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Danilo Ardagna ∗,1 Marco Trubian 2 Li Zhang 3

SLA Based Resource Allocation Policies in

Autonomic Environments

Abstract

Nowadays, large service centers provide computational capacity to many customers
by sharing a pool of IT resources. The service providers and their customers ne-
gotiate utility based Service Level Agreement (SLA) to determine the costs and
penalties on the base of the achieved performance level. The system is often based
on a multi-tier architecture to serve requests and autonomic techniques have been
implemented to manage varying workload conditions. The service provider would
like to maximize the SLA revenues, while minimizing its operating costs. The sys-
tem we consider is based on a centralized network dispatcher which controls the
allocation of applications to servers, the request volumes at various servers and
the scheduling policy at each server. The dispatcher can also decide to turn ON or
OFF servers depending on the system load. This paper designs a resource allocation
scheduler for such multi-tier autonomic environments so as to maximize the profits
associated with multiple class SLAs. The overall problem is NP-hard. We develop
heuristic solutions by implementing a local-search algorithm. Experimental results
are presented to demonstrate the benefits of our approach.

Key words:
Autonomic computing, Resource Allocation, Load Balancing, Quality of Service,
SLA Optimization

1 Introduction

To reduce their management cost, companies often outsource their IT in-
frastructure to third party service providers. Many companies, from hardware
vendors to IT consulting, have set up large service centers to provide services
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to many customers by sharing the IT resources. This leads to the efficient use
of resources and a reduction of the operating costs.
The service providers and their customers negotiate utility based Service Level
Agreements (SLAs) to determine costs and penalties based on the achieved
performance level. The service provider needs to manage its resources to max-
imize its profits. Utility based optimization approaches are commonly used
for providing load balancing and for obtaining the optimal trade-off among
request classes for Quality of Service levels (21).
One main issue of these systems is the high variability of the workload. For
example for Internet applications, the ratio of the peak to light load is usu-
ally in the order of 300% (9). Due to such large variations in loads, it is
difficult to estimate workload requirements in advance, and planning the ca-
pacity for the worst-case is either infeasible or extremely inefficient. In order
to handle workload variations, many service centers have started employing
self-managing autonomic techniques (3; 16; 18; 19).

Autonomic systems maintain and adjust their operations in the face of chang-
ing components, demands or external conditions and dynamically allocate re-
sources to applications of different customers on the base of short-term demand
estimates. The goal is to meet the application requirements while adapting IT
architecture to workload variations (12). In such systems, a network dispatcher
manages autonomic components (e.g. storage systems, physical servers, soft-
ware elements) and dynamically determines the best use of resources on the
base of a short term load prediction (see Figure 1). Usually, heterogeneous
clusters of servers are considered and many technical solutions, e.g. grid and
Web services (12; 11), or system virtualization (5), have been proposed to
support application migration and resource management.

Monitor

Predictor

Allocator

- Service time distribution
- Incoming workload Expected workload

Network
Dispatcher

SAN/NAS
systems

Fig. 1. Autonomic System Infrastructure

Independent on the technology used for the implementation, the main com-
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ponents of the network dispatcher (7; 20) are a monitor, a predictor and a re-
source allocator. The system monitor measures the workload and performance
metrics of each application, identifies requests from different customers and
estimates requests service times. The predictor forecasts future system load
conditions from load history and the allocator determines the best system
configuration and applications to servers assignment. Usually, each request
requires the execution of several applications allocated on multiple physical
servers.
This paper focuses on the design of a resource allocator for autonomic multi-
tier environments. The goal is to maximize the revenue while balancing the
cost of using the resources. The cost includes the energy costs (9) and soft-
ware and hardware cost of resources allocated on demand (25; 13). The overall
profit (utility) includes the revenues and penalties incurred when Quality of
Service guarantees are satisfied or violated. The resource allocator can estab-
lish: (i) the set of servers to be turned ON depending on the system load, (ii)
the application tiers to servers assignment, (iii) the request volumes at various
servers and (iv) the scheduling policy at each server.
We model the problem as a mixed integer nonlinear programming problem
and develop heuristic solutions based on a local-search approach. The neigh-
borhood exploration is based on a fixed-point iteration (FPI) technique, which
iteratively solves a scheduling and a load balancing problem by implementing
a gradient method. Our resource allocator considers two time scales: opti-
mum load balancing and scheduling are determined in real-time and applied
every few minutes, while application allocation and servers status are eval-
uated with a greater time scale, i.e. every half an hour, in order to reduce
system re-configuration overhead.
Differently from the previous literature, our model considers jointly a broader
set of control variables and uses mathematical programming based techniques
to obtain a solution of the problem. Experimental results are presented to
show the benefits of our approach.

The remainder of the paper is organized as follows. Section 2 describes other
literature approaches. Section 3 introduces the overall system model. The op-
timization problem formulation is presented in Section 4. The local-search
approach is presented in Section 5. The experimental results in Section 6
demonstrate the quality and efficiency of our solutions. Conclusions are drawn
in Section 7.

