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A WINNER–LOSER LABELED TOURNAMENT HAS AT MOST TWICE
AS MANY OUTDEGREE MISRANKINGS AS PAIR MISRANKINGS

NIKHIL BANSAL, DON COPPERSMITH∗, AND GREGORY B. SORKIN

Abstract. In any tournament, with the players partitioned any way into two groups called Winners and

Losers, we define two measures: f is the number of vertex pairs consisting of a labeled “loser” and a “winner”
where the loser beats the winner, and similarly g is the number of such pairs where the loser has at least as

many total wins as the winner. We prove that g ≤ 2f , and this bound is tight. The result has a natural

interpretation and easy generalization in the domain of majorization.

1. Introduction and Main Result

The paper [BBLS06] shows a reduction from ranking to classification: roughly, a machine which can learn
(with classification regret r) which item from a pair dominates the other, can be used to rank items from
strongest to weakest (with ranking “AUC” regret at most 4r). (It also shows that ranking error rate r
results in AUC error at most 4r; see [BBLS06] for definitions and precise statements.) The present paper’s
Theorem 1 replaces a key technical element of [BBLS06], improving its constant of 4 to 2 (already shown
in [BBLS06] to be the best possible), and thus showing that classification regret (or error rate) r results
in ranking regret (respectively, error) at most 2r. Theorems 3 and 4 here are equivalent statements to
Theorem 1, while Corollary 5 provides an elegant generalization.

Let T be a tournament, i.e., a complete graph in which each edge is directed one way or the other, so
that for every pair of vertices i 6= j, either i → j is an edge or j → i is an edge, but not both. There are
no loops (no edges i → i). We write d(i) for the outdegree of vertex i, so d(i) =

∑
j 1(i → j), where the

indicator function 1(i → j) is 1 if T has an edge i → j and 0 otherwise.
Let the vertices of T be partitioned into a set W of “winners” and a set L of “losers”; equivalently, each

vertex is labeled as either a winner or a loser. Call the triple (T,W,L) a winner–loser partitioned tournament,
and denote it by T. (We imagine that typically winners beat losers, so there are many w → l pairs but few
l → w ones, and correspondingly that winners typically have large outdegree and losers small outdegree.
However, we allow arbitrary labelings of the vertices.) Our aim is to show, roughly, that for any (T,W,L),
the number of winner–loser pairs where the loser outranks the winner is at most twice the number of such
winner–loser pairs where the loser beats the winner.

More concretely, define two functions:

f(T) :=
∑
`∈L

∑
w∈W

1(` → w)(1)

=
∑
`∈L

deg(`)−
(
|L|
2

)
(2)

g(T) :=
∑
`∈L

∑
w∈W

1(deg(`) ≥ deg(w)).(3)

The first equality holds because (1), the number of edges from L to W , is equal to (2), the total number of
edges out of L minus the number of edges from L to L. Expression (2) will be easier to work with.

Theorem 1. For any winner–loser partitioned tournament T, g(T,W,L) ≤ 2f(T,W,L).

Rather than working with a (labeled) tournament, a relatively complex object, the reformulation of (1) as
(2) allows us to work with a (labeled) degree sequence. Landau’s theorem says that there exists a tournament
with outdegree sequence d1 ≤ d2 ≤ · · · ≤ dn if and only if, for all 1 ≤ i ≤ n,

∑i
j=1 dj ≥

∑i
j=1(j − 1), with

equality for i = n.
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Using this formulation it is easy to construct an example achieving the bound given by Theorem 1.

Example 2. With n odd, let every vertex have degree (n−1)/2; note that the degree sequence 〈n−1
2 , . . . , n−1

2 〉
does indeed respect Landau’s condition. Label (n − 1)/2 of the vertices as winners and (n + 1)/2 as losers.
This gives f = n+1

2 · n−1
2 −

(
(n+1)/2

2

)
= (n + 1)(n− 1)/8, while g = n+1

2 · n−1
2 = (n + 1)(n− 1)/4 = 2f .

