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ABSTRACT 

 
Virtualization has become much more important throughout the computer 
industry both to improve security and to support multiple workloads on the same 
hardware with effective isolation between those workloads.  The most widely 
used chip architecture, the Intel and AMD x86 processors, have begun to support 
virtualization, but the initial implementations show many problem areas.  This 
paper examines the virtualization properties of the Alpha architecture with 
particular emphasis on features that improve performance and security.  It shows 
how the Alpha’s features of PALcode, address space numbers, software handling 
of translation buffer misses, lack of used and dirty bits, and secure handling of 
unpredictable results all contribute to making virtualization of the Alpha 
particularly easy.  The paper then compares the virtual architecture of the Alpha 
with Intel’s virtualization technology for x86 and, AMD’s virtualization 
architecture.  It also comments briefly on Intel’s virtualization technology for 
Itanium, IBM’s zSeries and pSeries hypervisors and Sun’s UltraSPARC 
virtualization.  It particularly identifies some differences between translation 
buffers on x86 and translation buffers on VAX and Alpha that can have adverse 
performance consequences. 
 

1   Introduction   
The purpose of this paper is to examine the features 
of Digital Equipment Corporation's (DEC's) Alpha 
processor [3] that are specifically designed to 
support virtual machine monitors (VMMs) and to 
reflect on how these features might apply to 
virtualization of other CPUs.  These features were 
designed into the Alpha architecture from the very 
beginning of the Alpha design, but rationale for 
those features was never documented, in part 
because DEC's VMM project was canceled [33].  
HP Labs did eventually implement a special 
purpose hypervisor [39] on the Alpha, but this was 
never intended for general deployment.  The 
virtualization features of the Alpha processor were 
designed primarily by Paul A. Karger, Andrew H. 
Mason, and Timothy E. Leonard. 

The virtualization features of the Alpha processor 
were developed, based in large measure on DEC’s 
experience in virtualizing the VAX architecture 

[16].  The VAX virtual machine monitor is 
described in [33] and the specific processor 
architecture features are described in [26] and [32].  
Both the VAX and Alpha virtualization changes 
were designed to support self-virtualization, and 
both solved the problem of virtualizing multiple 
protection rings with ring compression.  Ring 
compression avoided the need for an extra 
protection ring by choosing a pair of adjacent rings 
and mapping them into the same real protection 
ring. 

This paper will particularly highlight how the Alpha 
processor’s use of PALcode (defined below in 
section 2.1) and it’s unique handling of 
UNPREDICTABLE results (defined in section 3) 
made the Alpha architecture particularly well-suited 
to supporting secure hypervisors. 

After presenting the Alpha virtualization approach, 
this paper briefly compares it to the virtualization 
strategies employed by Intel and AMD on their x86 
processors, and points out some problems in the x86 
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approaches.  It also briefly compares the Alpha to 
virtualization approaches by IBM on zSeries and 
pSeries, by Intel on Itanium, and by Sun 
Microsystems on UltraSPARC.  The purpose of 
these comparisons is NOT an in-depth analysis, but 
rather to suggest where some lessons learned on the 
Alpha virtualization could be applied to improve the 
performance and security of hypervisors on other 
processors. 

All of the information presented in this paper is 
based on publicly available specifications for the 
various processors in question. 

2 PALcode 
One of the key aspects of the design of the Alpha 
processor was the ability to emulate some of the 
complex instructions from the VAX on the new 
RISC processor without using microcode by instead 
implementing new or complex instructions in 
Privileged Architecture Library code or PALcode.  
These PALcode instructions proved very useful for 
virtualization, as will be shown in this section. 
PALcode instructions are very similar to Alpha 
native instructions, but they run in a special mode 
called PALmode.  Unlike microcode, PALcode 
would be used only for these special or complex 
instructions.  Most Alpha instructions would be 
directly implemented by the chip.  PALcode 
instructions would trap to a special mode in which 
regular Alpha instructions, as well as special 
processor-model-specific instructions could be used.  
These processor-model-specific instructions would 
allow direct access to internal processor registers 
that were unique to that particular model of Alpha 
processor, rather than architected to be identical on 
all processor models.  An example of such an 
instruction might allow access to the memory 
bus interlock registers, so that a PALcode 
routine could implement complex instructions 
like the VAX interlocked queue instructions 
that were extensively used in the VAX/VMS 
operating system [34].  Implementing those 
instructions on Alpha would make porting the 
operating system much easier.  PALcode was not a 
new concept in Alpha.  PALcode is very similar to 
extracode that was part of the Atlas computer 
system [35].   

2.1   Sensitive Instructions and 
PALcode 

The most essential requirement for a CPU 
architecture to be virtualizable is that all sensitive 
instructions trap to the virtual machine monitor.  
This requirement was first identified by Goldberg in 
[24] and [46].  In essence, the requirement is that all 
sensitive instructions and all references to sensitive 
data structures trap when executed by unprivileged 
code.  A sensitive instruction is one that either 
reveals or modifies the privileged state of the 
processor. 

Most modern CPUs do not meet this requirement.  
The first virtualizable CPUs were a specially 
modified IBM 7044 [45] and a specially modified 
IBM 360/40 [18, 37].  The IBM System 360/67 met 
these requirements for the first commercially 
available virtual machine monitor, CP67/CMS [40], 
as do the current generation IBM zSeries 
mainframes for zVM.  However, the VAX 
architecture did not meet the requirements and had 
to be modified [26, 32].  Similarly the Intel x86 
architecture does not [47, 48], although Intel [9] and 
AMD [5] are deploying modified processors to 
support virtualization.  PowerPC did not originally 
support virtualizability, but now does [20].  Itanium 
also did not support virtualizability [31], but Intel 
has developed modifications [13]. 

The need for trapping all the sensitive instructions 
can easily lead to performance problems for the 
virtual machine monitor.  If the sensitive 
instructions are executed very frequently, then the 
cost of trapping and emulating the instructions can 
lead to extreme levels of performance degradation.  
Section  IX of [33] discusses the evolution of the 
VAX VMM and where some of the performance 
issues were found.  As a result, a major goal of the 
Alpha architecture design was to be virtualizable 
from the beginning and to ensure that the overhead 
for trapping and emulating sensitive instructions 
would be minimized.   
 
