fying (9)-(12), a contradiction. Thus z̄ ′′ is an extreme point and (z̄ ′, z̄′′) is an
integral vector.

Now we should study the situation in which z̄ ′ and z̄′′ are not extreme points.

We should have z̄′ = 1/2ω1 + 1/2ω2, with ω1, ω2 in UFLP (G′
1), ω1 6= ω2. If

ω1

(

δ+
G′

1

(u′)
)

= ω2

(

δ+
G′

1

(u′)
)

= z̄′
(

δ+
G′

1

(u′)
)

, we have (z̄′, z̄′′) = 1/2(ω1, z̄
′′) + 1/2(ω2, z̄

′′),

with (ω1, z̄
′′) and (ω2, z̄

′′) satisfying (9)-(12). A contradiction.

Now we assume that

ω1

(

δ+
G′

1

(u′)
)

= z̄′
(

δ+
G′

1

(u′)
)

− ε

ω2

(

δ+
G′

1

(u′)
)

= z̄′
(

δ+
G′

1

(u′)
)

+ ε,

with ε > 0.

We also have z̄′′ = 1/2λ1+1/2λ2, with λ1, λ2 in UFLP (G′
2), λ1 6= λ2. If λ1

(

δ+
G′

2

(u′′)
)

=

λ2

(

δ+
G′

2

(u′′)
)

= z̄′′
(

δ+
G′

2

(u′′)
)

, we obtain a contradiction as above. Therefore we can sup-

pose that

λ1

(

δ+
G′

2

(u′′)
)

= z̄′′
(

δ+
G′

2

(u′′)
)

+ ρ

λ2

(

δ+
G′

2

(u′′)
)

= z̄′′
(

δ+
G′

2

(u′′)
)

− ρ,

with ρ > 0.

We can assume that ε = ρ, so we have (z̄ ′, z̄′′) = 1/2(ω1, λ1)+1/2(ω2, λ2), with (ω1, λ1)
and (ω2, λ2) satisfying (9)-(12). A contradiction.

Case 2: 0 < z̄′(u′).

We have that z̄′ ∈ UFLP (G′
1) and z̄′′ ∈ UFLP (G′

2). Thus z̄′ is a convex combination
of extreme points µi of UFLP (G′

1) that satisfy with equality every constraint that is
satisfied with equality by z̄ ′. Also z̄′′ is a convex combination of extreme points φj of
UFLP (G′

2) that satisfy with equality every constraint satisfied with equality by z̄ ′′.

We can assume that µ1(u
′) = 1 = φ1(u

′′). After putting together these two vectors
we obtain a 0-1 vector that satisfies with equality every constraint that is satisfied with
equality by the original vector (z̄ ′, z̄′′), a contradiction. �
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We have the following corollary.

Corollary 2. The polytope UFLP (G) is defined by the system (9)- (12) after identifying

the variables z′(u′) and z′′(u′′).

3. Graph Transformations

First we plan to prove that if G has no odd cycle then UFLP (G) = P (G). The
proof consists of assuming that z̄ is a fractional extreme point of P (G) and arriving to
a contradiction. Below we give several assumptions that can be made about z̄ and G,
they will be used in the next section.

Lemma 3. We can assume that z̄(u, v) > 0 for all (u, v) ∈ A.

Proof. Let G′ be the graph obtained after removing all arcs (u, v) with z̄(u, v) = 0, and
let z′ be the vector obtained after removing all components z̄(u, v) = 0. Then z ′ is a
fractional extreme point of P (G′). �

Lemma 4. If 0 < z̄(u, v) < z̄(v), we can assume that v is a pendent node with

|δ−(v)| = 1 and z̄(v) = 1.

Proof. If v is not pendent or |δ−(v)| > 1, we can remove (u, v) and add a new node v ′ and
the arc (u, v′). Then we can define z′(u, v′) = z̄(u, v), z′(v′) = 1, and z′(s, t) = z̄(s, t),
z′(r) = z(r) for all other nodes and arcs. Let G′ be this new graph. We have that the
constraints that are tight for z̄ are also tight for z ′, so z′ is an extreme point of P (G′). �

Lemma 5. We can assume that G consists of only one connected component.

Proof. Let G1 be a connected component of G. Let z1 be the projection of z̄ onto the
space associated with G1. Then z1 is an extreme point of P (G1). �

Lemma 6. We can assume that 0 < z̄(u, v) < 1 for all (u, v) ∈ A.

