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Abstract. In order to gain user acceptance, a static analysis tool for
detecting bugs has to minimize the incidence of false alarms. A common
cause of false alarms is the uncertainty over which inputs into a program
are considered legal. In this paper we introduce evidence-based analysis
to address this problem. Evidence-based analysis allows one to infer legal
preconditions over inputs, without having users to explicitly specify those
preconditions. We have found that the approach drastically improves
the usability of such static analysis tools. In this paper we report our
experience with the analysis in an industrial deployment.

1 Introduction

There are several kinds of software tools for detecting program errors — from simple
lint-like tools [1] to sophisticated software verification tools [2–8]. Each software tool has
different goals and purposes, but from software developers perspective it is important
to address two important problems for gaining wider acceptance of such tools:

Minimizing False Alarms: One thing that turns off software developers from using
static analysis are false alarms. A false alarm, also called false positive, is an alarm
(or a message) issued by a tool that user chooses not to translate into a code
change. False positives occur when a tool has imprecise information about the
given program and then chooses to issue a warning in spite of its uncertainty.
False positives need to be traded-off against false negatives, which occur when the
tool remains silent in the face of uncertainty. Therefore improving precision allows
any tool to issue more true positives while reducing the false positive rate. There
are several causes of imprecision that can lead to false positives, including lack of
information about side-effects of library functions, lack of information about which
inputs are considered legal, and imprecise analysis.

Minimizing Program Specification: The second thing that most developers dis-
like or forget to do is to write explicit specifications. Most sophisticated verification
tools rely on such explicit specifications, which typically consist of preconditions,
post-conditions, invariants, environments, etc. Absence of specifications results in
either false positives or false negatives, or both. So it is important for tools to
improve their accuracy in face of very little or no specifications.
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In this paper we present evidence-based analysis for addressing the above two prob-
lems. We will show how to infer from a given source code which inputs are legal by
focusing on what would be the programmer’s intended preconditions for a procedure
if they were written down explicitly. By inferring preconditions using various pieces
of evidence in the program source code we will show how to reduce the number of
false positives. The proposed approach as well as its implementation are language in-
dependent and for the rest of the paper we will use the C language for illustrating our
examples.

To motivate our evidence-based analysis consider the example of Figure 1(a). Sup-
pose we have no documentation for foo(), and know nothing about the potential callers
of foo(). Should the programmer be warned of foo() failing if called with NULL argu-
ment? In other words, if foo() fails, is it because NULL is a legal input, and x should
be checked for NULL before dereferencing? Or is the fault with the caller, because
NULL is not legal input into foo()? There is no universally correct answer. It may
differ from project to project depending on their reliability requirements and coding
practices, or even the taste of individual programmer.

int foo(int *x)

{

return *x;

}

(a)

int foo(int *x)

{

if (x != NULL) bar();

return *x;

}

(b)

Fig. 1. Would you want a warning about possibly dereferencing NULL?

Now consider the example shown in Figure 1(b) and assume that a programmer is
going through a manual code-review process with a code inspector.
Code inspector: “The procedure will fail if x is NULL.”
Programmer: “The procedure is not to be called with x NULL.”
Code inspector: “So why are you testing it for NULL?”
At this point the programmer will lose because most people agree that the code gives
the impression that the procedure can handle NULL argument. We formalize this by
assigning “admissible evidence” to the predicates on both the then- and else-branches
of the if-statement.

To summarize, the main contribution of this paper is a framework for inferring
legal program inputs from program text, and showing how to parametrize the process
to match coding practices of individual projects. The rest of the paper is organized
as follows. Section 3 defines falsification conditions and relates them to verification
conditions. Section 4 explains how different predicates along a program path contribute
different levels of evidence. Section 5 then explains how evidence based analysis impacts
interprocedural analysis. Finally Section 6 shows benchmark results and discusses the
method’s use in an industrial deployment.
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2 Related work

The problem of legal inputs was first tackled in the area of verification, also called
“sound” analysis [2–8]. The goal in verification is the absence of false negatives, even
to the point of providing a formal proof that certain properties are guaranteed to
be satisfied. These approaches assume conservatively that (unless explicitly specified
otherwise) all possible inputs can occur. An error is reported if all the conditions along
a path to a potential error are satisfiable. For instance, LCLint[9] offers special notation
to identify pointers that cannot be NULL; the default is the assumption that they can
be NULL. Therefore without the extra annotation the programmer would receive a
warning about Figure 1(a).