By requiring that all sensitive instructions be 
implemented in PALcode, the basic trapping 
overhead for those instructions was made part of the 
basic machine architecture, rather than extra 
overhead solely for virtual machine monitors.  As a 
result, the CPU designers would be naturally 
encouraged to reduce that overhead to a minimum.  
However, PALcode was not just a benefit for virtual 
machine monitors.  As we have already seen, 
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PALcode was conceived first to help implement 
some of the complex instructions inherited from the 
VAX architecture.  However, PALcode gave 
additional benefits.  Alpha was intended to support 
the OpenVMS1, the DEC OSF/12, and Windows NT 
operating systems.  PALcode allowed special 
custom instructions that were unique to a particular 
operating system3.   
Trapping into PALmode can be very fast, because 
the typical Alpha processor implementation has a 
small number of extra registers dedicated for 
PALcode.  For example, the 21264 Alpha chip [2, 
section 6.6] has eight extra registers, called shadow 
registers.  Other Alpha implementations could have 
different extra registers.  In this way, PALcode can 
minimize the need to save and restore registers 
belonging to the current process.  Only a small 
number of extra registers are provided, because 
most PALcode routines are small and do not need 
large amounts of state.  Only those PALcode 
routines that require additional registers or further 
context switches need save and restore the regular 
registers. 
An Alpha hypervisor can handle the guest operating 
systems’ PALcode in several different ways.  
Ideally, the hypervisor developers should have 
access to both the source code and specifications of 
the PALcode routines for each guest operating 
system.  This is so that the hypervisor PALcode can 
handle the various special instructions and handle 
the translation buffer misses properly, as discussed 
in section 2.2 below.  Either the hypervisor has to 
implement the same functions, or if the source code 
for the guest PALcode is available, the hypervisor 
could just modify that code.  The hypervisor also 
needs to know which virtual machine is running 
which operating system, but that is easily 
determined at virtual machine boot time.  If the 
guest operating system PALcode is completely 
unknown and unspecified to the hypervisor team, 
                                                 
1 OpenVMS was the successor to the VAX/VMS 

operating system. 
2 DEC OSF/1 was Digital Equipment Corporation's 

brand for their version of the UNIX operating system, 
based on  the OSF/1 operating system from the Open 
Software Foundation. 

3    For example, the VMS operating system PALcode 
included the interlocked queue instructions from the 
VAX.  However, DEC OSF/1 had no need for such 
instructions, so they were omitted from the DEC 
OSF/1 PALcode.  By contrast DEC OSF/1 PALcode 
included instructions for reading and writing process 
unique values that OpenVMS did not need. 

there are two other options.  The hypervisor could 
implement a just in time (JIT) compiler for guest 
PALcode, similar to what is done in VMware [19] 
or the hypervisor could run the guest PALcode in a 
less privileged ring, just as the guest operating 
system.  In this case, the special processor-specific 
instructions would trap, and the hypervisor’s 
PALcode could emulate them This approach would 
lose the performance benefits of PALcode, but 
would certainly handle all possible cases. 

2.2 Virtual Memory and PALcode 
Handling the translation buffer of a processor is 
extremely critical to both the performance and the 
security of a virtual-memory operating system and 
even more so for a virtual machine monitor.  The 
Alpha architecture borrows another idea from the 
Atlas computer system [35].  Unlike more recent 
virtual memory systems, the Atlas did not specify a 
page table structure.  The Atlas hardware simply 
had an associative translation buffer, and address 
translation misses in the translation buffer trapped 
to software.  Similarly, the Alpha processor has 
only a translation buffer, and misses in the 
translation buffer trap directly to PALcode routines.  
This simplifies the hardware of the processor, as it 
does not have to include circuitry to walk a 
sequence of page table entries.  (Of course, the 
translation buffer miss handler must carefully avoid 
causing recursive translation buffer misses.)  
However, the benefits go beyond processor 
simplification.  Each operating system on the Alpha 
processor can choose its own page table 
organization structure that optimizes how that 
operating system uses virtual memory.  One OS 
could have a single linear page table, another could 
have a series of cascading page tables, and a third 
could even support a hashed or inverted page table, 
such as first implemented in the IBM System/38 
[29] and the IBM RT/PC [49].   

2.2.1 Address Space Numbers 
The cost of refilling the translation buffer after 
context switching can be reduced by storing entries 
from more than one address space simultaneously.  
Essentially, the lookup tag in the translation buffer 
would be extended by an address space number 
(ASN) that would be assigned by the operating 
system or hypervisor to each distinct address space.  
Address Space Numbers were first used in the MU5 
computer system [41, 42].  Their first wide-spread 
commercial use was in the IBM System/370 where 
the translation-lookaside buffer (TLB) could be 
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searched based in part on the segment-table origin 
address of the current process [10, p. 59].  In 
particular, the IBM System/370 Model 168 [7, p. 
62], which first shipped in 1973, supported a 6-entry 
segment table origin address stack (STO-stack) that 
essentially allowed the TLB to store entries from up 
to six different processes or virtual machines at a 
time. 

The CPU would provide a current address space 
number on every search of the translation buffer.  
Assuming that the operating system switches from 
one address space to another and then back to the 
first, entries could remain in the translation buffer to 
be re-used after the switch back.  Of course, as 
Clark and Emer point out [23], the translation buffer 
must be quite large to make address space numbers 
worthwhile.  Declining memory costs make such 
large translation buffers more feasible.   

An address space number would be assigned 
dynamically to each process, as it was scheduled to 
run.  To prevent the tag in the translation buffer 
from getting too large, the number of ASNs must be 
limited.  The Alpha architecture supports a model-
specific maximum number of ASNs.  A limit of 256 
ASNs or an 8-bit extension to the tag might be 
reasonable for current technology.   

Since there can only be a limited number of ASNs, 
the system will eventually run out of them.  When 
that occurs, the operating system completely flushes 
the translation buffer and recycles all the ASNs.  
However, these complete flushes will occur much 
less frequently than in a processor without address 
space numbers. 