Proof. If z̄(u, v) = 1 it follows from Lemma 3 that δ−(u) = ∅ and δ+(u) = {(u, v)}. Since
z̄(v) = 1 Lemma 3 implies that v is pendent, it follows from Lemma 4 that z̄(r, v) = 1
for all (r, v) ∈ δ−(v). Therefore δ−(v) is a connected component of G. All variables
associated with this connected component take integer values. �

Lemma 7. We can assume that G is either two-connected or it consists of a single arc.

Proof. If G has an articulation point we can apply Theorem 1 to decompose G into
G1 and G2. If inequalities (1)-(4) define UFLP (G1) and UFLP (G2), then a similar
system should define UFLP (G). One can keep decomposing as long as the graph has an
articulation point. �

If the graph G consists of a single arc it is fairly easy to see that UFLP (G) = P (G),
so now we have to deal with the two-connected components. This is treated in the next
section.
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4. Treating two-connected graphs

In this section we assume that the graph G is two-connected and it has no odd cycle.
Let z̄ be a fractional extreme point of P (G), we are going to assign labels l to the nodes
and arcs and define z′(u, v) = z̄(u, v) + l(u, v)ε, z ′(u) = z̄(u) + l(u)ε, ε > 0, for each arc
(u, v) and each node u. We shall see that every constraint that is satisfied with equality
by z̄ is also satisfied with equality by z ′. This is the required contradiction.

Given a path P = v0, a0, . . . , ap−1, vp. Assume that the label of a0, l(a0) has the value
1 or −1. We define the labeling procedure as follows.

For i = 1 to p − 1 do

• If vi is the head of ai−1 and it is the tail of ai then l(vi) = l(ai−1), l(ai) = −l(vi).
• If vi is the head of ai−1 and it is the head of ai then l(vi) = l(ai−1), l(ai) = l(vi).
• If vi is the tail of ai−1 and it is the head of ai then l(vi) = −l(ai−1), l(ai) = l(vi).
• If vi is the tail of ai−1 and it is the tail of ai then l(vi) = 0, l(ai) = −l(ai−1).

Notice that the labels of v0 and vp were not defined.

We have to study several cases as follows.

Case 1. G contains a directed cycle C = v0, a0, . . . , ap−1, vp. Assume that the head
of a0 is v1, set l(v0) = −1, l(a0) = 1 and extend the labels as above.

Case 2. G contains a cycle C = v0, a0, . . . , ap−1, vp and Ċ 6= ∅. Assume v0 ∈ Ċ. Set
l(v0) = 0, l(a0) = 1 and extend the labels.

The lemma below is needed to show that for v0, the constraints that were satisfied
with equality by z̄ remain satisfied with equality.

Lemma 8. After labeling as in cases 1 and 2 we have l(ap−1) = −l(a0).

Proof. Case 1 should be clear, so we have to study Case 2. Let vj(0), vj(1), . . . , vj(k) be

the ordered sequence of nodes in Ċ, with vj(0) = vj(k). A path in C

vj(i), aj(i), . . . , aj(i+1)−1, vj(i+1)

from vj(i) to vj(i+1) will be called a segment and denoted by Si. A segment is odd (resp.
even) if it contains and odd (resp. even) number of arcs. Let ne be the number of even

segments and no the number of odd segments. We have that ne + no = |Ċ|. We also

have that the parity of p is equal to the parity of no. Therefore no + |Ċ| should be even.

The labeling has the following properties:

a) If the segment is odd then l(aj(i)) = −l(aj(i+1)−1).
b) If the segment is even then l(aj(i)) = l(aj(i+1)−1).

Now we build an undirected cycle as follows. For every node vj(i) we have a two

nodes u1
i and u2

i , we add an edge between them marked “blue”. For every segment from
vj(i) to vj(i+1) we have an edge from u2

i to u1
i+1. If the segment is odd we mark the

edge “blue”, otherwise we mark it “green”. Start by giving the label l(u2
0) = 1 to u2

0.
Continue labeling so that if st is a blue edge then l(t) = −l(s) and if the edge is green
then l(t) = l(s). The label of u2

i corresponds to the label of aj(i) and the label of u1
i+1

corresponds to the label of aj(i+1)−1. There is an even number of blue edges in the cycle,

therefore l(u1
0) = −l(u2

0). Thus

l(ap−1) = −l(a0).
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�

Notice that after the first cycle has been labeled as in cases 1 or 2, the properties below
hold, we shall see that these properties hold throughout the entire labeling procedure.

Property 1. If a node has a nonzero label, then it is the tail of at most one labeled
arc.