2 Related Work

Recently, the problem of maximization of SLA revenues in shared service cen-
ter environments implementing autonomic self-managing techniques has at-
tracted vast attention by the research community. The SLA maximization
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problem which considers (i) the set of servers to be turned ON depending on
the system load, (ii) the application tiers to servers assignment, (iii) the re-
quest volumes at various servers and (iv) the scheduling policy at each server
as joint control variables, as faced in this paper, however has not yet been
considered.
In (18; 19) authors address the problem of handling service centers resources
in overload conditions while maximizing SLA revenues. Anyway, applications
are assigned to dedicated servers and the load balancing problem is not ad-
dressed. Authors in (25) consider the optimization of a multi-tier system where
the system workload is evenly shared among servers and the processor sharing
scheduling policy is applied, i.e. control variables (iii) and (iv) are not taken
into account. Furthermore, a single class model is considered and the problem
is solved by enumeration.
When the scheduling and load balancing are used as control variables, the
optimization of a single tier is usually addressed, mainly the Web server tier
and the servers are always ON, hence decisions (i) and (ii) are not consid-
ered (23; 17; 8; 16). In particular, in (23) the problem of minimization of
system response times and maximization of throughput is analyzed. The work
proposes a static algorithm which assigns Web sites to overlapping servers exe-
cuted once a week, on long term predictions basis, while a dynamic algorithm
implements a real time dispatcher and assigns incoming requests to servers
considering short term load forecasts.
In (17) continuous utility functions are introduced, the load is evenly shared
among servers and the problem of maximization of SLA is formulated as a
scheduling problem. The effectiveness of the overall approach is verified by sim-
ulation. The authors in (8) faced the dual problem of minimizing customers’
discontent function considering an online estimate of service time requirements
and their response times. The optimal Generalized Processor Sharing (GPS)
scheduling policy (28) is identified by using Lagrange techniques. In (16), the
authors proposed an analytical formulation of the problem to maximize the
multi-class SLA in heterogeneous Web clusters, considering the tail distribu-
tion of the request response times. The control variables are the scheduling
parameters at each cluster and the frequency of requests assigned to different
clusters. The load balancing problem is addressed among different clusters but
the load is evenly shared among serves of the same cluster.
Finally, in a previous paper (26), we extended (16) work by considering step-
wise utility functions and the number of servers to be switched ON as a control
variable. Anyway the pricing schema considered the response time of each re-
quest at a single tier. In multi tier system, the flexibility provided by current
technology can be exploited to implement the most convenient load sharing
among multiple machines, if the overall resource allocation problem is ad-
dressed.
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3 The System Model

The system under study is a distributed computer system consisting of M het-
erogeneous physical servers. There are totally K classes of request streams.
Each class k ∈ K request can be served by a set of server applications (ap-
plication tiers in the following) according to the client/server paradigm. For
simplicity assume that each class k request is associated with a single cus-
tomer. The architecture comprises a requests dispatcher in front of physical
servers that estabilishes the allocation of application tiers to physical servers,
the scheduling policy, and the load balancing of incoming requests to each
physical server. The service discipline under consideration is the Generalized
Processor Sharing (GPS) class (28). The controller can also turn OFF and
ON physical server in order to reduce the overall cost.

-mk

uk

RkRk

Uk

Fig. 2. Utility function used to evaluate per request revenues in terms of average
requests response times Rk

For each class k ∈ K, a linear utility function is defined to specify the per re-
quest revenue (or penalty) incurred when the average end-to-end response time
Rk, from multiple application tiers, assumes a given value. Figure 2 shows, as
an example, the plot of an utility function. −mk indicates the slope of the
utility function (mk = uk/Rk > 0) and Rk is the threshold that identifies the
revenue/penalty region (i.e., if Rk > Rk the SLA is violated and penalties
are incurred). Linear utility functions are currently proposed in the literature
(see for example (6; 18; 19)), anyway our approach can be extended in or-
der to consider a broad family of utility functions. We only assume that the
utility function is monotonically non-increasing, continuous and differentiable.
Monotonic non-increasing utility functions are very realistic since the better
the achieved performance by end users, the higher are the revenues gained per
request by the Service Provider.

The overall system is modeled by a queueing network composed of a set of
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Fig. 3. Queueing network performance model of the autonomic system

multi-class single-server queues and a multi-class infinite-server queue. The
first layers of queues represent the collection of physical servers supporting re-
quests execution. The infinite-server queues represent the client-based delays,
or think time, between the server completion of one request and the arrival of
the subsequent request within a session (see Figure 3).
User sessions begin with a class k request arriving to the service center from
an exogenous source with rate λk. The analysis of actual e-commerce site
traces (see for example (22)) has shown that the Internet workload follows a
Poisson distribution, hence we assume that the exogenous arrival streams are
Poisson processes. Upon completion the request either returns to the system
as a class k′ request with probability pk,k′ or it completes with probability
1−∑K

l=1 pk,l. Let Λk denote the aggregate rate of arrivals for class k requests,
Λk =

∑K
k′=1 Λk′pk′,k + λk.

The service center can be characterized by the following set of parameters:

K := set of request classes;

Nk := number of application tiers involved in the execution of class k

requests;

M := number of physical servers at the service center;

Ci := capacity of physical server i;

ci := time unit cost for physical server i ON;

Ai,k,j := 1 if physical server i can support the execution of application

tier j for class k request, 0 otherwise;

μk,j := maximum service rate of a capacity 1 physical server

for executing processes at tier j for class k requests.
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Note that, different request classes require different number of application tiers
Nk to be executed. For example, a request for a static Web page is executed by
a Web server, while the request of dynamic Web page involves multiple tiers,
from the Web server to the DBMS tier (see Figure 3). The routing matrix
[Ai,k,j] is usually obtained as a result of an optimization problem (23). It is
used to assign private physical servers to different cutomers e.g. for dedicated
e-commerce transaction servers. It can also limit the number of different Web
sites assigned to physical servers due to caching issues (23). Thus, the routing
matrix is used to limit the feasible assignments of application tiers to physical
servers. Note that, ci ∝ Ci, if power is the main cost associated with turning
ON a physical server.

The decision variables of our model are the followings:

xi := 1 if physical server i is ON, 0 otherwise;

zi,k,j := 1 if the application tier j for class k requests is assigned to

physical server i, 0 otherwise.