2.2.2 Used and Dirty Bits 
Most virtual memory machines have both used and 
modified bits in the page table entries (PTEs) that 
are set by the hardware whenever a particular page 
is used or modified.4  With these bits, an operating 
system can construct a close approximation to a 
least recently used (LRU) algorithm for selecting 
pages for removal from primary memory, and can 
keep track of which of such pages must be written 
to backing store. 

The VAX architecture eliminated the used bit from 

                                                 
4    Used and dirty bits do not have to be stored in the 

page table entries.  The IBM mainframes have stored 
the used and dirty bits with the physical pages, rather 
than in the PTEs.  They can only be referenced with 
privileged instructions which makes virtualization 
significantly easier. 

the page table entry as a way to simplify the virtual 
memory hardware and to reduce the size of each 
page table entry (PTE) that must be stored in the 
translation buffer.  A VAX operating system can 
still approximate a least recently used page 
replacement algorithm by moving pages from a list 
of pages currently in use to a list of free pages on a 
first-in first-out (FIFO) basis.  FIFO page 
replacement algorithms are usually much less 
optimal than LRU algorithms, so a VAX operating 
system does not automatically remove such pages 
from primary memory.  Instead, it marks the page as 
being in transition and if a page fault is taken on 
such a page, the page is immediately moved back to 
the list of currently in use pages without having to 
read the page from the backing store.  This 
algorithm in the VAX/VMS operating system is 
described in detail in [34, section 15.2.1.2]. 

The Alpha processor takes this one step further and 
eliminates the modified bit from the page table 
entry as well.  Instead an Alpha operating system 
can determine when a page has been modified by 
marking the page as read-only, and marking the 
page as modified when a write protection trap 
occurs. 

By eliminating both the used and modified bits, the 
Alpha processor eliminates the need for circuitry to 
set those bits, and by making the page table entries 
smaller by two bits, the amount of memory needed 
for the translation buffer is reduced.  Reducing the 
gate count could either reduce the cost of the chip or 
allow the use of additional gates for some other 
performance critical function.  The two bits that 
have been freed from every page table entry could 
also be used to implement address space numbers.  
From a software perspective, the operating system 
already has to handle used and modified pages.  
Eliminating the bits from the hardware does not 
change this software requirement, and it can 
significantly simplify how the hypervisor handles 
shadow page tables. 

2.3  Security and PALcode 
Developing truly secure computing systems has 
always been very difficult, and the security 
community has developed standards for evaluating 
how secure a particular system may be.  Achieving 
the highest levels of security requires drastic 
reduction of complexity, so that independent third-
party evaluators can sufficiently analyze the system 
to determine it’s security.  The VAX VMM security 
kernel [33] was designed to be evaluated at A1 
under the US Department of Defense Trusted 
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Computer Security Evaluation Criteria (the so-
called Orange Book) [6].  A1 evaluation did not 
require evaluation of processor microcode.  
However, in reality, processor microcode can also 
be a source of security vulnerabilities, and the VAX 
8800 microcode was larger and more complex than 
the VAX VMM security kernel.  Furthermore, the 
VAX 8800 used horizontal microcode that was very 
difficult to read, understand, or evaluate, even if the 
A1 evaluation had required it. 

By contrast, PALcode on the Alpha processor is 
simply normal Alpha assembler code with some 
additional instructions.  In theory, you could even 
write PALcode in a higher level language.  This 
code is much simpler to read and understand and 
could easily be evaluated as part of the evaluation of 
an Alpha VMM security kernel.   

The net result is that a high assurance evaluation on 
an Alpha processor could cover more of the security 
critical code.  Of course, the question of evaluating 
the chip layout itself remains.   

3  Unpredictable and 
Undefined 

Many CPU specifications include operations whose 
results may be unpredictable or undefined.  For 
example, the result stored as the quotient of a divide 
instruction would be unpredictable if a divide by 
zero occurred.  Requiring a specific result in such a 
case might be an unreasonable burden on the CPU 
designer.  Undefined refers to particular 
configurations that only privileged software, such as 
an operating system or hypervisor could control.  
For example, some combination of settings in an 
interrupt vector might be undefined. 

3.1 Unpredictable 
However, the usual definition of unpredictable 
permits a security violation, because the CPU has 
access to data to which the currently running 
process should not have access.  For example, the 
VAX definition says, “Results specified as 
UNPREDICTABLE may vary from moment to 
moment, implementation to implementation, and 
instruction to instruction within implementations.  
Software can never depend on results specified as 
UNPREDICTABLE.” [16, Section 1.2.2]  This 
definition does not prohibit a VAX implementation 
from storing as the quotient of a divide by zero 
operation, the value of a cryptographic key that 
belonged to some process other than the one 

currently executing on the processor, simply 
because that cryptographic key might still be stored 
in an internal processor register.  Such a result 
(however absurd) would be a very serious security 
violation. 

To resolve this problem, the Alpha Architecture [3] 
defines unpredictable in section 1.6.3 as quoted 
below: 

• Results or occurrences specified as 
UNPREDICTABLE may vary from moment 
to moment, implementation to 
implementation, and instruction to 
instruction within implementations. 
Software can never depend on results 
specified as UNPREDICTABLE. 

•  An UNPREDICTABLE result may acquire 
an arbitrary value subject to a few 
constraints.  Such a result may be an 
arbitrary function of the input operands or 
of any state information that is accessible to 
the process in its current access mode. 
UNPREDICTABLE results may be 
unchanged from their previous values.   

• An occurrence specified as 
UNPREDICTABLE may happen or not 
based on an arbitrary choice function. The 
choice function is subject to the same 
constraints as are UNPREDICTABLE 
results and, in particular, must not 
constitute a security hole. Specifically, 
UNPREDICTABLE results must not depend 
upon, or be a function of, the contents of 
memory locations or registers that are 
inaccessible to the current process in the 
current access mode. 

• Also, operations that may produce 
UNPREDICTABLE results must not: 

o Write or modify the contents of 
memory locations or registers to 
which the current process in the 
current access mode does not have 
access, or 

o Halt or hang the system or any of 
its components. 

• For example, a security hole would exist 
if some UNPREDICTABLE result 
depended on the value of a register in 
another process, on the contents of 
processor temporary registers left 
behind by some previously running 
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process, or on a sequence of actions of 
different processes. 