Property 2. If a node has a zero label, then it is the tail of exactly two labeled arcs.

The lemma below shows that for labeling purposes, any path can be represented by a
path with one, two or three arcs.

Lemma 9. Let P = v0, a0, v1, a1, . . . , ap−1, vp be a path. Suppose that we set l(a0) and

we extend the labels, then the label of ap−1 is determined by

• the orientation of a0,

• the orientation of ap−1, and

• the parity of P .

Proof. Add a node t and the arcs ā = (t, v0) and ã = (t, vp) to create a cycle. If the
cycle is odd subdivide ã to make it even. Set l(t) = 0, l(ā) = 1 and extend the labels
as in Case 2. It follows from Lemma 8 that the label of the arc before ā is −l(ā), this
determines the label of the previous arc and so on. �

Once a cycle C has been labeled as in cases 1 or 2, we have to extend the labeling as
follows.

Case 3. Suppose that l(v0) 6= 0 for v0 ∈ C, (v0 is the head of a labeled arc), and
there is a path P = v0, a0, v1, a1, . . . , ap−1, vp in G such that:

- v0 is the head of a0,
- vp ∈ C,
- {v1, . . . , vp−1} is disjoint from C.

We set l(a0) = l(v0) and extend the labels. Case 3 is needed so that any inequality (2)
associated with v0 that is satisfied with equality, remains satisfied with equality.

We have to see that the label l(ap−1) is such that constraints associated with vp that
were satisfied with equality remain satisfied with equality. This is discussed in the next
lemma.

Lemma 10. If vp is the head of ap−1 then l(ap−1) = l(vp). If vp is the tail of ap−1 then

l(ap−1) = −l(vp).

Proof. Notice that v0 /∈ Ċ, in Figure 2 we represent the possible configurations for the
paths in C between v0 and vp. In this figure we show whether v0 and vp are the head or
the tail of the arcs in C incident to them. These two paths are denoted by P1 and P2.
Lemma 9 shows that we can assume that these paths have at most three arcs.

Consider configuration (1), these two paths should have different parity. When adding
the path P , an odd cycle is created with either P1 or P2. So configuration (1) will not
occur. The same happens with configuration (2).

Now we discuss configuration (3). These two paths should have the same parity. If vp

is the tail of ap−1 then P would create an odd cycle with either P1 or P2. If vp is the
head of ap−1 then P should have the same parity as P1 and P2. Then l(ap−1) = l(vp).
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(7)

v0

vp

Figure 2. Possible paths in C between v0 and vp. It is shown whether
v0 and vp are the head or the tail of the arcs in C incident to them.

The study of configuration (4) is similar. The two paths should have the same parity.
If vp is the tail of ap−1 then P would create an odd cycle with either P1 or P2. If vp is
the head of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = l(vp).

For configuration (5) again the two paths should have the same parity. If vp is the head
of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = l(vp). If vp is
the tail of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = −l(vp).

Also in configuration (6) the paths P1 and P2 should have the same parity. If vp is
the tail of ap−1 then P would form an odd cycle with either P1 or P2. If vp is the head
of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = l(vp).

In configuration (7) also the two paths should have the same parity. If vp is the head
of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = l(vp). If vp is the
tail of ap−1 then P should have the same parity as P1 and P2, and l(ap−1) = −l(vp). �

Based on this the labels are extended recursively. Denote by Gl the subgraph defined
by the labeled arcs. This is a two-connected graph, so for any two nodes v0 and vp it
contains a cycle going through these two nodes. Thus we can check if Case 3 applies
and extend the labels adding each time a path to the graph Gl. The two lemmas below
shows that properties 1 and 2 remain satisfied.

Lemma 11. Let vp be a node with l(vp) 6= 0. If vp is the tail of an arc in Gl, then in

Case 3 it cannot be the tail of ap−1. Thus Property 1 remains satisfied.

Proof. There is a cycle C in Gl containing v0 and vp. Property 1 implies that v0 is
the head of at least one arc in C. We can assume that vp is the tail of an arc in C.
Suppose not, let a be an arc in Gl whose tail is vp. Let u be the head of a. Since Gl is
two-connected, there is a path Q from u to a node v in C with v 6= vp. The path Q only
intersects C at the node v. We can add a and Q to C and remove the path in C from vp

to v that does not contain v0 as an internal node.

The cycle C can contain configurations (3), (4) and (6) of Figure 2. In these three
cases, the head of ap−1 is vp. �

Lemma 12. Let vp be a node with l(vp) = 0, thus vp is the tail of exactly two arcs in

Gl. Then in Case 3 it cannot be the tail of ap−1. Therefore Property 2 remains satisfied.