λi,k,j := rate of execution for class k requests at application tier j on

physical server i;

φi,k,j := GPS parameter at physical server i for executing application

tier j for class k requests;

The analysis of multi-class queueing system is notoriously difficult. We use the
GPS bounding technique in (28) to approximate the queueing system. Under
GPS, the physical server capacity devoted to class k requests for application
tier j at time t (if any) is Ciφi,k,j/

∑
k′∈K(t)

∑Nk′
j=1 φi,j,k′, where K(t) is the set of

classes with waiting requests on physical server i at time t. Requests at differ-
ent application tiers within each class and on every physical server are executed
either in a First-Come First-Served (FCFS) or a Processor Sharing (PS) man-
ner. Under FCFS, we assume that the service time for class k requests at phys-
ical server i has an exponential distribution with mean (Ciμk,j)

−1, whereas,
under PS, service time of class k requests at physical server i follows a general
distribution with mean (Ciμk,j)

−1, including heavy-tail distributions of Web
servers. In the approximation, each multi-class single-server queue associated
with an application tier is decomposed into multiple independent single-class
single-server queues with capacity greater than or equal to Ciφi,k,j. Authors
in (28) have shown that under the hypothesis that λi,k,j < Ciφi,k,j and the
external arrivals are exponentially boundend processes (and this hypothesis
holds for Poisson arrivals, (24; 10)), in a network of arbitrary topology the
performance metrics can be evaluated at any node of the queue network inde-
pendently on the requests route. The response times evaluated in the isolated
per-class queues are upper bounds on the corresponding measures in the orig-
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inal system. Under these hypothesis Ri,k,j, i.e., the average response time for
the execution of the process at application tier j of class k requests at physical
server i can be approximated by Ri,k,j = 1

Ciμk,jφi,k,j−λi,k,j
.

Note that, this approximation is asymptotically correct for high workloads,
since at a high load if a requests class have been assigned to a physical server
at least one request will be waiting for the execution and hence Ciφi,k,j is
the capacity devoted for every request streams execution without any ap-
proximation. We adopt analytical models in order to obtain an indication of
system performance and response time as the authors in (16; 29). In Section
6, resource allocation results will be validated by simulations considering also
heavy-tail distributions for service time.

The average response time for class k requests is the sum of the average
response times at each application tier computed over all physical servers,
and is given by Rk = 1

Λk

(∑M
i=1

∑Nk
j=1 λi,k,jRi,k,j

)
.

Our objective is to maximize the difference between revenues from SLAs and
the costs associated with physical servers ON in the inter-scheduler time period
which can be expressed as

∑K
k=1 Λk(−mkRk + uk) − ∑M

i=1 cixi, which, after
substituting Rk, becomes:

K∑
k=1

⎛
⎝−mk

M∑
i=1

Nk∑
j=1

λi,k,j

Ciμk,jφi,k,j − λi,k,j

⎞
⎠+

K∑
k=1

ukΛk −
M∑
i=1

cixi

4 Optimization Problem

The overall optimization problem can be formulated as:

P1) max
xi,λi,k,j ,φi,k,j

f(x, λ, φ) =
K∑

k=1

(
−mk

M∑
i=1

Nk∑
j=1

λi,k,j

Ciμk,jφi,k,j−λi,k,j

)
− M∑

i=1
cixi

such that

M∑
i=1

λi,k,j = Λk; ∀k, j (1)

K∑
k=1

Nk∑
j=1

φi,k,j ≤ 1; ∀i (2)

∑
(k,j)∈Bl

zi,k,j ≤ 1; ∀i, l (3)

zi,k,j ≤ Ai,k,jxi; ∀i, k, j (4)

λi,k,j ≤ Λkzi,k,j; ∀i, k, j (5)
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λi,k,j < Ciμk,jφi,k,j; ∀i, k, j (6)

λi,k,j, φi,k,j ≥ 0; ∀i, k, j

xi, zi,k,j ∈ {0, 1} ∀i, k, j

In the above objective function we have omitted the term
∑K

k=1 ukΛk since it
does not depend on the decision variables. Constraint family (1) entails that
the traffic assigned to individual physical servers, and for every application
tier, equals the overall load predicted for class k requests. Constraint family
(2) expresses the bounds for GPS scheduling parameters. Constraint family
(3) is introduced in order to assign distinct physical servers to subset of appli-
cations, where Bl is a subset of the indexes in Nk ×K. For example, a servlet
engine can be executed with a Web server or an application server instance,
vice versa application and DBMS servers are usually allocated to individual
phisycal servers (i.e., eventually supporting multiple application or DBMS
instances) for management and security reasons. The constraint family (4) al-
lows assigning application tiers to physical severs according to Ai,k,j and only
if servers are ON. Constraint family (5) allows executing request k at server
i only if the application tier j has been assigned to server i. Note that, for a
given request class k, the overall load Λk is the same at every application tier.
Finally, constraints family (6) guarantees that resources are not saturated.

Observation 1. Problem P1) is a mixed integer nonlinear programming prob-
lem. Even if the set of server ON is fixed, i.e. the value of variables xi has been
determined, the joint scheduling and load balancing problem is difficult since
the objective function is neither concave nor convex. In fact, it is possible to
prove by diagonalization techniques, that the eigenvalues of the Hessian of the
cost function are mixed in signs (see (4)).