The net effect of this definition is to say that 
security holes created by an unpredictable result are 
violations of the Alpha architecture.  As long as the 
unpredictable result does not cause a security hole, 
as defined in section 1.6.2 of [3], then the CPU 
designer has total freedom.  However, if the 
unpredictable result actually creates a security hole, 
then the CPU is not a legal Alpha processor and the 
hole must be fixed, thereby avoiding the types of 
problems seen with the infamous Pentium FDIV 
bug [25]. 

3.2 Undefined 
UNDEFINED results can only be caused by 
privileged software (running in kernel mode).  
Unprivileged software can never cause an 
UNDEFINED result.  The Alpha Architecture [3] 
defines undefined in section 1.6.3 as quoted below:   

• Operations specified as UNDEFINED may 
vary from moment to moment, 
implementation to implementation, and 
instruction to instruction within 
implementations. The operation may vary in 
effect from nothing to stopping system 
operation. 

• UNDEFINED operations may halt the 
processor or cause it to lose information. 
However, UNDEFINED operations must 
not cause the processor to hang, that is, 
reach an unhalted state from which there is 
no transition to a normal state in which the 
machine executes instructions. 

 
Given that unprivileged software can never cause an 
undefined result, the concern over security holes 
does not apply to UNDEFINED. 

4 Comparison with Other 
Processors 

4.1 PALcode and IBM zSeries 
Millicode 

IBM mainframes, starting with the Generation 4 
(G4) processor [53] of the ESA/390 architecture and 
continuing with the newer zSeries processors [28] 
have used an approach similar to PALcode or 
Extracode, called millicode to implement more 
complex instructions.  Millicode consists of zSeries 

assembly instructions together with specialized 
millicode-only instructions.   

From an architectural point of view, there are three 
major differences between PALcode and zSeries 
Millicode.  All of these differences lie in 
requirement specifications rather than 
implementation.  First, the zSeries Principles of 
Operation manual [17] does not mandate which 
instructions shall be implemented in millicode.  
Second, millicode is not required to be replaceable 
so that it might not be customizable for each 
operating system and/or hypervisor.  Neither of 
these differences were significant for IBM, because 
the IBM mainframe processors have a long tradition 
of supporting virtualization (going back to 1966).  
By contrast, when the Alpha architecture was 
developed, Digital Equipment Corporation had no 
such tradition of supporting virtualization, and 
difficulties in getting the architected virtualization 
changes into various VAX processor 
implementations (documented in [33]) made 
mandating such requirements essential.  Third, 
millicode is not required to be present at all in a 
particular zSeries processor, nor is it documented 
for end-users.  By contrast, DEC chose to document 
[1, 2] how to write PALcode for any given Alpha 
processor.  Note that the special instructions used to 
write PALcode could completely vary from one 
Alpha chip to another.  This kind of documentation 
was made available by DEC to allow other 
organizations to write Alpha operating systems.  
These differences for IBM are much less 
significant, because IBM’s support for hypervisors 
in mainframes was a non-negotiable requirement, 
while at the time the Alpha chip was under design, 
several VAX processor development groups 
explicitly chose not to implement the changes to 
support virtualization.  Making the PALcode 
requirements explicit in the Alpha architecture 
meant that no Alpha processor development group 
could simply refuse to support virtualization. 

The IBM zSeries processors are clearly very well 
suited for virtualization.  After all, the very first 
commercial hypervisors were implemented for the 
IBM System/360 Model 67.  However, they are 
much more complex processors than the Alpha, and 
that makes passing a high assurance security 
evaluation that much more difficult. 
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4.2 Intel VT-x Virtualization 
Technology for x86 

Intel has been modifying the x86 architecture to 
support virtualization [12].  To achieve this, Intel 
specified a virtual-machine control data structure 
(VMCS) that can be used to store the state of each 
virtual processor.  Each VMCS is defined to be a 4 
kilobyte region that stores the state of the virtual 
machine.  Intel calls the traps that cause the 
processor to leave a virtual machine and transfer 
control to the hypervisor VM Exits.  VM Exits are 
caused by the execution of a variety of sensitive 
instructions or by a variety of exceptions and 
interrupts.  Whenever a VM Exit occurs, the state of 
the virtual machine is stored in the VMCS for 
access by the hypervisor.  This can be a serious 
performance problem, because VM Exits can occur 
very frequently, and having to store 4 kilobytes of 
data on every VM Exit could become prohibitively 
expensive.  To address this issue, Intel allows 
particular processor models to implement the 
VMCS in registers.  As a result, Hypervisors are 
forbidden from using normal memory reference 
instructions to access the fields of the active VMCS.  
Instead, the hypervisor is supposed to use the 
special instructions VMREAD and VMWRITE, so 
that regardless of whether the VMCS is 
implemented in memory or in registers, the way to 
access the fields remains the same.  There are also 
special restrictions on VMCS memory in 
hyperthreaded processors and in symmetric multi-
processors.  Intel also defines special instructions 
VMLAUNCH and VMRESUME to start and 
resume a virtual machine. 
Questions have been raised [19] about the 
performance of Intel’s VT-x technology.  This 
section compares Intel’s approach with the Alpha 
approach and suggests some possible sources of 
problems. 
A large number of extra registers are required to 
store all the VMCSs, particularly in hyperthreaded 
processors.  These registers are only used if the 
processor is actually running a virtual machine 
monitor or hypervisor.  The registers (which use 
very valuable chip real estate) go to waste on a 
processor that is only running a single operating 
system in a single partition.  This cost could be 
reasonable, if you expect almost all processors to be 
running virtual machines, but that is not likely to be 
the case in the near term.  IBM now ships PR/SM 
on all zSeries processors, because its use has 
become so popular.  However, that popularity took 
many years to develop, and it is not clear how 
quickly the Intel desktop and server markets will 