Proof. Let a1, a2 be the two arcs in Gl having vp as their tail. Since l(vp) = 0, the cycle
C in Case 3 must contain both arcs a1 and a2. But configuration (1) cannot occur. �
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Once Case 3 has been exhausted we might have some nodes in Gl that are not pendent
in G and that are only the head of labeled arcs. For such nodes we have to ensure that
inequalities (1) that were satisfied as equality remain satisfied as equality. This is treated
in the following.

Case 4. Suppose that v0 is only the head of labeled arcs, (l(v0) 6= 0), v0 is not
pendent. We have that δ+(v0) 6= ∅ thus there is a cycle C in Gl and there is a path
P = v0, a0, v1, a1, . . . , ap−1, vp in G such that:

- v0 ∈ C is the tail of a0,
- vp ∈ C,
- {v1, . . . , vp−1} is disjoint from Gl.

We set l(a0) = −l(v0) and extend the labels. We have to see that the label l(ap−1)
is such that constraints associated with vp, that were satisfied with equality, remain
satisfied with equality. This is discussed below.

Lemma 13. In Case 4 we have that vp is the tail of ap−1 and l(ap−1) = −l(vp). Also

properties 1 and 2 continue to hold.

Proof. The cycle C can correspond to configurations (1), (3) or (5) of Figure 2.

For configuration (1), the paths P1 and P2 have different parities, therefore adding the
path P would create an odd cycle.

Consider now configuration (3). The paths P1 and P2 have the same parity. If vp is
the tail of ap−1 then adding P to C would create an odd cycle. If vp is the head of ap−1

we would have a situation treated in Case 3 and configuration (7).

Finally consider configuration (5). If vp is the head of ap−1 we would have a situation
treated in Case 3 and configuration (5). If vp is the tail of ap−1, then P should have the
same parity as P1 and P2, thus l(ap−1) = −l(vp). If vp was the tail of an arc in Gl we
would have a cycle like in configuration (3). Adding P to this cycle would create an odd
cycle. Therefore vp was not the tail of an arc in Gl and properties 1 and 2 continue to
hold. �

To summarize, the labeling algorithm consists of the following steps.

• Step 1. Identify a cycle C in G and treat it as in cases 1 or 2. Set Gl = C.
• Step 2. For as long as needed label as in Case 3. Each time add to Gl the new

set of labeled nodes and arcs.
• Step 3. If needed, label as in Case 4. Each time add to Gl the new set of labeled

nodes and arcs. If some new labels have been assigned in this step go to Step 2,
otherwise stop.

At this point we can discuss the properties of the labeling procedure. The labels are
such that any inequality (2) that was satisfied with equality by z̄ is also satisfied with
equality by z′. To see that inequalities (1) that were tight remain tight, we need two
observations about Gl:

• Any node that has a nonzero label is the tail of exactly one labeled arc having
the opposite label.

• If u is a node with l(u) = 0, then there are exactly two labeled arcs having
opposite labels and whose tail is u.
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Finally we give the label “0” to all nodes and arcs that are unlabeled, this completes the
definition of z′. Lemma 6 shows that inequalities (4) will not be violated. The fact that
nodes v with z̄(v) = 0 or z̄(v) = 1 receive a zero label, shows that inequalities (3) will
not be violated. Any constraint that is satisfied with equality by z̄ is also satisfied with
equality by z′, this contradicts the assumption that z̄ is an extreme point. We can state
the main result of this section.

Theorem 14. If the graph G is two-connected and has no odd cycle then UFLP (G) =
P (G).

This implies the following.

Theorem 15. If G is a graph with no odd cycle, then UFLP (G) = P (G).

Theorem 16. For graphs with no odd cycle, the uncapacitated facility location problem

is polynomially solvable.

5. Odd cycles

In this section we study the effect of odd cycles in P (G). Let C be an odd cycle. We
can define a fractional vector (x̄, ȳ) ∈ P (G) as follows:

ȳ(u) = 0 for all nodes u ∈ Ċ,(13)

ȳ(u) = 1/2 for all nodes u ∈ C \ Ċ,(14)

x̄(a) = 1/2 for a ∈ A(C),(15)

ȳ(v) = 0 for all other nodes v /∈ C,(16)

x̄(a) = 0 for all other arcs.(17)

In Figure 3 we show two examples. The numbers close to the nodes correspond to the
y variables, and the numbers close to the arcs correspond to the x variables.
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Figure 3

Below we show a family of inequalities that separate the vectors defined above from
UFLP (G). We call them odd cycle inequalities.