In contrast to verification, there are static analysis approaches that do try to infer
preconditions so as to avoid false positives. FlexeLint[10] would flag the dereferencing
of x in Figure 1(b), but it would not do so in Figure 1(a). The reason is that the if-
statement suggests that the programmer intended to handle the possibility of x being
NULL, but there is no such suggestion in Figure 1.

A more general approach, and the closest to ours, is [11], where this situation is
referred to as contradiction in beliefs. While writing the if-statement the programmer
believed that x could be NULL, but in the return-statement he believed it could not
be NULL. In general, language constructs, e.g. if-statements or pointer dereferencing,
generate beliefs, which are then propagated through the rest of the code. Any contra-
dictions with other belief-generating constructs are flagged as potential errors.

Our approach has somewhat different goals. Reducing false negatives, which is the
main motivation of [11], is only a side benefit for us. Our main goal is reducing false
positives, and therefore our approach is execution-path oriented rather than based on
the parse tree. Beliefs, or what we call levels of evidence, do not propagate syntactically.
Instead they remain at their generating construct and we rely on a theorem prover to
relate them along each path. This leads to a greater reduction in both false positives
and negatives. In addition, the availability of a theorem prover [12] allows us to attach
evidence to arbitrary predicates, not just finite-state properties as in [11].

Any method for inferring preconditions can also be used to infer post-conditions
of unknown library functions. Additional pre- and post-conditions of library functions
can be inferred from temporal behavior [11, 13, 14]. They observe patterns such as
ordering of procedural calls (procedure A should be called before procedure B), or
pairing of program statements (lock and unlock have to be paired). Such patterns are
captured using finite-state machines and then used in typestate analysis [15–17, 8]. Our
approach does necessitate modifications to typestate and other kinds of analysis, but
those modifications are beyond the scope of this paper.

3 Falsification Condition

Software verification techniques are based on the following premise: given a specification
of a program, a verification technique attempts to prove the absence of errors with
respect to the specification. A failure is an indication of an error in the program or in
the specification. In evidence-based analysis we have a different goal: prove the presence
of errors without requiring specifications. For that we define falsification conditions and
relate them to the verification conditions used in verification.

A program is a set of global variables and procedures defined in the usual way.
Each procedure is represented by a control flow graph. Nodes in the control flow graph
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represent program statements, and edges represents flow of control from one node to
another. Edges have labels representing conditions that need to be satisfied in order
for the edge to be traversed. We insert special ERROR nodes in the graph where an
error should be reported. For example, Figures 2(a) and (b) show the ERROR nodes
representing NULL dereference for Figures 1(a) and (b). Interprocedural control flow
graph also contains edges from procedure call to procedure definition, and edges from
return statement back to the call statement. (We will discuss interprocedural analysis
later in Section 5.) A path in a graph through a program is an alternating sequence of
nodes and edges, and a path may traverse several procedures.

ENTRY

return *x

bar()

x != NULL

x != NULL

x == NULL

x == NULL

ERROR

return *x

ERROR

x != NULL x == NULL

ENTRY

(a) (b)

then

else

error

error

Fig. 2. Graphs for the examples of Figure 1

We now briefly explain verification conditions as used in verification to help the
reader relate them to falsification conditions. In verification, only finite paths are con-
sidered; loops are either cut, or abstracted away. Each path P is assumed to have two
predicates — precondition(P ) and postcondition(P ). The precondition is in terms of
special symbols representing the initial values of variables; in contrast, the postcondi-
tion as well as all the expressions appearing along the path are in terms of program
variables. The first step in generating a verification condition [18, 19] replaces values
of program variables with their contents, which are symbolic expressions in terms of
the initial values of variables. The easiest way of doing it is symbolic execution [20,
19] along the path. As a result, each edge e has attached a predicate prede, which is a
boolean expression in terms of the initial values of variables, denoted x. Likewise the
postcondition(P ) is expressed in terms of x.