adopt the use of virtual machines.  By contrast, the 
VAX and Alpha virtual machine support did not 
dedicate such a large number of registers to store 
the virtual machine state information.  Instead, the 
choice was made to let the hypervisor itself decide 
how much state information must be saved on any 
particular trap from the virtual machine.  For many 
such traps, the hypervisor need only use one or two 
machine registers and then return immediately to 
the virtual machine.  A good example of this is in 
Section IX of [33] which describes how the VAX 
instruction to set the Interrupt Priority Level (IPL)5 
required extremely frequent traps to the hypervisor, 
and how that particular VM Exit and resume path 
was specially optimized.  In the x86, the counterpart 
is the Task Priority Register (TPR), and Intel 
defines a special TPR-shadow to optimize its 
virtualization.   
By avoiding a large VMCS, the valuable chip real 
estate could instead be devoted to a larger cache or 
larger translation buffer, etc.  In the case of the 
Alpha chip, such trap routines would be in PALcode 
which had a small number of extra registers for 
private use anyway.  If the hypervisor needed 
frequent access to portions of the virtual machine’s 
state, such memory locations would naturally 
remain in the cache.  However, if no hypervisor was 
in use, then the additional cache space could be 
used for normal program data.   
The VMRESUME instruction is a good example of 
complexity in the Intel virtualization strategy that 
may not be needed.  In the prototype of the VAX 
virtual machine monitor,  described in section IX of 
[33], DEC implemented special instructions, similar 
to VMRESUME,  to dispatch exceptions and 
interrupts to the virtual machine.  When DEC 
moved from the prototype VAX-11/730 to the 
product implementation on the VAX 8800, it 
became clear that these special instructions required 
large amounts of microcode to implement and saved 
little if any performance over the hypervisor just 
using a standard return from exception or interrupt 
(REI) instruction.  Section 7.2 of [26] discusses this 
in additional depth, and agrees with Olbert’s 
conclusions [44] that special microcode should only 
be used after the software (in this case, the 
hypervisor) has been implemented, optimized and 
performance monitoring indicates the need for 
further optimization.  
Neiger, et. al. [43] suggest the directions that Intel 
may be taking in the future to deal with some of 

                                                 
5    This instruction was actually a Move to Privilege 

Register (MTPR) instruction with the IPL register as 
an argument. 
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these issues.  In particular, Intel may be adding 
address space numbers to the translation buffer, 
which would certainly improve their performance. 

4.3 Shadow Page Tables and 
Translation Buffer Invalidation 

Many of the recent hypervisor developments for 
x86 processors have complained about the difficulty 
of implementing shadow page tables efficiently.  
Adams and Ageseon [19] report that VMware has to 
mark page tables read-only so as to trap all changes 
to the page table entries.  Barham [21] similarly 
reports in section 3.3.3 that Xen [21] has to trap all 
changes to page table entries and that this leads to 
performance problems.  However, Karger, et. al. 
[33] report no such problem in their implementation 
of shadow page tables for the VAX architecture.   
A careful examination of the specifications for the 
VAX translation buffer [16, p. 5-22] and for the Intel 
x86 translation lookaside buffer [8, p. 3-46] reveals 
the problem.  In the VAX architecture, “The 
translation buffer must not store invalid PTEs.  
Therefore, the software is not required to invalidate 
translation buffer entries when making changes for 
PTEs that are already invalid.”  By contrast, in the 
x86 architecture, “Whenever a page-directory or 
page-table entry is changed (including when the 
present flag is set to zero), the operating-system 
must immediately invalidate the corresponding 
entry in the TLB so that it can be updated the next 
time the entry is referenced.”  These two approaches 
to translation buffer invalidation are exact 
opposites.  The VAX explicitly requires that invalid 
PTEs never be stored in the translation buffer.  This 
means that the hypervisor need not track every 
change to a PTE, but need only wait until the guest 
operating system flushes the corresponding 
translation buffer entry (either by flushing that one 
entry or the entire buffer).  The Intel x86 specifies 
the exact opposite.  Every time the guest operating 
system changes a PTE, even if the page is not 
present (equivalent to invalid in the VAX), the guest 
must immediately flush the corresponding 
translation lookaside buffer (TLB) entry.  This 
requirement, even for pages that are not present 
makes shadow page tables much more expensive to 
maintain, as every write to a PTE must be tracked.   
The Intel x86 architecture does not explain why this 
requirement exists for pages that are NOT marked 
present.  Storing such PTEs in the TLB would seem 
to simply waste space in the TLB, because such 
entries will ALWAYS cause a missing page fault.  
It is interesting to note that the AMD specification 

for their implementation of the x86 architecture [4, 
Section 5.5.2, p. 173] does not contain a similar 
requirement.  The AMD specification is ambiguous 
about whether invalidating the TLB for PTEs that 
are not marked present is or is not required.  As a 
result, it is very hard to tell whether the Intel 
requirement is simply a design error or whether 
there is some subtle, but undocumented, reason for 
allowing PTEs for pages that are not present in 
memory to be stored in the TLB. 

4.4 AMD Secure Virtual Machine 
(SVM) Technology 

The AMD Secure Virtual Machine (SVM) 
Technology, described in chapter 15 of [4], is 
conceptually very similar to Intel’s VT-x 
virtualization technology, although some specific 
details are different.  AMD supports a 4 kilobyte 
virtual machine control block (VMCB) much like 
Intel’s VMCS.  However, AMD already supports 
address space numbers in the translation buffer, 
which will help their performance.  Because the 
AMD and Intel approaches are so similar, the 
concerns over the cost of traps into the hypervisor 
raised above in section 4.2 all hold for AMD just as 
for Intel. 

4.5 Intel VT-i Virtualization 
Technology for Itanium 

Compared to the approach for virtualizing the x86 
processor, Intel’s approach for virtualizing the 
Itanium processor [13] is actually much closer to 
that taken in the Alpha processor.  In particular, 
Itanium has a processor abstraction layer (PAL) 
described in chapter 11 of [11] that bears some 
resemblance to the Alpha’s PALcode.  This is not 
surprising, considering that Compaq (who had 
previously acquired DEC) sold the Alpha 
intellectual property to Intel [55] and Intel hired 
many of the Alpha designers to work on Itanium. 