Lemma 17. The following inequalities are valid for UFLP (G).

(18)
∑

a∈A(C)

x(a) −
∑

v∈Ĉ

y(v) ≤
|C̃| + |Ĉ| − 1

2

for every odd cycle C.
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Proof. From inequalities (1)-(4) we obtain

x(u, v) + x(δ+(v)) ≤ 1, for every arc (u, v) ∈ C, v /∈ Ĉ,

x(u, v) − y(v) ≤ 0, for every arc (u, v) ∈ C, v ∈ Ĉ,

x(δ+(v)) ≤ 1, for v ∈ Ċ.

Their sum gives

2
∑

a∈A(C)

x(a)−2
∑

v∈Ĉ

y(v)+
∑

v∈Ċ

x(δ+(v)\A(C))+
∑

v∈C̃

x(δ+(v)\A(C)) ≤ |A(C)|−2|Ĉ |+|Ċ|.

which implies

2
∑

a∈A(C)

x(a) − 2
∑

v∈Ĉ

y(v) ≤ |C̃| + |Ċ|.

dividing by 2 and rounding down the right hand side we obtain

∑

a∈A(C)

x(a) −
∑

v∈Ĉ

y(v) ≤
|C̃| + |Ċ| − 1

2

�

Now we can present our main result.

Theorem 18. Let G be a directed graph, then UFLP (G) = P (G) if and only if G does

not contain an odd cycle.

Proof. If G contains and odd cycle C, then we can define a vector (x̄, ȳ) ∈ P (G) as in
(13)-(17). We have

∑

a∈A(C)

x̄(a) −
∑

v∈Ĉ

ȳ(v) =
|C̃| + |Ĉ|

2
.

Lemma 17 shows that z̄ /∈ UFLP (G).

Then the theorem follows from Theorem 15. �

6. Separation of odd cycle inequalities

Now we study the separation problem: Given a vector (x̄, ȳ) ∈ P (G), find an odd
cycle inequality (18), if there is any, that separates (x̄, ȳ) from UFLP (G).

To solve the separation problem we write the inequalities as

2
∑

a∈A(C)

x(a) +
∑

v∈Ĉ

(1 − 2y(v)) ≤ |A(C)| − 1,

or
∑

a∈A(C)

(1 − 2x(a)) +
∑

v∈Ĉ

(2y(v) − 1) ≥ 1.

In order to reduce this to a shortest path problem several graph transformation are
required.



12 M. BAÏOU AND F. BARAHONA

6.1. First Transformation. We build an auxiliary undirected graph H = (N,F ). For
every arc a = (u, v) ∈ A we create the nodes (u, a) and (v, a) in H. The first node is
called a tail node and the second one is called a head node. The tail node is associated
with u and the head node is associated with v. We also create and edge between these
two nodes with the weight (1 − 2x̄(u, v)) and give the label blue to this edge, also this
type of edge will be called old. See Figure 4.

....
...
....
...
....
....
....
....
...
....
.u v

1 − 2x̄(u, v)
• •

Figure 4. Edge associated with the arc (u, v). It has the label blue and
is called old.

Now for every node v ∈ V and every pair of nodes in H associated with v we create
an edge in H as follows. This type of edges will be called new. Let n1 and n2 be two
nodes in H associated with v, we distinguish two cases:

• At least one of them is a tail node. In this case we add and edge between them
with weight zero and label black.

• Both n1 and n2 are head nodes. In this case we add an edge between them with
weight 2ȳ(v) − 1 and we label this edge blue. See Figure 5.
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2ȳ(v) − 10 •
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Figure 5. New edges. In the first two cases they have the label black,
in the last case it has the label blue. Beside each new edge we show their
weight.

A cycle in H consisting of an alternating sequence of old and new edges is called an
alternating cycle. The separation problem reduces to finding an alternating cycle in H
with an odd number of blue edges and total weight less than one.

6.2. Second transformation. To find an alternating cycle in H with an odd number
of blue edges, we create a new graph H ′ as follows. For every node n ∈ H we make two
copies n′ and n′′. Let n1n2 be an edge in H, we have two cases:

• If n1n2 is blue, we create the edges n′
1n

′′
2 and n′′

1n
′
2 with the same weight as n1n2,

and the same name (old or new).
• If n1n2 is black we create the edges n′

1n
′
2 and n′′

1n
′′
2 with the same weight as n1n2,

and the same name (new).