Observation 2. Constraint family (3) defines implication constraints. In
a preprocessing phase, implication (or logical) constraints can be strength-
ened by dedicated constraint programming tools or by standard integer pro-
gramming tools to obtain stronger formulations. E.g., let us suppose that a
Web server (tier 1) can share a machine only with a servlet engine instance
(tier 2), while the application server (tier 3) and the DBMS server (tier 4)
are allocated to individual physical server. The servlet engine instance can
share servers also with the application server. Such a situation can be mod-
elled by the following set of equations: zi,k,1 + zi,k,3 ≤ 1; zi,k,1 + zi,k,4 ≤ 1;
zi,k,2 + zi,k,4 ≤ 1 and zi,k,3 + zi,k,4 ≤ 1. Adding the first, second and fourth con-
straint we obtain the inequality 2zi,k,1+2zi,k,3+2zi,k,4 ≤ 3, which is equivalent
to zi,k,1 + zi,k,3 + zi,k,4 ≤ 1 since z-s are binary. This last equations entails that
only one process among Web, Application and DBMS servers can be active
on the same machine.
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5 Optimization Technique

As it will be discussed in the experimental results section, the given problem
can be solved by nonlinear commercial tools only for small size instances. For
all instances of interest, an heuristic approach has to be considered. We resolve
the problem in four steps:

(1) we estimate Γk,j the value of the service center capacity to be provided
to each application tier;

(2) we build a feasible solution which identifies an initial set of servers ON
(by setting xi variables), assigns application tiers to physical servers (by
setting zi,k,j variables), and identifies an initial scheduling and load bal-
ancing for system requests (by setting φi,k,j and λi,k,j variables). Γk,j are
used to initialize the φi,k,j values;

(3) a fixed point iteration (FPI) based on the sub-gradient method is then
applied in order to improve φ-s and λ-s. This technique iteratively iden-
tifies the optimum value of a set of variables (λ-s or φ-s), while the value
of the other one (alternatively φ-s or λ-s) is hold fixed;

(4) the obtained solution is finally enhanced with a local-search algorithm
which turns on and off servers, modifies the assignment of application tiers
to physical servers and update the scheduling (φ-s) and load balancing
(λ-s).

The optimization problem P1) (steps (1)-(4)) is solved periodically. The time
period Tlong is in the order of magnitude of several minutes, e.g. 15-30 minutes
which are mainly due by step (4). The optimum scheduling and load balancing
(step (3) above) are evaluated in a shorter time scale Tshort � Tlong and are
applied every few minutes (e.g., 5 minutes). The two optimization problems
(P1) and the joint optimum scheduling and load balancing) are solved by
considering the workload prediction for the next control time interval (Tlong

and Tshort, respectively) and their solutions are applied only if the variation
of the objective function value which can be obtained by applying the new
system configuration is greater than a given threshold. As proposed in (2), in
this way system re-configuration overhead is reduced and the system will be
stable, i.e. the system will not oscillate between two equilibrium points if the
incoming workload will change slightly during the time control horizon.

5.1 Application Tiers Capacity Estimation

In order to estimate the value of the service center capacity to be provided to
each application tier, we model the service center as a single physical server of
capacity U . We consider the problem of minimizing the weighted average of
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response times and the cost associated with resource use as a function of Γk,j,
the computing capacity assigned to the execution of request k at application
tier j. Because the utility function is linear, the minimization of the weighted
average of response times is equivalent to the maximization of SLA revenues.
In this way we consider the trade-off between the SLA revenues and the costs
of use of resources assigned to each application tier.

The optimization problem can be formalized as:

P2) min
Γk,j

1
Λ′
∑K

k=1

∑Nk
j=1

mkΛk

Γk,j−Λk
+ C∑K

k=1

∑Nk
j=1 Γk,j

such that

K∑
k=1

Nk∑
j=1

Γk,j ≤ U (7)

Λk < Γk,j ∀k, j

The decision variables are Γk,j. C = 1
M

∑M
i=1

ci

Ci
is the mean cost per unit

resource use, U is the overall capacity of the service center which is estimated

as U =
∑M

i=1
Ci

∑K

k=1
ΛkNk∑K

k=1
Λk(
∑Nk

j=1
1/μk,j)

by applying a single class model as proposed in

(14), and Λ′ =
∑K

k=1 Λk is the overall service center workload.

Equation (7) entails that the capacity assigned to application tiers is lower
than the overall capacity of the service center. Since the cost function is contin-
uous and convex (the Hessian is a diagonal matrix with elements 2mkΛk

(Γk,j−Λk)3
> 0)

the global optimum can be found in polynomial time. In (4), we have deter-
mined closed formulas to evaluate Γk,j by appying Karush-Kuhn-Tucker con-
ditions, and we have obtained an ineresting inequality that relates the overall
load and the cost of physical servers to the overall capacity of the service

center: C > 1
Λ′

(∑K

k=1
Nk

√
mkΛk

U−
∑K

k=1
NkΛk

)2

. If this inequalities holds, then SLA profits

cannot counter balance the cost of use of service center resources and some
physical servers should be turned OFF. With this technique Γk,j can be com-
puted by performing O(K) operations, for further details see (4).

5.2 Application Tiers to Servers Assignment

We now consider the problem of the assignment of application tiers to physical
servers. The problem is NP-hard. This can be proved by a reduction from
the Capacitated Facility Location Problem (see (4)). We have implemented
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a greedy algorithm for obtaining an initial solution which will be eventually
enhanced by the local-search algorithm in the final step.

We first sort the physical servers according to the non decreasing cost-over-
capacity ratio and the application tiers according to the non increasing number
of different sets Bl they belong to. Then, each application tier is assigned to
physical servers in the given order until the corresponding capacity require-
ment Γk,j is satisfied, while respecting the constraints family (3) in problem
P1). When a single physical server cannot satisfy an application tier’s demand,
then the application tier is split into multiple physical servers. Let us denote
with yi,k,j the values returned by the algorithm. They define, for each combi-
nation of the i, j and k indices, the capacity of physical server i devoted to the
execution of application tier j of request class k. yi,k,j > 0 implies zi,k,j = 1,
xi = 1, i.e. server i is turned ON, and

∑
i yi,k,j = Γk,j. The CFLP problem

is depicted in Figure 4 where application tiers and servers are modeled as a
bipartite graph. The overall complexity is O(ML+L log L+M log M), where
L =