4.6 IBM POWER5 LPARs 
Virtualization on IBM’s POWER5 processors is 
implemented in firmware, and the high-level 
features are described here [20, 22].  The POWER5 
hypervisor makes extensive use of 
paravirtualization.  The term was first used in the 
Denali project [54] to refer to the use of special 
system calls to the hypervisor to improve 
performance, rather than relying solely on 
trapping and emulation.  However, the 
technique of using special system calls to the 
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hypervisor was not new to Xen.  As early as 
CP-67/CMS Version 3.1 in 1971, the 
System/360 DIAGNOSE instruction was used 
as a hypervisor call instruction to provide I/O 
performance enhancements [50].  What is 
different in Xen and in the POWER5 
hypervisor is that the paravirtualization 
hypervisor calls are not just to improve 
performance.  They are required to support 
virtualization at all, because some sensitive 
instructions do not trap on POWER5. 
As a result of the use of paravirtualization, 
many of the issues of saving the state of the 
virtual machine do not arise for POWER5, 
except when actually scheduling a different 
VM.  However, the use of paravirtualization 
requires changes to the guest operating systems.  
This is easy for IBM, because there are only 
three operating systems supported on the 
POWER5 hypervisor – AIX, i5/OS, and Linux.  
IBM controls the source code for the AIX and 
i5/OS, and Linux is open source software, so 
making the necessary modifications is easy.   

4.7 UltraSPARC 
 
Sun Microsystems has developed a hypervisor 
mode for their UltraSPARC Architecture [14, 
15].  While this architecture seems to support 
hypervisors well, there are remaining issues 
with the SPARC register window architecture 
that can pose both performance and security 
problems.  SPARC optimizes subroutine calls 
by maintaining a large set of register windows, 
so that few, if any, registers have to be saved 
and restored on each procedure call.  However, 
this large set of registers led to performance 
problems on process switches, because all the 
windows had to be saved and restored.  In 
subsequent versions of the SPARC architecture, 
some of these problems were reduced by 
tagging register windows that could not be 
referenced in the next process context and by 
dedicating some of the register windows to 
interrupt handlers and to different processes.  
Some of these changes are summarized in [27].  
However, Wall [51, 52] showed that you could 
achieve the same performance gains by clever 
allocation of registers without requiring the 

CPU to actually implement so many register 
windows.  Furthermore, the mechanism that 
SPARC uses to protect register windows 
between contexts could become a covert 
communication channel [36, 38].  SPARC has 
privileged registers, CANSAVE, 
CANRESTORE, and CLEANWIN that indicate 
how many register windows can still be saved 
without having to save past windows, how 
many are currently in use, and how many can 
be saved without having to be cleaned.  In a 
single machine environment, the trusted 
operating system can use these registers to 
optimize the saving and restoring of register 
windows.   However, in a virtual machine 
environment, where the individual guest 
operating systems are NOT trusted, the values 
of these registers cannot be allowed to pass 
between virtual machines without creating a 
covert communications channel.  It will be a 
genuine challenge for the hypervisor to 
simultaneously prevent a covert channel and 
make the best possible use of the register 
windows without requiring excessive register 
saves and restores.   
Covert channels in CPUs is a major topic itself, 
and the interested reader should see Hu’s work 
[30] on countermeasures to such channels. 

5 Conclusions 
The Alpha processor architecture combined the 
simplicity of a RISC architecture with strong 
support for virtualization and unique security 
features that make it particularly attractive for 
secure hypervisors.  By using PALcode for all 
sensitive instructions and requiring that PALcode be 
modifiable, by avoiding the used and modified bits 
in the page table entries, and by handling translation 
buffer misses in software, the Alpha makes it very 
easy to implement a high performance hypervisor 
without the use of complex microcode or firmware.  
The Alpha’s specification of security requirements 
for unpredictable processor results eliminated many 
categories of security vulnerabilities that could be 
present in other CPU architectures, without forcing 
the chip designers to over-constrain their designs.  
While the Alpha processor is no longer in 
production, designers of virtualization support for 
other processor architectures should look carefully 
at the Alpha features to improve both the 
performance and the security of their hypervisors. 



10 

6 Acknowledgements 
I must thank Leendert van Doorn for first 
pointing out to me the performance issues in the 
Intel and AMD virtualization approaches, and 
Michel Hack for particularly detailed comments 
on this paper and on some of the history of 
virtualization on IBM processors.  In addition, I 
must thank J. R. Rao, David Safford, Leendert 
van Doorn, Eric Hall, Reiner Sailer, Suzanne 
Macintosh, Xiaolan Zhang, Sam Weber, Ray 
Valdez, and Andrew H. Mason for their useful 
review comments. 

References 
1.  Alpha 21164 Microprocessor Hardware 
Reference Manual, Order No. EC–QP99C–TE, 
December 1998, Compaq Computer 
Corporation. URL: 
http://ftp.digital.com/pub/Digital/info/semicond
uctor/literature/164hrm.pdf  
   
2.  Alpha 21264 Microprocessor Hardware 
Reference Manual, Order Number: EC–
RJRZA–TE, July 1999, Compaq Computer 
Corporation. URL: 
http://ftp.digital.com/pub/Digital/info/semicond
uctor/literature/21264hrm.pdf  
   
3.  Alpha Architecture Handbook, Order 
Number: EC-QD2KC-TE, October 1998, 
Compaq Computer Corporation. URL: 
http://ftp.digital.com/pub/Digital/info/semicond
uctor/literature/alphaahb.pdf  
   
4.  AMD64 Architecture Programmer's Manual 
Volume 2: System Programming, Publication 
No. 24593, December 2005, Advanced Micro 
Devices. URL: http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_
docs/24593.pdf  
   
5.  AMD64 Virtualization Codenamed 
“Pacifica” Technology:  Secure Virtual 
Machine Architecture Reference Manual, 
Publication No. 33047, Revision 3.01, May 
2005, Advanced Micro Devices: Sunnyvale, 
CA. URL: http://www.amd.com/us-

en/assets/content_type/white_papers_and_tech_
docs/33047.pdf  
   
6.  Department of Defense Trusted Computer 
System Evaluation Criteria, DOD 5200.28-
STD, December 1985: Washington, DC. URL: 
http://csrc.nist.gov/publications/history/dod85.p
df  
   
7.  A Guide to the IBM System/370 Model 168, 
GC20-1755-2, June 1975, IBM Corporation: 
White Plains, NY. URL: 
http://www.bitsavers.org/pdf/ibm/370/GC20-
1755-2_370-168gdeJun75.pdf  
   
8.  IA-32 Intel Architecture Software 
Developer's Manual: Volume 3A:  System 
Programming Guide, Part 1, Order Number: 
253668-020US, June 2006, Intel Corporation: 
Denver, CO.  
   