Definition 1. The verification condition of a path P is valid iff for all initial val-
ues x the post-condition must be true whenever the precondition together with all the
predicates on the path are all true. That is,

∀x{(precondition(P ) ∧
∧

e∈P

prede) ⇒ postcondition(P )}

A special case of a postcondition arises for a path P terminating in an ERROR
node with incoming edge error. Then postcondition(P ) is the negation of prederror.
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And the path P has a valid verification condition if

∀x{(precondition(P ) ∧
∧

e∈P ′

prede) ⇒ ¬prederror}

where P ′ is the path P without the edge error and its ERROR node.

A valid verification condition implies that the ERROR node cannot be reached. By
negation, the ERROR node is reachable if

∃x{precondition(P ) ∧
∧

e∈P ′

prede ∧ prederror} (1)

Now we introduce falsification condition, which is also associated with a path.
A valid falsification condition implies the reachability of an error when the path is
exercised with valid inputs. The restriction to valid inputs has to be accomplished
without knowing any precondition, which if present would define the valid inputs. We
do it by extracting information from the source code; next section describes how to
do it for various language constructs. The information is represented by associating
“evidence”, evide, with each edge e along the path. Each evide is one of three values
admissible, inadmissible, asserted.

The terminology comes from legal analogy. In an effort to convict the accused (an
error site), prosecution asserts certain allegations (reachable with legal values), and
then calls witnesses (edges along particular path). The statement made by each witness
is deemed by the court admissible or inadmissible. In order to convict the accused the
prosecution must collect enough admissible evidence to imply the asserted allegations
(condition (3)). Inadmissible evidence plays no role at this stage; the prosecution cannot
use it to its advantage, but does not need to prove it either. But even the inadmissible
evidence cannot be completely ignored; if it contradicted other statements made by
the prosecution side then the defense could take advantage of it. The accused can be
convicted only if all the admissible and inadmissible evidence is consistent with the
asserted accusations (condition (2)).

Definition 2. The falsification condition of a path P is satisfiable iff all the predicates
along the path are satisfiable. That is,

∃x{
∧

e∈P

prede} (2)

Please note that satisfiability for a falsification condition (2) is identical to (1) (in
the absence of any precondition). In contrast to verification, however, satisfiability is
not sufficient for reporting an error. The following additional condition is also required.

Definition 3. The falsification condition of a path P is valid iff it is satisfiable and
all the admissible predicates imply all the asserted predicates. That is,

∀x{(
∧

e∈P

evide=admissible

prede) ⇒ (
∧

e∈P

evide=asserted

prede)} (3)
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Example: Consider Figure 2(b). Let then, else, error be names of the three edges
representing the then-branch of the if statement, the else-branch of the if statement, and
the input into the ERROR node, respectively. Then these are the attached predicates
and evidence.
predthen is x != NULL, evidthen = admissible

predelse is x == NULL, evidelse = admissible

prederror is x == NULL, eviderror = asserted

The path containing the edges then and error does not have a satisfiable falsification
condition. But the path containing else and error has a valid falsification condition.
Therefore that path would be reported to the user.

Consider Figure 2(a). There is only one path containing the edge error. That
path has only the asserted predicate x == NULL. This makes the falsification condition
satisfiable (2), but not valid (3). Therefore that path would not be reported to the
user.

4 Assigning Evidence

In the previous section we explained the notion of a valid falsification condition, which
depends on an assignment of evidence to the edges along a path. In this section we
explain how to perform the assignment. It is based on a common observations that it
is unusual for programmers to intentionally write useless code. From that we reason
along the following lines. Given a predicate and given a program entry we ask the
question whether modifying the predicate would change the behavior of the program
when invoked from the given entry. The answer is an indication of how useful is the
predicate, which gives us information about what inputs are expected at that program
entry.

Consider an edge e with a predicate p, and we wish to assign evidence to the edge.
Let S be the set of all the possible input values (legal or not) into the given program
entry for which the edge e will be traversed with p being true. If we modify p into some
p′ the set S may change into S′. Assume that the modification has the property that
S′ is a strict subset of S. Then we ask the question “Did the behavior over the set of
legal inputs change?” If the answer is “yes” then the set difference S −S ′ must contain
a legal input, and we assign admissible evidence to the edge e.