Recall that a sequence 〈a1, . . . , an〉 is majorized by 〈b1, . . . , bn〉 if the two sums are equal and if, when
each sequence is sorted in non-increasing order, the prefix sums of the b sequence dominate those of the a
sequence. (For a comprehensive treatment of majorization, see [MO79].) Landau’s condition is precisely
that 〈d1, . . . , dn〉 is majorized by 〈0, . . . , n− 1〉. (With the sequences sorted in increasing order, Landau’s
condition is that prefix sums of the degree sequence dominate those of the progression, which is the same
as saying that the suffix sums of the degree sequence are dominated by the suffix sums of the progression.)
This allows us to take advantage of well-known properties of majorization, notably that if A′ is obtained by
averaging together any elements of A, then A majorizes A′.

This allows us to re-state Theorem 1 in terms of a sequence and majorization, rather than a tournament,
but first we relax the constraints. First, where the original statement requires elements of the degree sequence
to be non-negative integers, we allow them to be non-negative reals. Second, the original statement requires
that we attach a winner/loser label to each element of the degree sequence. Instead, we will aggregate
equal elements of the degree sequence, and for a degree di of (integral) multiplicity mi, assign arbitrary
non-negative (but not necessarily integral) portions to winners and losers: wi + `i = mi. Note that the
majorization condition applies only to the “compressed sequence” {di,mi}, not the labeling.

Theorem 3. For any winner–loser labeled compressed sequence D = (D,W,L) where D is majorized by
〈0, . . . , n− 1〉, g(D) ≤ 2f(D).

Proof. We begin with an outline of the proof. Define a compressed sequence D as being canonical if it
consists of at most three degrees: a smallest degree d1 having only losers (w1 = 0), a middle degree d2

potentially with both winners and losers (w2, `2 ≥ 0), and a largest degree d3 having only winners (`3 = 0).
We first establish that any canonical sequence has g(D) − 2f(D) ≤ 0. We then show how to transform any
degree sequence to a canonical one with a larger (or equal) value of g−2f , which will complete the argument.

We first show that a canonical sequence D has g− 2f ≤ 0. For the canonical configuration, g = w2`2 and
f = `1d1 + `2d2 −

(
`1+`2

2

)
, and hence our goal is to show that

(4) `1d1 + `2d2 ≥ (`1 + `2)(`1 + `2 − 1)/2 + w2`2/2

By Landau’s condition applied to `1 and `1 + w2 + `2, we have the following two relations. Observe that
`1 and `1 + `2 + w2 are both integers.

(5) `1d1 ≥
(

`1
2

)
and

(6) `1d1 + (`2 + w2)d2 ≥
(

`1 + w2 + `2
2

)
Multiplying (5) by w2/(`2 + w2) and (6) by `2/(`2 + w2) and adding them, we obtain that

`1d1 + `2d2 ≥
1

`2 + w2

(
w2

(
`1
2

)
+ `2

(
`1 + `2 + w2

2

))
.(7)

A simple calculation shows that the right side of inequality (7) is exactly equal to the right hand side of (4).
This proves that g ≤ 2f for a canonical sequence.

If a sequence is not canonical then there are two consecutive degrees di and dj (j = i+1) such that one of
the following cases holds. In each case we will apply a transformation producing from the degree sequence
D a new degree sequence D′, where:

• the total weight of winners in D′ is equal to that of D;
• the same is true for losers (and thus for the total weight);
• the total weight on each degree remains integral;
• D′ maintains the majorization needed for Landau’s theorem;
• the value of g − 2f is at least as large for D′ as for D; and
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• either the number of nonzero values wi and `i or the number of distinct degrees di is strictly smaller
for D′ than for D, and the other is no larger for D′ than for D (for Transformation 2, this may first
require application of another transformation).

We first sketch the cases and then detail the transformations.
Case 1a: di has only winners (li = 0).

Apply Transformation 1a, combining the two degrees into one.
Case 1b: dj has only losers (wj = 0).