9.  IA-32 Intel Architecture Software 
Developer's Manual: Volume 3B:  System 
Programming Guide, Part 2, Order Number: 
253669-020US, June 2006, Intel Corporation: 
Denver, CO.  
   
10.  IBM System/370 Principles of Operation, 
GA22-7000-4, September 1974, IBM 
Corporation: Poughkeepsie, NY. URL: 
http://www.bitsavers.org/pdf/ibm/370/GA22-
7000-4_370PoO_Sep75.pdf  
   
11.  Intel Itanium Architecture Software 
Developer's Manual:  Volume 2: System 
Architecture, Document No. 245318-005, 
Revision 2.2, January 2006, Intel Corporation. 
URL: 
ftp://download.intel.com/design/Itanium/manua
ls/24531805.pdf  
   
12.  Intel Virtualization Technology 
Specification for the IA-32 Intel Architecture, 
C97063-002, April 2005, Intel Corporation.  
   
13.  Intel Virtualization Technology 
Specification for the Intel Itanium Architecture 
(VT-i), Document Number: 305942-002, 2005, 
Intel Corporation. URL: 



11 

ftp://download.intel.com/technology/computing
/vptech/30594202.pdf  
   
14.  UltraSPARC Architecture 2005, Part No: 
950-4895-08, Revision: Draft D0.8.8, 15 June 
2006, Sun Microsystems: Santa Clara, CA. 
URL: http://opensparc-
t1.sunsource.net/specs/UA2005-current-draft-
HP-EXT.pdf  
   
15.  UltraSPARC Virtual Machine Specification 
(The sun4v architecture and Hypervisor API 
specification), Revision 1.0, 24 January 2006, 
Sun Microsystems: Santa Clara, CA. URL: 
http://opensparc-
t1.sunsource.net/specs/Hypervisor-api-current-
draft.pdf  
   
16.  VAX-11 Architecture Reference Manual, 
EK-VAXAR-RM-001, Revision 6.1, 20 May 
1982, Digital Equipment Corporation: Bedford, 
MA. URL: 
http://www.bitsavers.org/pdf/dec/vax/archSpec/
EK-VAXAR-RM-001_Arch_May82.pdf  
   
17.  z/Architecture Principles of Operation, 
SA22-7832-04, September 2005, IBM 
Corporation: Poughkeepsie, NY. URL: 
http://publibz.boulder.ibm.com/epubs/pdf/a227
8324.pdf  
   
18.  Adair, R.J., R.U. Bayles, L.W. Comeau, 
and R.J. Creasy, A Virtual Machine System for 
the 360/40, Report 320-2007, May 1966, IBM 
Cambridge Scientific Center: Cambridge, MA.  
   
19.  Adams, K. and O. Agesen. A Comparison 
of Software and Hardware Techniques for x86 
Virtualization. in Twelfth International 
Conference on Architectural Support for 
Programming Languages and Operating 
Systems. 21-25 October 2006, San Jose, CA: 
published in ACM SIGARCH Computer 
Architecture News, Vol. 34, No. 5. p. 2-13. 
URL: 
http://www.vmware.com/pdf/asplos235_adams.
pdf 
   
20.  Armstrong, W.J., R.L. Amdt, D.C. 

Boutcher, R.G. Kovacs, D. Larson, K.A. Lucke, 
N. Nayar, and R.C. Swanberg, Advanced 
Virtualization Capabilities of POWER5 
Systems. IBM Journal of Research and 
Development, July/September 2005. 49(4/5): 
p. 523-532. URL: 
http://www.research.ibm.com/journal/rd/494/ar
mstrong.html 
   
21.  Barham, P., B. Dragovic, K. Fraser, S. 
Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, 
and A. Warfield. Xen and the Art of 
Virtualization. in Proceedings of the 
Nineteenth ACM Symposium on Operating 
Systems Principles (SOSP). 19-22 October 
2003, Bolton Landing, NY: ACM Press. URL: 
http://www.cl.cam.ac.uk/Research/SRG/netos/p
apers/2003-xensosp.pdf 
   
22.  Blank, A., P. Keifer, C. Sallave Jr., G. 
Valencia, J. Wain, and A.M. Warda, Advanced 
POWER Virtualization on IBM System p5, 
SG24-7940-01, December 2005, IBM 
Corporation: Austin, TX. URL: 
http://www.redbooks.ibm.com/redbooks/pdfs/s
g247940.pdf  
   
23.  Clark, D.W. and J.S. Emer, Performance of 
the VAX-11/780 Translation Buffer:  Simulation 
and Measurement. ACM Transactions on 
Computer Systems, February 1985. 3(1): p. 
31-62.  
   
24.  Goldberg, R.P., Architectural Principles 
for Virtual Computer Systems, Ph. D. thesis in 
Division of Engineering and Applied Physics,, 
February 1973, Harvard University: 
Cambridge, MA.  Published as ESD-TR-73-
105.  HQ Electronic Systems Division, 
Hanscom AFB, MA.  
   
25.  Halfill, T.R., The Truth Behind the Pentium 
Bug. Byte, March 1995. URL: 
http://www.byte.com/art/9503/sec13/art1.htm 
   
26.  Hall, J.S. and P.T. Robinson. Virtualizing 
the VAX Architecture. in 18th International 
Symposium on Computer Architecture. May 
1991, Toronto, ON, Canada: published in 



12 

Computer Architecture News, Vol. 19, No. 3. p. 
380-389. URL: 
http://doi.acm.org/10.1145/115952.115990 
   
27.  Hamilton, G. and P. Kougiouris. The 
Spring Nucleus:  A Microkernel for Objects. in 
Proceedings of the USENIX Summer 1993 
Technical Conference. 21-25 June 1993, 
Cincinnati, OH: USENIX Association. p. 147-
159. URL: 
http://www.usenix.org/publications/library/proc
eedings/cinci93/full_papers/hamilton.txt 
   
28.  Heller, L.C. and M.S. Farrell, Millicode in 
an IBM zSeries Processor. IBM Journal of 
Research and Development, May/July 2004. 
48(3/4): p. 425-434. URL: 
http://www.research.ibm.com/journal/rd/483/he
ller.pdf 
   
29.  Houdek, M.E. and G.R. Mitchell, 
Translating a Large Virtual Address, in IBM 
System/38 Technical Developments. 1980, 
G580-0237-1, IBM General Systems Division: 
Atlanta, GA. p. 22-24.  
   