In the example of Figure 2(b) let’s assign evidence to then-branch of the if-statement,
which has the predicate x != NULL. The set S consists of all non-NULL addresses. if we
modify x != NULL into false then S′ will be empty. We would then expect the answer
to the question “Did the behavior over the set of legal inputs change?” to be “yes”. We
would expect it on the assumption that the programmer did not intentionally write
useless code. For that reason the then-branch of the if-statement is assigned admissible
evidence. We can perform the same exercise for the else-branch, which would call for
replacing the if-statement with if(true), and likewise yield admissible evidence for
the else branch.

Now suppose the answer to our question is “No, the behavior did not change over
the set of legal inputs”. And suppose that the answer continues to be negative even if
the predicate p is replaced with the always false predicate. That means the predicate p

does not provide any information about legal inputs, and the edge is useless. Then we
ask the next question: “Is that useless edge intentional”. If the answer is “yes” then
the programmer believes that the edge cannot be traversed for any legal inputs. Telling
him otherwise would not be productive unless we have evidence to support that claim;
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therefore the edge e gets asserted evidence. If the edge is useless unintentionally then
we are free to traverse it on a way to an error without having to prove that it is possible
– the edge e gets inadmissible evidence. Later in the section we will show examples of
language constructs generating inadmissible and asserted evidence, respectively.

The answers to our two questions depend on reliability requirements, coding stan-
dards of an individual project and human psychology. We want to emphasize that these
considerations are part of daily software development process and are not an artifact of
an automated tool. Therefore consider the common situation of a programmer having
a dialog with a code inspector who is criticizing the programmer’s code. (You have
encountered them already in the introduction.) The inspector found a satisfiable path
to an ERROR node and wants to argue that the path is exercisable by legal inputs.
The programmer argues back that those inputs should not be considered legal. The
dispute is decided by the programmer’s colleagues, who may have to modify his code in
the future. Therefore they want to make sure the code works for all inputs that appear
legal to most people examining the code. They side with the inspector by making pred-
icates admissible, and they side with the programmer by making them inadmissible or
even asserted.

4.1 ERROR node

ERROR nodes are generated in the process of translating given source code into the
control flow graph. For example, if(x == NULL) abort() is represented by an ERROR
node whose incoming edge has the predicate x == NULL. Many languages have an
assert(c) construct, which may be a macro expanding into c ? 0 : abort(); this is
represented by the same ERROR node structure. Anybody writing such a constructs
expects the code to be unnecessary, and he does it intentionally. He would admit that
his code is wrong only if there is other information implying that the abort() call is
reachable with legal inputs. That is expressed by assigning asserted evidence to the
incoming edge.

As another example consider return *x. That could be rewritten as
if(x == NULL) abort(); return *x to express the possibility of error. Although such
a transformation would be performed by an automatic translation form original source
code, we can still ask the question of whether it is expected to be dead code. And if
the answer is “yes” then the evidence associated with that generated then-branch is
asserted.

4.2 If and Switch Statements

In the introduction we explained why the then- and else-branches of an if-statement
should be assigned admissible evidence. Now consider the example of cascaded if-
statement in Figure 3(a).
Code inspector: “The index i will exceed the range of the array a, if i > 2.”
Programmer: “The procedure is not to be called with i > 2.”
Code inspector: “So why do you have the last if-statement?”
Programmer: “For clarity.”
Code inspector: “Clarity would be better served by an assert.”

It is difficult even for people to decide what the programmer meant. Incidentally,
an identical situation occurs for switch statements with omitted default clause. People
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int a[3];

int is_i_out_of_range(unsigned i)

{

int r;

if (i == 0) r = 0; else

if (i == 1) r = 1; else

if (i == 2) r = 2;

return a[i];

}

(a)

int a[3];

int is_r_uninitialized(unsigned i)

{

int r;

if (i == 0) r = 0; else

if (i == 1) r = 1; else

if (i == 2) r = 2;

return r;

}

(b)

Fig. 3. Should an error be reported in case i is none of 0, 1, 2?

who side with the code inspector would expect the program’s behavior to change by
replacing if (i == 2) with if (true). Therefore they would assign admissible evi-
dence to the unexpressed else branch of the last if-statement (or the missing default
branch in a switch statement).

Those who side with the programmer think it possible that the behavior would
not change by the above modification. The project may even have a coding guideline
according to which such a cascaded if-statements implies an assertion that all cases are
considered. If so, the programmer wrote the unnecessary code intentionally to express
the assertion; therefore the final else branch would receive asserted evidence. On the
other hand, if the programmer wrote the unnecessary code without intending such an
assertion, the final else branch would receive inadmissible evidence.