Apply Transformation 1b, combining the two degrees into one.
Case 2: All of wi, li, wj and lj are nonzero.

Apply Transformation 2, leaving the degrees the same but transforming the weights so that one of
them is equal to 0 and one of the preceding cases applies, or the weights obey an equality allowing
application of Transformation 3, which combines the two degrees into one.

Transformation 1a: In Case 1a, where di has only winners, change D to a new sequence D′ by replacing
the pair (di, wi, 0), (dj , wj , lj) by their “average”: the single degree (d′, w′, l′), where

w′ = wi + wj , l′ = lj , d′ =
(wi)di + (wj + lj)dj

wi + wj + lj
.

The stated conditions on a transformation are easily checked. The total weight of winners is clearly
preserved, as is the total weight of losers and the total degree (out-edges). Summing weights preserves
integrality. The number of distinct degrees is reduced by one, and the number of nonzero weights may be
decreased by one or may remain unchanged. The Landau majorization condition holds because D′, as an
averaging of D, is majorized by it, and majorization is transitive. The only non-trivial condition is the
non-decrease in g − 2f . The number of losers outranking winners is increased by liwj , so g(D) ≤ g(D′).
Also, f depends only on the total weight of losers (which is unchanged) and on the average degree of losers.
This average degree would be unchanged if wi were 0; since wi ≥ 0, the average degree may decrease. Thus
f(D) ≥ f(D′), and (g − 2f)(D) ≤ (g − 2f)(D′), as desired.

Transformation 1b: Symmetrically to Transformation 1a, obtain D′ by replacing the pair of labeled
weighted degrees (di, wi, li) and (dj , 0, lj) with a single one (d′, w′, l′), where

w′ = wi, l′ = li + lj , d′ =
(li + wi)di + (lj)dj

li + wi + lj
.

Transformation 2: Where wi, li, wj and lj are all nonzero, we will begin with one case, which will lead to
one other. In the usual case, we transform D to D′ by replacing the pair (di, wi, li), (dj , wj , lj) with

(di, wi + x, li − x), (dj , wj − x, lj + x),

for some value of x (positive or negative) to be determined. This affects only the labeling, not the weighted
degree sequence itself, and is therefore legitimate as long as the four quantities wi + x, li − x, wj − x and
lj + x are all non-negative.

Defining ∆ = (g − 2f)(D′)− (g − 2f)(D), we wish to choose x to make ∆ > 0.

∆ =
{[

(lj + x)(wi + x + wj − x) + (li − x)(wi + x)
]
−
[
lj(wi + wj) + liwi

]}
− 2
{[

(li − x)di + (lj + x)dj

]
−
[
lidi + ljdj

]}
= x(wj + li − 2(dj − di)− x)

= x(a− x),

where a = wj + li − 2(dj − di). This is a simple quadratic expression with negative coefficient of x2, so its
value increases monotonically as x is varied from 0 to a/2, where the maximum is obtained. (Note that a
may be negative.) If a = 0 then this transformation makes no change, and instead we use Transformation 3,
below. Otherwise, vary x from 0 to a/2 stopping when x reaches a/2 or when any of wi + x, li − x, wj − x
and lj + x becomes 0; call this value x?.

If any of wi + x, li − x, wj − x and lj + x is 0 then the number of nonzero weights is decreased (while the
number of distinct degees is unchanged). Otherwise, x? = a/2. In that case, the new D′ has a = 0 (because
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another application of the same procedure would give x? = 0). With a = 0 we apply Transformation 3,
which reduces the number of nonzero weights.

Transformation 3. Similar to Cases 1a and 1b, transform D to D′ by replacing the pair (di, wi, li),
(dj , wj , lj) with a single degree (d′, w′, l′) that is their weighted average,

w′ = wi + wj , l′ = li + lj , d′ =
(wi + li)di + (wj + lj)dj

wi + li + wj + lj
.

This gives

∆ := (g − 2f)(D′)− (g − 2f)(D)

= (liwj)− 2(lid′ + ljd
′ − lidi − ljdj)

= liwj +
2(dj − di)(wilj − wj li)

wi + li + wj + lj
.