∑K
k=1 Nk, under the worst case hypothesis that at each iteration for every

application tier the last physical server of the set has to be turned ON and
physical servers are never saturated (which always requires to consider physi-
cal server compatibility with the current application tier Γk,j to be allocated).

k,j

1,1

K,Nk

1

yi,k,j

1,N1

y1,1,1

i

M

2

y2,1,1

y2,1,N1

Application tiers Physical Servers

Fig. 4. CFLP formalization of the application tiers to physical servers allocation
problem. Nodes on the left represent the application tiers capacity that have to be
provided by the servers represented as nodes on the right

5.3 The Load Balancing and Scheduling Problems

Once the application tiers are assigned to physical servers, the scheduling pol-
icy at each physical server and the load balancing policy have to be identified.
Let I = {i|xi = 1} denote the set of physical servers ON and let zi,k,j = 1
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if yi,k,j > 0, as determined by the solution of the previous sub-problems. The
joint scheduling and load balancing problem can be modeled as follows:

P3) min
φi,k,j ,λi,k,j

∑K
k=1 mk

∑
i∈I

∑Nk
j=1

λi,k,j

Ciμk,jφi,k,j−λi,k,j

such that

∑
i∈I

λi,k,j = Λk; ∀k, j

K∑
k=1

Nk∑
j=1

φi,k,j ≤ 1; ∀i ∈ I

λi,k,j ≤ Λkzi,k,j; ∀i ∈ I, ∀k, j

λi,k,j < Ciμk,jφi,k,j; ∀i ∈ I, ∀k, j

λi,k,j, φi,k,j ≥ 0; ∀i ∈ I, ∀k, j

where the decision variables are λi,k,j and φi,k,j. Note that the goal is to min-
imize the weighted average response time of request classes. As discussed in
Section 5, P3) is solved periodically with time period Tshort. We applied a FPI
technique to obtain a solution. This approach iteratively identifies the opti-
mum value of a set of variables (λ-s or φ-s), while the value of the other one
(alternatively φ-s or λ-s) is hold fixed.

If the scheduling policy at every physical server is fixed, i.e. the φi,k,j variables
are fixed to the values φi,k,j, then the problem is separable and

∑K
k=1 Nk load

balancing sub-problems (one for every application tier of every request class)
can be solved independently. As the objective function is convex (the Hessian is

given by Diag
(

2mkCiμk,jφi,k,j

(Ciμk,jφi,k,j−λi,k,j)3

)
and eigenvalues are positives), the optimal

solution of each sub-problem can be identified. An initial solution for φ-s
parameters can be obtained from the solution of the problem in section 5.2 by
setting φi,k,j =

yi,k,j

Ciμk,j
.

Vice versa, if the load balancing is fixed, i.e. λi,k,j variables are fixed to the
values λi,k,j, then the problem is separable and M scheduling sub-problems
(one for each physical server) can be solved independently. Again, the objec-

tive function is convex (the Hessian is given by Diag
(

2mkC2
i μk,j2λi,k,j

(Ciμk,jφi,k,j−λi,k,j)3

)
and

eigenvalues are positives), the optimal solution of each sub-problem can be
identified.

The FPI iteratively solve the load balancing and scheduling problems. Al-
though we can not guarantee that the procedure converges to a global op-
timum, we can state that the procedure will always converge. In fact, since
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the optimal solutions of each sub-problem can be identified, at each step, the
current λ-s and φ-s assignment is improved and the algorithm will find a local
optimal solution.

The optimal solution of each of the two sub-problems can be obtained by
applying KKT conditions (see (4)). Here, we present a faster iterative solution
based on the gradient method.

The solution of the load balancing problem (where a request of class k and
its corresponding application tier j are fixed) is obtained by starting from a
feasible solution s and performing the optimal re-allocation of request load
between only two physical servers, say l and m, according to the gradient g
of the objective function f1(λl,k,j, λm,k,j) =

λl,k,j

Clμk,jφl,k,j−λl,k,j
+

λm,k,j

Cmμk,jφm,k,j−λm,k,j
.

Since we consider the minimization of the weighted average response times,
we can improve the objective function value of the solution s by optimally
balancing the load between the two physical servers with the maximum and
minimum component in g, respectively. Note that, the optimal solution of this
balancing problem can be found by expressing the load at the two physical
servers as a function of a single variable and by solving a second degree equa-
tion. In more detail, if Λ = λl,k,j +λm,k,j indicates the current load assignment
to physical server m and l, the new assignment is obtained by solving the
following problem:

P4) min
λl,k,j ,λm,k,j

λl,k,j

Clμk,jφl,k,j−λl,k,j
+

λm,k,j

Cmμk,jφm,k,j−λm,k,j

0 ≤ λl < Clμk,jφl,k,j; (8)

0 ≤ λm < Cmμk,jφm,k,j; (9)

λl,k,j + λm,k,j = Λ (10)

Problem P4) can be solved by minimizing the convex function of a single
variable f1(λl,k,j, Λ−λl,k,j), i.e. by solving the second degree equation df1

dλl,k,j
=

0. Note that, if the solution of the first order derivative is not feasible, then
the optimal solution is either λl,k,j = Λ and λm,k,j = 0, or λl,k,j = 0 and
λm,k,j = Λ.

The algorithm stops when the improvement in the objective function value is
less than 1% in two consecutive iterations. Using ad hoc data structure the
algorithm can run with O(M + Ng ln M) complexity, where Ng denotes the
number of fixed point iterations (see (4)).

Likewise, the solution of the scheduling problem at a physical server i is ob-
tained by starting from a feasible solution s and evaluating the request schedul-
ing parameters only for the classes which corresponds to the maximum (k1, j1)
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and to the minimum (k2, j2) of the gradient of the objective function∑K
k=1

∑Nk
j=1 mk

λi,k,j

Ciμk,jφi,k,j−λi,k,j
.