People who would assign the inadmissible evidence are in a seemingly contradictory
position where Figure 3(b) contains an error, while Figure 3(a) does not. In Figure 3(b)
the uninitialized use of r would be flagged because there is no asserted evidence along
the path containing the unexpressed else-branch. It seems contradictory because both
functions would fail under identical assumptions about the parameter i. To understand
the reasoning, imagine that the cascaded-if statement is removed from both procedures.
Then Figure 3(b) has an obvious error, which reintroduction of the cascaded-if state-
ment does not eliminated completely. In contrast, Figure 3(a) would have no error
worth reporting and reintroduction of the cascaded-if statement does not change any-
thing.

As you can see, cascaded if-statements can be controversial with all three level of
evidence being candidates for representing a coding guideline. In our implementation
there is a parameter to express the decision. The tool is shipped with the admissible
setting for the last unexpressed else-branch of a cascaded if. Independently the user
can turn on a warning for switch statements without a default clause which do not
exhaust all cases.

4.3 Loops

Consider the example of Figure 4(a).
Code inspector: “The procedure will divide by 0 if n == 0.”
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int loop1(unsigned n)

{

int i;

for (i=0; i<n; i++)

{

/* anything */

}

return 42/n;

}

(a)

int loop2(unsigned n)

{

int x = 0;

int i;

for (i=0; i<n; i++)

{

x++;

}

return 42/x;

}

(b)

int loop1(unsigned n)

{

int i;

for (i=0; ; i++)

{

if (i >= n) break;

/* anything */

}

return 42/n;

}

(c)

Fig. 4. Is division by 0 possible?

Programmer: “It is not to be called with n == 0.”
Code inspector: “So why are you comparing it against 0 as the loop is entered?”
Programmer: “Because the syntax of the for-statement compels me to do so.”

The identical conversation, but with different outcome might occur for the example
of Figure 4(b). In the eyes of his colleagues the programmer is likely to win the first
debate, but he is likely to lose the second. The reasons are similar to the above example
of cascaded if-statement. Imagine both examples with the loops removed. In Figure 4(a)
there is no evidence for the condition of error, while Figure 4(b) would be guaranteed to
fail. Simple reinsertion of the for-loop into Figure 4(a) does not give us any information
about n, and therefore the presence of the loop should have no effect. Reinsertion of the
loop into Figure 4(b) does not completely prevent the failure, which makes a warning
acceptable.

It is important that our formalization allows the above sentiment about loops. The
key is the level of evidence assigned to the then- and else-branches of the loop condition
i < n on different iterations. It can be accomplished by assigning inadmissible evidence
to the false-branch of the loop condition the very first time it is evaluated, while
assigning admissible evidence thereafter. The programmer cannot argue that we have
no evidence that the loop condition can ever be true or ever false. If he was sure that
it can never be true then he would not write the loop, and if he was sure that it can
never be false then he wrote an infinite loop.

However, the programmer could object to the following situation. Suppose the
program fails only if the loop is executed exactly five times. We have no more evidence
that it can be executed exactly five time than we have that it can be executed exactly
zero times. Users who feel that way can assign inadmissible evidence to all the possible
outcomes of the loop condition.

In our implementation, by default, inadmissible evidence is assigned only to the
possibility of zero iterations, and that does not cause any problems with our users.
However a more complicated situation exists with if-statements inside a loop. For
example, Figure 4(a) could be rewritten as in Figure 4(c). As above, that should not
offer any evidence for n == 0. This is in contrast to an if-statement if (0 >= n) ...

which does provide such evidence.
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In our implementation an if-condition inside a loop provides admissible evidence
only if it does not involve any variables modified by the loop. This is conservative and
is a source of false negatives, but it is necessary to avoid false positives.

4.4 Relational Operators

Consider the following example.

int a[10];

int foo(unsigned int i)

{

if (i <= 10) return a[i];

else return 0;

}

Consider replacing if (i <= 10) with if (i < 10). In the minds of many people
that would make a difference, which means that the programmer expected 10 to be
a possible value for i. That would make i exceed the range of the array a. Therefore
admissible evidence can be assigned not only to i <= 10, but also to i == 10; that is
important because the latter does imply that i will be out of range, but the former
does not.