We will apply this transformation only in the case where Transformation 2 fails to give any improvement
because its “a” expression is equal to 0, i.e., dj − di = (wi + lj)/2. Making the corresponding substitution
gives

∆ = liwj +
(wi + lj)(wilj − wj li)

wi + li + wj + lj

=
(liwj)(li + wj) + (ljwi)(lj + wi)

wi + li + wj + lj
> 0.

This reduces the number of distinct degrees by one, without increasing the number of nonzero weights.
Concluding the argument, we have shown that any non-canonical configuration D can be replaced by

a configuration with a strictly smaller total of distinct degrees and nonzero weights, and at least as large
a value of g − 2f . Since D had at most n distinct degrees and 2n nonzero weights originally, a canonical
configuration D? is reached after at most 3n− 1 transformations. (All that is important is that the number
of transformations is finite: that a canonical configuration is eventually reached.) Then, (g − 2f)(D) ≤
(g − 2f)(D?) ≤ 0. �

2. Another Interpretation and a Generalization

We begin with another interpretation of the main theorem, and then state and prove an elegant general-
ization.

Rank the vertices of T in order of increasing outdegree, breaking ties arbitrarily. For a vertex v, let rank(v)
denote the number of vertices that appear before v in this ordering. Then, per (3), g =

∑
`∈L rank(`)−

(|L|
2

)
.

Also, recall (2), f =
∑

`∈L deg(`)−
(|L|

2

)
. This leads to the following equivalent statement of Theorem 1.

Theorem 4. For any tournament T and any subset L (“losers”) of its vertices,∑
`∈L

deg(`) ≥ 1
2

(∑
`∈L

rank(`) +
(
|L|
2

))
.(8)

Corollary 5. Let D be any element-wise non-decreasing vector majorized by I = 〈0, 1, . . . , n− 1〉. Let H
be any non-negative n-vector (not necessarily increasing), and let I ′ be the re-ordering of I which minimizes
the dot product IH. Then

HD ≥ 1
2
(HI + HI ′).

Proof. We first show that if H is a 0-1 vector then the corollary follows directly from our main theorem, and
then show how to reduce the general case to the case of 0-1 vectors.

Given an arbitrary 0-1 vector H, let L (the set of losers) be the positions j where H(j) = 1. Then
HD =

∑
`∈L deg(`), HI =

∑
`∈L rank(`), and HI ′ =

(|L|
2

)
, and Theorem 4 implies the desired inequality (8).

If H is an arbitrary non-negative vector, it is uniquely expressible as H =
∑

i aivi, where each ai > 0
and the vi are 0-1 vectors such that v1 > v2 > · · · . Here vi > vj indicates that vi is at least as large as vj
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coordinate-wise, and the strict inequality means that there is some coordinate k where vi(k) = 1 but vj(k) =
0. (Interpreting the vectors vi as indicators, the corresponding sets S(vi) satisfy S(v1) ) S(v2) ) · · · .) Such
a decomposition of H follows by subtracting the smallest non-zero entry a1 of H1 := H from all the non-zero
entries of H1 (indicated by v1) to yield H2; subtracting H2’s smallest non-zero entry a2 from its non-zeros
(indicated by v2) to yield H3; and so forth until the 0 vector is obtained.

Note that HI ′ is identical to sorting H in non-decreasing order (call it H ′) and multiplying it by I. The
crucial property of our decomposition is that the same permutation applied to sort H as H ′, applied to
each vi to yield v′i, also makes each v′i non-decreasing; this property just follows from the nestedness of the
vectors vi. Thus, H ′ =

∑
i ai(vi)′, where each v′i is a non-increasing 0-1 vector.

Since vi is a 0-1 vector, we know that viD ≥ 1
2 (viI + v′iI). Thus

HD =
∑

i

aiviD ≥
∑

i

ai
1
2
(viI + v′iI) =

1
2
(HI + H ′I) =

1
2
(HI + HI ′).

�
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