Again, the optimal solution can be found by minimizing a convex function
of a single variable. The algorithm can run with O(

∑K
k=1 Nk + Ng ln

∑K
k=1 Nk)

complexity (see (4)).

5.4 The Local Search Algorithm

The solution returned by the FPI technique is (possibly) improved by applying
a local search algorithm, i.e., the FPI solution is the starting point of our local
search.

Let S denote the set of the feasible solutions of our problem. To each s ∈ S
we associate a subset N(s) of S, called neighborhood of s which contains all
those solutions that can be obtained by applying four different kind of moves:
turning ON a physical server, turning OFF a physical server, physical servers
swapping, and re-allocation of application tiers to physical servers.

The above moves directly modify either the values of the x or the z variables.
For each modification new optimal (or sub-optimal) λ-s and φ-s values have to
be computed. If the FPI were performed at each move, then only local optimal
states for the overall system would be obtained. Unfortunately, we can not
run the fixed point procedure for every neighborhood candidate solution s′ ∈
N(s), because it is too time consuming even with the gradient implementation.
To overcome this difficulty, we overestimate the value of the each candidate
solution s′ by updating the values of a restricted subset of the variables λ and
φ. In fact, after the first execution of the FPI from the initial state obtained
by the solution of problem in section 5.2, we can reasonably assume that
the optimal load balancing and scheduling solutions are only perturbed by
switching ON or OFF one physical server or by re-allocating applications.
This hypothesis has been confirmed by computational experiments under low
or medium load. When the local-search stops at a local optimum, we execute
a full run of the FPI. In this way we try to escape from the local minimum
by optimal updating all the λ and φ variables, instead of considering only a
subset of them, as usually done in the neighborhood exploration. If this step
modifies the λ or φ variables we restart the local search from the last FPI
solution.

Note that, the local-search is not effective for high load. As we can expect
a-priori the optimal solution uses all the physical servers available when the
average utilization of the data center is greater than 50-60% (9; 26). Under
high load conditions, only the optimal scheduling and load balancing policies
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have to be identified.

5.4.1 Turning OFF servers

All physical servers with average utilization Ui in [min Ui, P ·min Ui] are candi-
dates to be turned OFF. Here P is a constant experimentally set between 1.1
and 1.2. The load of the physical server, say î, to be switched off is allocated
on the remaining physical servers proportionally to their spare capacity. The
spare capacity for the application tier j of class k request at physical server
i is Si,k,j = Ciμk,jφi,k,j − λi,k,j. Let be Sk,j =

∑
i∈I−{̂i} Si,k,j the overall spare

capacity available at remaining physical servers ON for application tier j of
class k. The load at physical server î is assigned to remaining physical servers
according to the equation λi,k,j = λi,k,j + λî,k,j · Si,k,j

Sk,j
. The spare capacity is

zero for all physical servers that can not support application tier j for class
k for constraints (3)-(5) of problem P1). The neighborhood exploration has
complexity O(M ·∑K

k=1 Nk).

5.4.2 Turning ON servers

To alleviate the load at a bottleneck physical server, a physical server in
OFF status is turned ON. All physical server whose utilization Ui is in [P ·
max Ui, maxUi], where P is a constant experimentally set between 0.9 and
0.95, are considered as bottleneck physical servers. The physical server turned
ON applies the same scheduling policy adopted at the bottleneck physical
server. For each bottleneck physical server the set of compatible physical
servers in status OFF is identified. A physical server machine is compati-
ble to a bottleneck physical server, if they are characterized by the same value
of parameters Ai,k,j limited to the set of application tiers and request classes
currently executed at the bottleneck. The optimal load balancing among the
two physical servers is identified by solving an instance of problem P4). The
neighborhood exploration has complexity O(M2 ·∑K

k=1 Nk).

5.4.3 Servers Swap

This move looks for a physical server i1 in status ON and one i2 in status
OFF which are compatible and such that the physical server OFF has greater
capacity or lower cost than the physical server ON. The load is moved from
physical server i1 to i2, and at i2 the same scheduling policy applied at i1 is
used, i.e., λ and φ variables are unchanged. Note that this move can not al-
ways be substituted by a sequence of switching ON and switching OFF moves.
For example, if a single physical server i1 is the only one supporting a class
of requests k1, then it will never be turned OFF. Furthermore, turning ON a
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physical server i2, which can support k1, could worsen the objective function
value since the enhancement of the system performance could not counterbal-
ance the cost of i2. Vice versa, the swap of i1 and i2 can be performed and the
variation of the cost function can be evaluated accordingly.
Note that, since the set of swaps which are not considered must satisfy the
following conditions: Ci2 ≤ Ci1 and ci2 ≥ ci1 , only worsening moves are ex-
cluded. The neighborhood exploration has complexity O(M2 ·∑K

k=1 Nk).

5.4.4 Re-allocation of Application Tiers to Servers

The aim of this move is to allow modifying the value of the z variables. We
look for application tiers which can be allocated on a different set of physical
servers with respect to those which they are currently assigned to. In fact, if
the FPI sets the value of one λ to be 0, that λ will never change to a different
value. Furthermore, in the next iteration, the corresponding φ is set to 0 and
it will stay at 0 forever. Hence, the FPI can only de-allocates application tiers
from physical servers. If an application tier is de-allocated from a physical
server i, then the corresponding z variable is set to zero, and for constraints
family (3) and (5), a tier which was not allowed to be executed on physical
server i could now be allocated on it.
Before allocating an application tier to a physical server, we need to create
spare capacity on that physical server. This is because for the optimal solution
of problem P4) the sum of φ variables on each physical server equals to 1 (this
can be verified by KKT conditions (4)). We consider the physical servers
whose utilization Ui is lower than a constant Û as candidate physical servers
for hosting a new application tier. Û is experimentally set to 0.6, since it is
not easy to allocate another application tier on over-utilized physical servers
and generate more profits.
Only one new application tier is allocated on a candidate physical server ĩ. And
the set of application tiers which can be possibly hosted on each candidate
physical server is determined by an exhaustive search because only a small
number of alternatives need to be evaluated. The spare capacity is created