In our default setting, the if-statement is interpreted to provide three branches
(instead of just two) – i < 10, i == 10, i > 10 – all three with admissible evidence.

4.5 Correlated Input Variables

Consider the following example.

/* This procedure can handle n1 == 0 as well as n2 == 0 */

int average(int sum, unsigned int n1, unsigned int n2)

{

return sum/(n1 + n2);

}

Code inspector: “The procedure will fail if n1 == 0 and n2 == 0.”
Programmer: “I promised to make it work if either is 0, but not if both are 0.”
Both points of view have their supporters, but there are enough people who feel that
even they would be misled the same way the inspector was. Therefore we have not
implemented the programmer’s point of view. That point of view cannot be formalized
by assignment of evidence; it would require redefining the validity of a falsification
condition by requiring that just a single admissible evidence is sufficient to imply all
the asserted predicates along the path.

4.6 Procedure Calls

Consider the following example.

/* This procedure can handle n1 == 0 */

int average1(int sum, unsigned int n1, unsigned int n2)

{
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return average2(sum, n1, n2);

}

/* This procedure can handle n2 == 0 */

int average2(int sum, unsigned int n1, unsigned int n2)

{

return sum/(n1 + n2);

}

Code inspector: “Both procedures will fail if n1 == 0 and n2 == 0.”
Programmer: “I did not promise for either one to work if both parameters are 0.”

This time the programmer will get very wide support from his colleagues. The
difference from Section 4.5 is that the two pieces of evidence are in different functions.
There may be many contexts where it is OK to call average2() with n2 == 0, but
that does not imply anything about average1().

When a programmer writes a comment like the one for average2(), he is not
expressing a precondition, in the sense of limiting possible inputs. Instead he is telling us
that at the entry to average2() we can create an edge with n2 == 0 having admissible
evidence, which can be used to catch errors like dividing by n2 itself. However, the
evidence is admissible only for paths starting with average2(). The comment does
not imply anything about legal inputs of average1() or any other procedure calling
average2(). Therefore we cannot use n2 == 0 as admissible evidence for paths starting
at average1(). This phenomenon happens in situations other than procedure calls.
Macros, like procedures, may be prepared to handle certain unusual parameter values,
but that does not imply that every procedure invoking the macro is obligated to handle
the same unusual values. It also happens in languages, like PL/I, allowing multiple
procedure entries. One entry may declare it possible that n1 == 0 and another that
n2 == 0. That does not imply that it is wrong to divide by (n1 + n2) in their common
code.

Let’s assign evidence to an edge inside average2() labeled with n2 == 0. As above,
we ask the question whether the behavior will change if we change the predicate to al-
ways false. The answer is clearly “yes” for any path starting at the entry to average2(),
due to the comment. Therefore along such a path the edge would get admissible evi-
dence. But for a path starting at the entry to average1() there is nothing to suggest
that it could be invoked with n2 == 0. As far as average1() is concerned any testing
of n2 == 0 is useless. But it is not intended to be useless, therefore the evidence is
inadmissible.

This example shows that evidence level cannot be fixed with each edge syntacti-
cally, but depends on a path. This is the general rule: No edge along a path can have
admissible evidence unless the very first node on the path dominates the edge. There-
fore any path starting at the entry of average2() can have admissible evidence on the
edge representing n2 == 0. But paths starting at average1() cannot do so because the
entry of average2() is reachable from elsewhere.

5 Interprocedural Evidence-Based Analysis

The purpose of inter-procedural analysis is to propagate information calculated in the
body of one procedure to those calling it, as well as to those being called by it. As we
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will explain, evidence-based analysis diminishes the usefulness of information passed
from callers to callees and increase the importance of information passed in the opposite
direction. There are several reasons for this asymmetry.

Please recall Section 4.6, where we explained that admissible evidence in a caller
can be used inside a callee, but not vice versa. In [11] this asymmetry is expressed
by propagating beliefs (aka, admissible evidence) from callers to callees but not in the
opposite direction. A contradiction in beliefs causes an error to be reported inside the
callee. The method in [11] can do the propagation from caller to callee because they
deal with just one piece of admissible evidence. This is not possible in the more general
situation, where asserted evidence is implied by more than one piece of admissible
evidence. During interprocedural analysis, before a specific path is fixed, we do not
know which evidence can remain admissible. On the other hand, the situation is clear
when propagating information from callee to caller – all admissible evidence needs to
be down-graded to inadmissible or asserted. Error is then reported in the topmost
caller appearing in the path; he should not have called the lower level procedure with
values that will make it fail.