Then for every node n ∈ H we find a shortest alternating path P from n′ to n′′ in H ′.
The first edge in the path should be new, and the last edge should be old. Suppose that
the weight of P is less than one, then for each node p ∈ H such that p′ and p′′ are in
P we identify them. This gives a (non-necessarily simple) cycle that is alternating, has
an odd number of blue edges and has weight less than one. Notice that the derivation
of inequalities (18) does not depend upon the cycle being simple.
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Since the edge-weights could be negative, to find a shortest alternating path we have
to modify Bellman-Ford algorithm for shortest paths as follows. Let s be a source node.
Let fk

o (v) be the length of a shortest alternating path from s to v having at most k arcs,
whose first arc is new and whose last arc is old. Let f k

n(v) be the length of a shortest
alternating path from s to v having at most k arcs, whose first arc is new and whose last
arc is new. These values are computed with the following formulas:

fk
o (v) = min

{

fk−1
o (v),min{fk−1

n (u) + duv |uv is old}
}

,

fk
n(v) = min

{

fk−1
n (v),min{fk−1

o (u) + duv |uv is new}
}

,

f0
o (s) = 0, f 0

n(s) = ∞,

f0
o (v) = f0

n(v) = ∞, for v 6= s.

This algorithm requires that the graph has no alternating cycle of negative weight,
this is shown below.

Lemma 19. The edge weights cannot create a cycle of negative weight.

Proof. Suppose that
∑

a∈A(C)

(1 − 2x̄(a)) +
∑

v∈Ĉ

(

2ȳ(v) − 1
)

< 0,

for some cycle C. This implies

2
∑

a∈A(C)

x̄(a) − 2
∑

v∈Ĉ

ȳ(v) > |C| − |Ĉ|,

but when deriving inequalities (18) we had

2
∑

a∈A(C)

x̄(a) − 2
∑

v∈Ĉ

ȳ(v) ≤ |C| − |Ĉ|.

�

We can state the following.

Theorem 20. The separation problem for inequalities (18) can be solved in O(|V |2|A|)
time.

7. Detecting odd cycles

Now we study how to recognize the graphs G for which UFLP (G) = P (G). We start
with a graph G and several transformations are needed.

The first transformation consists of building an undirected graph H = (N,E). For
every node u ∈ G we have the nodes u′ and u′′ in N , and the edge u′u′′ ∈ E. For every
arc (u, v) ∈ G we have an edge u′v′′ ∈ E. See Figure 6.
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Consider a cycle C in G, we build a cycle CH in H as follows.

• If (u, v) and (u,w) are in C, then the edges u′v′′ and u′w′′ are taken.
• If (u, v) and (w, v) are in C, then the edges u′v′′ and v′′w′ are taken.
• If (u, v) and (v, w) are in C, then the edges u′v′′, v′′v′, and v′w′′ are taken.

On the other hand, a cycle in H corresponds to a cycle in G. Thus there is a one to
one correspondence among cycles of G and cycles of H. Moreover, if the cycle in H has
cardinality 2q, then q = |Ċ| + C̃|, where C is the corresponding cycle in G. Therefore
an odd cycle in G corresponds to a cycle in H of cardinality 2(2p + 1) for some positive
integer p. See Figure 7.
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Figure 7. An odd cycle in G and the corresponding cycle in H. The
nodes of H close to a node u ∈ G correspond to u′ or u′′.

In other words, finding an odd cycle in G reduces to finding a cycle of cardinality
2(2p + 1), for some positive integer p, in the bipartite graph H.

For this question, a linear time algorithm was given in [14], a simple O(|V ||A|2) has
been given in [7], we describe it below.

First we should find a cycle basis of H and test if the cardinality of every cycle in this
basis is 0 mod 4. If there is one whose cardinality is 2 mod 4 we are done. Otherwise
consider the symmetric difference of two cycles whose cardinality is 0 mod 4. If the
cardinality of their intersection is even then the cardinality of their symmetric difference
is 0 mod 4, otherwise it is 2 mod 4. Since any cycle C can be obtained as symmetric
difference of some cycles in the basis, if the cardinality of C is 2 mod 4, then there
are at least two cycles in the basis whose symmetric difference has cardinality 2 mod 4.
Therefore one just has to test all elements of a cycle basis and the symmetric difference
of all pairs.

Acknowledgments. We are grateful to Gérard Cornuéjols for pointing out to us
references [14] and [7].
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