by setting Uĩ = Û , that is by setting φ′
ĩ,k,j

λĩ,k,j

Cĩμk,j Û
for all application tiers

currently executed on physical server ĩ. The value Cĩμk̃,j̃φĩ,k̃,j̃ is the capacity

available at physical server ĩ for the candidate application tier (k̃, j̃), where
φĩ,k̃,j̃ = 1 − ∑

k∈Kĩ

∑Nk
j=1 φ′

ĩ,k,j
and Kĩ is the set of request classes currently

executed at physical server ĩ. The candidate application tier will reduce the
load of a bottleneck physical server î (i.e., such that Uî > Û). The optimal
load balancing among physical servers ĩ and î is computed by solving problem
P4). Neighborhood exploration complexity is O(M2 · (∑K

k=1 Nk)
2).

17



6 Experimental Results

The effectiveness of our approach has been tested on a wide set of randomly
generated instances. All tests have been performed on a 3 GHz Intel Pentium
IV workstation. The number of physical servers has been varied between 40
and 400 (with steps of 40). Service centers up to 200 request classes have
been considered and the number of application tiers has been varied between
2 and 4. Ai,k,j values were randomly generated, and every physical server was
shared by at most five customers (see Section 3). Service times were randomly
generated and for each test case the load was increased in a way that the
utilization of service center resources varied between 0.2 and 0.8. Nk, mk and
zk values have been randomly generated, zk is proportional to the number of
application tiers Nk and to the overall demanding time at various tiers of class
k request. mk varied uniformly between 2 and 10.
Tests have been run by considering homogeneous (only physical servers of
capacity 1) and heterogeneous systems (half physical servers with capacity
1 and half of capacity 2) where the load was evenly shared among different
application tiers, or more realistically, in the second case higher application
tiers were the system bottleneck.
Cost associated with physical servers have been obtained as in (26) by running
our algorithm and considering the revenues obtained from service centers for
increasing load. Results have shown that revenues increase almost linearly with
the system load and start decreasing after a maximum that is obtained when
the service center utilization is about 0.5-0.6. After the maximum, performance
degrade and the increasing load implies a loss in revenues. The maximum
revenue grows linearly with service center capacity with coefficient almost
equal to 40. Hence, in our tests we used 15 as unit capacity cost.

Experiments have been performed to: (i) evaluate the performance of the FPI
and local search procedures, (ii) compare the performance of our approach
with general-purpose Mixed Integer Non-Linear Programming methods, (iii)
evaluate the performance of the overall approach with respect to other solution
proposed in the literature, (iv) evaluate the effectiveness of turning physical
servers OFF, and (v) validate the results obtained with analytical model via
simulation.

Figures 5 and 6 report, as an example, the trace of execution of the FPI and
local search algorithm. Note that, at every iteration the FPI performs two
steps, i.e. two gradient optimizations, one for φ variables (half iterations in
Figure 5 plot) and one for λ-s. The example refers to a 400 physical servers
100 request classes on 4 application tiers. Plots are representative, usually
the FPI converges very quickly and performs less than 10 iterations and the
execution time is always lower than 8 secs. Local search usually performs a
greater number of iterations but the execution is stopped when the execution
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Fig. 5. FPI Execution Trace
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Fig. 6. Local Search Execution Trace

Table 1
Improvement achieved with respect to Proportional Assignment Schema

U Loss in revenues PAS ($) Loss in revenues ($) % Improvement

0.2 25,320 3,796 5.67

0.3 39,120 4,696 7.33

0.4 57,476 6,575 7.74

0.5 83,045 8,419 8.86

0.6 121,052 9,430 11.84

time achieves 30 min.

As discussed previously, problem P1) is too complex to attempt to solve any
meaningful instance via well-established general-purpose Mixed Integer Non-
Linear Programming solution methods. We have nonetheless tried to solve it
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Table 2
Improvement achieved in the Optimization Technique steps

Homogeneous Heterogeneous

U % IS % FP % Server Time % IS % FP % Server Time

0.2 257.3% 229.1% 70% 30 300.1% 47.9% 67% 30

0.3 221.7% 90.2% 77% 26 33.6% 18.0% 73% 30

0.4 78.5% 54.2% 85% 22 41.8% 13.8% 77% 25

0.5 120.1% 60.2% 100% 28 29.1% 5.2% 89% 13

0.6 75.1% 39.2% 100% 18 22.0% 2.1% 97% 20

0.7 100.2% 19.3% 100% 12 15.3% 1.1% 100% 15

0.8 21.3% 15.4% 100% 5 115.1% 2.3% 100% 10

for very small test cases (6 physical servers and 6 class of requests on two ap-
plication tiers) using various global optimization approaches. In particular, we
used three global optimization solvers within the ooOPS global optimization
framework (15): namely, spatial Branch-and-Bound (sBB), SobolOpt Multi
Level Single Linkage, and Variable Neighborhood Search (VNS). All these
methods gave very disappointing results due to the presence of a large num-
ber of integral variables. An attempt to solve the continuous (non-convex)
relaxation was also carried out. For sBB and SobolOpt the formulation was
too large to solve to optimality within a reasonable amount of time while
VNS did locate a putative global optimum of the relaxed problem in 500s on
average.

In order to compare our results with other approaches in the literature the
number of physical servers that has to be turned ON is evaluated as the num-
ber of physical servers that keeps the utilization of the service center equals
to 0.6 and the Proportional Assignment Schema (PAS) is applied to fix λ and
φ variables. These approaches select the set of physical servers ON by imple-
menting greedy algorithm based on utilization thresholds (see (9) and (1)).