The main reason for the asymmetry is the fundamental philosophy of evidence-
based analysis. The correctness of a software layer does depend on its specific lower level
libraries, but it does not depend on any specific higher software layers. If higher or lower
layers are available, information propagated from them can be used for two purposes
– to determine that an error is possible, and to suppress invalid error complaints.
To report an error only MUST information can be used, and that is rarely derived by
interprocedural analysis. The more usual MAY information can be used for suppressing
potential false positives. And here is a difference between lower and upper layers.
Information derived from lower layers can override any evidence, because the lower
layer is fixed. But information derived from upper layers cannot override any evidence,
because the evidence can be used to imply an error that would happen with a different
upper layer.

For example, consider the impact on pointer analysis. It is possible to report an error
in a procedure while assuming that none of its parameters alias. The reason is that the
very declaration of two separate parameters is admissible evidence that sometimes they
do not alias. And that cannot be overridden by any pointer information derived from
specific callers. For more complicated pointer expressions other forms of evidence may
exist, and it continues to be true that information from specific callers cannot override
it. The situation is different with information derived from lower layers. For example,
the C-library function strcpy is such that after x = strcpy(y,z); the variables x and y

alias. And the fact that the programmer declared two separate variables cannot override
that. Therefore for evidence-based analysis, pointer information has to be propagated
from callees to callers, but propagation from callers to callees is not essential. In order
that such a pointer analysis be sound, information propagated from a callee to a caller
needs to be adjusted for any aliasing present in the caller, but does not need to be
adjusted for aliasing in a grand-caller.

For these reasons, our overall approach to inter-procedural analysis is to propagate
information from callees to callers only, in the form of procedure summaries. There are
several kinds of procedure summaries that we compute, including information for error
reporting, MOD information, and other side-effects. These procedures summaries can
be view as generated preconditions. If there is not enough evidence inside a procedure
to report a potential problem, the summary describes assumed legal inputs. Callers are
then checked to see if they pass illegal inputs. And if there is not enough admissible
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evidence inside the caller to prove that the inputs are illegal, the caller gets another
summary expressing its legal inputs.

6 Experience

The method has been implemented in an IBM internal tool called BEAM [21], which
currently handles C, C++ and Java. It went into production use in 2001 with usage
steadily increasing since then. User acceptance is an indication that the tool reports
useful errors with few false positives. One of the main reasons for that is the evidence-
based analysis, which has evolved in response to user feedback. The tool is shipped
with the default evidence settings described in Section 4. Users are able to change
them, but we have not seen them do that.

The default settings are not perfect. We have seen false positives due to admissible
evidence for cascaded-if and missing default as described in Section 4.2. Also we have
seen false positives due correlated input variables (Section 4.5). However, users tend
to tolerate those, because they feel that another person might misunderstand the code
the same way as the tool. On the other hand, users do not tolerate false positives due
to overly aggressive admissible evidence in a loop. They consider them bugs in the tool,
and therefore we must be particular conservative in assigning evidence to predicates in
a loop.

Table 1 indicates the impact of evidence level on the number of errors reported.
Each of the benchmarks listed was run with various rules for assigning evidence, and
for each the table shows the number of errors reported. (We count only those kinds of
errors where evidence is used to decide whether to report them.) The meaning of the
columns is the following.
ev-0: edges leading to ERROR nodes and edges inside callees have asserted evidence;
all other edges have inadmissible evidence
ev-1: as ev-0, except then-branches of if-statements have admissible evidence
ev-2: as ev-1, except else-branches of simple if-statements have admissible evidence
ev-3: as ev-2, except else-branches of cascaded if-statements have admissible evidence
ev-4: as ev-3, except relational operators yield admissible evidence
ev-5: as ev-4, except eventual loop termination has admissible evidence
ev-6: as ev-5, except immediate loop termination has admissible evidence
ev-7: as ev-6, except pointer aliasing has admissible evidence
ev-8: as ev-7, except edges inside callees have inadmissible evidence
ev-9: as ev-8, except edges inside callees have admissible evidence
ev-all: all edges have admissible evidence; none has asserted evidence

From Table 1 we can see that the number of false positives would be intolerable (last
column) if Definition 3 required paths to be only satisfiable (2) without condition (3).
But the number of errors reported becomes tolerable even with the highest evidence
setting, ev-9.

As an illustration of how our method works, consider a problem reported in firestorm-
0.5.4 4 in column ev-4 of Table 1. There is a function
mesg_initlog(tv, code, buf) containing the expression mesg_str[code]. The sub-
script code is a parameter, and the array mesg_str is defined by to be of size 6 elements.
The function mesg_initlog does not contain enough evidence to report the possibility
of the subscript code being out of range. Therefore, instead, a precondition is generated

4 A network intrusion detection system available from Free Software Foundation
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Benchmark ev-0 ev-1 ev-2 ev-3 ev-4 ev-5 ev-6 ev-7 ev-8 ev-9 ev-all

paraffins 0 0 0 0 0 0 0 0 0 0 8

compress 0 0 0 0 0 0 0 0 0 0 19

gzip 0 0 0 0 0 0 0 0 0 1 54

finger 0 4 6 6 6 6 6 6 6 7 175

perl 0 1 2 2 2 2 6 6 8 15 449

tar 0 9 15 15 15 14 16 16 17 17 520

bison 0 22 25 25 25 25 25 25 27 27 722

bash 0 7 11 11 13 16 15 16 17 24 814

firestorm 0 0 1 1 3 6 7 7 7 7 893

Table 1. Impact of evidence on number of errors reported

for the function mesg_initlog; the precondition describes legal values of the parame-
ter code, namely 0 <= code < 6. Then inside another function mesg(code, fmt, ...)

there is a call mesg_initlog(&tv, code, buf);

In addition, there is a statement
if ( code > M_MAX ) code=0; which was probably meant to be
if ( code >= M_MAX ) code=0;

That caused our tool to report an index-out-of-range error, because the test code > M_MAX

provides admissible evidence for code == M_MAX, see Section 4.4. Since M_MAX is defined
to be 6, we have enough admissible evidence to falsify the generated precondition of
mesg_initlog(tv, code, buf).

7 Conclusions

We have presented an approach to determining that a program will fail in an intended
invocation environment, without requiring any preconditions defining the intended en-
vironments. We have done that by introducing the notion of a falsification condition,
whose validity implies the presence of error. This is a formalization of a common infor-
mal process by which programmers assign responsibility for checking unusual inputs
between higher and lower layers of software. A falsification condition is parameterized
by assignment of evidence levels to control flow edges, and we have described how to
assign the evidence depending on a project’s coding practices.

The approach reduces the incidence of false positives by reporting only those errors
that happen for legal inputs. At the same time it decreases false negatives by reporting
error that can happen in any intended environment, which may not even exist today.
General user acceptance of our falsification-based tool is an indication that it leads to
improved software quality.
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8 Appendix

We show the relevant parts of the code from firestorm-0.5.4 discussed in Section 6.

#define M_MAX 6

char *mesg_str[]={"undefined","critical","error","warning","info","debug"};

void mesg_initlog(struct timeval *tv, int code, char *buf)

{

int ret;

if ( !init_buflen ) {

printf("warning: internal message buffer overflow\n");

return;

}

ret=snprintf(init_buf_p, init_buflen,

"%.8lu.%.6lu %s: %s\n",

tv->tv_sec, tv->tv_usec, mesg_str[code], buf);

init_buf_p+=ret;

if ( ret > init_buflen ) {

init_buflen=0;

}else{

init_buflen-=ret;

}

}

void mesg(unsigned char code, char *fmt, ...)

{

static char buf[1024];

struct timeval tv;

va_list va;

if ( code > M_MAX )

code=0;

gettimeofday(&tv, NULL);
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va_start(va, fmt);

vsnprintf(buf, sizeof(buf), fmt, va);

va_end(va);

if ( !init_buflen ) {

/* No point checking for errors, what are we gonna do

* print them to screen? ;) */

printf("%.8lu.%.6lu %s: %s\n", tv.tv_sec,

tv.tv_usec, mesg_str[code], buf);

fflush(stdout);

return;

}else{

mesg_initlog(&tv, code, buf);

}

}