The PAS employs λi,k,j = Λk
Ciμk,j∑M

l=1
Clμk,j

and φi,k,j =

λi,k,j
μk,j∑K

l=1

λi,l,j
μl,j

. Note that, this

proportional allocation scheme is a natural way to assign the traffic and phys-
ical server capacity. It is provably the best load balancing scheme in terms of
stability regions and it is used as a benchmark in the SLA profits maximiza-
tion literature (16). Considering this scenario, our approach improves SLA
revenues by one order of magnitude. In order to compute a meaningful esti-
mation of the relative error of the solutions given by our approach and PAS,
we need to add an offset value to the objective function and reverse it from
maximum to minimum. Indeed, since the objective function is given by the
difference between the total revenues and the total cost of the servers turned
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ON, in some solution this difference can be zero or less than zero. This situa-
tion indeed occurs when using the PAS. Hence, the ratio between the values
obtained with our algorithm and those obtained with PAS can result negative
or infinity. We modified the objective function as follows. We computed, for
each class, the maximum possible revenue, which corresponds to the minimum
possible response time, i.e.

∑Nk
j=1 1/μk,j. Let us denote with Gmax the summa-

tion of all the obtained revenues. The new objective function is now given by
the difference between Gmax and f(x, λ, φ), the objective function of problem
P1), see the beginning of Section 4. In other words we are now minimizing
the cost of the used servers plus the loss in revenues. In this way the objective
function value of any feasible solution is greater than zero, whereas the relative
ranking among the solutions remains unchanged. Results of a homogeneous
test case, grouped by the average service center utilization, are reported in
Table 1. With the heterogenous case the PAS performs even worst and results
are not reported. In practice, for the same load, our controller is able to reduce
the number of physical servers ON. Furthermore, by inspecting optimal solu-
tions we found that the load is not equally balanced among physical servers
and physical servers are assigned to a limited number of request classes. This
can be justified since dedicated physical servers give better performance. In
our optimal solutions, physical servers are not fully dedicated to a single class
of requests or to a single application tier since, in some situations, the physi-
cal server sharing among different application tiers (e.g., servlet engines with
Web servers) or in the same application tier (e.g., serving multiple instances
of different DBMS) can be exploited to obtain higher revenues.

In general, our resource allocator adopts all physical servers available at the
service center when the load reaches about 50% of its capacity. When the load
is light turning some physical server OFF allows us to obtain better results.
In order to evaluate the effectiveness of turning physical servers OFF, we
compared results that can be achieved by our resource allocator with results
that can be obtained by turning all physical servers ON and adopting our
optimal load balancing and scheduling policies (that is by applying the FPI).
A total of 200 tests were considered. Turning physical servers OFF improves
the cost function by about 35%, ranging form 44% and 22%, when service
center utilization is 0.2 and, 0.4 respectively, exploiting the trade off between
higher revenues (which can be obtained by turning all physical servers ON) and
the costs associated with physical servers. As a typical example, Table 2 shows
the average improvement which can be obtained from the initial solution (% IS
column) and from the first FPI (% FP) by applying the local search approach
for a test case with 400 physical servers. In this test case, 100 request classes
are allocated on four application tiers, and 100 physical servers are assigned
at each application tier by Ai,k,j. The last two columns report the fraction of
physical servers adopted at the service center and the overall execution time
(in minutes). Results are grouped by the average service center utilization.
The values obtained by applying the proportional assignment schema are not
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reported here, since the solutions are never profitable, i.e., the values of the
objective function are always negative. Test results show that the optimal
solution for heterogeneous systems adopts a lower number of physical servers
of the corresponding homogeneous case using mainly physical servers of higher
capacity. This is expected since physical servers of grater capacity give better
performance and hence better revenues despite their higher cost.

We have validated our solutions based on analytical models using a simulator
which supports GPS policy (27). We generated arrival streams with different
classes of interarrival times to investigate the effects of non-Poission arrivals.
We also simulated request service times from the log-Normal and Pareto fami-
lies, with the same mean and standard deviations. The regenerative simulation
runs until a minimum number of regenerative cycles have been reached and
the collected statistics from the servers and queues all reach the desired con-
fidence level (95%). This level of confidence is reached for systems with about
10 servers and 10 job classes within several minutes. We run several simula-
tions varying the tests parameters as described above. Analytical model and
simulation results were always coherent independently on the size of the sys-
tem. Results obtained by simulation are consistent with the behaviour one can
expect since a better service is provided to more important (and more prof-
itable) request classes. The plots reported in Figures 7 and 8 show simulation
results of a representative example where a gold and a bronze request class
are considered (|mgold| >> |mbronze|). The service time distribution is Pareto.
In the control time interval the gold class load increases by 70% (Figure 7)
the bronze class response time has a greater increase (about 20%) than that
of the gold one (about 12%, see Figure 8).
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Fig. 7. Throughput variation considered in the simulation scenario
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Fig. 8. Response time variation obtained by simulation

7 Conclusions

We proposed an allocation controller for multi-application tier service center
environments which maximizes the profits associated with multi-class Ser-
vice Levels Agreements. The cost model consists of a class of utility functions
which include revenues and penalties incurred depending on the achieved level
of performance and the cost associated with physical servers. The overall op-
timization problem which considers the set of physical servers to be turned
ON, the allocation of applications to physical servers and load balancing and
scheduling at physical servers as joint control variables, is NP-hard and we de-
veloped a heuristic solution based on a local search algorithm. Experimental
results, up to 400 physical servers and 200 request classes, show that rev-
enues that can be obtained with a proportional assignment schema can be
significantly improved and important savings can be obtained on light and
medium load conditions. Future work will introduce strict QoS performance
guarantees, i.e., deadlines for the response times.
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