30.  Hu, W.-M. Reducing Timing Channels with 
Fuzzy Time. in Proceedings of the 1991 IEEE 
Symposium on Research in Security and 
Privacy. 20-22 May 1991, Oakland, CA: IEEE 
Computer Society. p. 8-20.  
   
31.  Karadeniz, K., Analysis of Intel IA-64 
Processor Support for a Secure Virtual 
Machine Monitor, March 2001, Naval 
Postgraduate School: Monterey, CA. URL: 
http://handle.dtic.mil/100.2/ADA391770  
   
32.  Karger, P.A., T.E. Leonard, and A.H. 
Mason, Computer with virtual machine mode 
and multiple protection rings, US patent No. 
4787031, 22 November 1988. 
   
33.  Karger, P.A., M.E. Zurko, D.W. Bonin, 
A.H. Mason, and C.E. Kahn, A Retrospective 
on the VAX VMM Security Kernel. IEEE 
Transactions on Software Engineering, 
November 1991. 17(11): p. 1147-1165.  
   

34.  Kenah, L.J. and S. Bate, VAX/VMS 
Internals and Data Structures. 1984, 
Burlington, MA: Digital Press. 
   
35.  Kilburn, T., R.B. Payne, and D.J. Howarth. 
The Atlas Supervisor. in Computers - Key to 
Total Systems Control, Proceedings of the 
Eastern Joint Computer Conference. 12-14 
December 1961, New York, NY: Vol. 20. 
American Federation of Information Processing 
Societies (AFIPS), Macmillan Company. p. 
279-294.  
   
36.  Lampson, B.W., A note on the confinement 
problem. Communications of the ACM, 
October 1973. 16(10): p. 613-615.  
   
37.  Lindquist, A.B., R.R. Seeber, and L.W. 
Comeau, A Time-Sharing System Using an 
Associative Memory. Proceedings of the 
IEEE, December 1966. 54(12): p. 1774-1779.  
   
38.  Lipner, S.B., A comment on the 
confinement problem. Operating Systems 
Review, 19-21 November 1975. 9(5): p. 192-
196. Proceedings of the Fifth Symposium on 
Operating Systems Principles.  
   
39.  Lowell, D.E., Y. Saito, and E.J. Sambert, 
Devirtualizable virtual machines enabling 
general, single-node, online maintenance, in 
Proceedings of the Eleventh International 
Conference on Architectural Support for 
Programming Languages and Operating 
Systems (ASPLOS) 9-13 October 2004: Boston, 
MA. p. 211-223. URL: 
http://www.ysaito.com/microvisor-asplos04.pdf 
   
40.  Meyer, R.A. and L.H. Seawright, A Virtual 
Machine Time-Sharing System. IBM Systems 
Journal, 1970. 9(3): p. 199-218. URL: 
http://www.research.ibm.com/journal/sj/093/ib
msj0903D.pdf 
   
41.  Morris, D. and G.D. Detlefsen. An 
Implementation of a Segmented Virtual Store. 
in Conference on Computer Science and 
Technology. 30 June - 3 July 1969, University 
of Manchester Institute of Science and 



13 

Technology: Vol. IEE Conference Publication 
55. Institution of Electrical Engineers. p. 63-71.  
   
42.  Morris, D. and R.N. Ibbett, The MU5 
Computer System. 1979, New York: Springer-
Verlag. 
   
43.  Neiger, G., A. Santoni, F. Leung, D. 
Rodgers, and R. Uhlig, Intel Virtualization 
Technology:  Hardware Support for Efficient 
Processor Virtualization. Intel Technology 
Journal, 10 August 2006. 10(03): p. 167-178. 
URL: 
http://www.intel.com/technology/itj/2006/v10i3
/1-hardware/1-abstract.htm 
   
44.  Olbert, A.G. Crossing the Machine 
Interface. in MICRO 15: Proceedings of the 
15th Annual Workshop on 
Microprogramming. December 1982, Palo 
Alto, CA: published in ACM SIGMICRO 
Newsletter, Vol. 13, No. 2. p. 163-170. URL: 
http://portal.acm.org/citation.cfm?id=800036.8
00946 
   
45.  O'Neill, R.W. Experience using a time-
shared multi-programming system with 
dynamic address relocation hardware. in 
Proceedings of the 1967 Spring Joint 
Computer Conference. 18-20 April 1967, 
Atlantic City, NJ: Vol. 30. Thompson Books. p. 
611-621.  
   
46.  Popek, G.J. and R.P. Goldberg, Formal 
Requirements for Virtualizable Third 
Generation Architectures. Comm. ACM, July 
1974. 17(7): p. 41-421.  
   
47.  Robin, J.S., Analyzing the Intel Pentium's 
Architecture to Support Virtual Machine 
Monitors, MS in Department of Computer 
Science 1999, Naval Postgraduate School: 
Monterey, CA. URL: 
http://cisr.nps.navy.mil/downloads/theses/99the
sis_robin.pdf 
   
48.  Robin, J.S. and C.E. Irvine. Analysis of the 
Intel Pentium’s Ability to Support a Secure 
Virtual Machine Monitor. in 9th USENIX 

Security Symposium. 14-17 August 2000, 
Denver, CO: USENIX, the Advanced 
Computing Systems Association. p. 129-144. 
URL: 
http://www.usenix.org/events/sec2000/robin.ht
ml 
   
49.  Simpson, R.O. and P.D. Hester, The IBM 
RT PC ROMP and Memory Management Unit 
Architecture. IBM Systems Journal, 1987. 
26(4): p. 346-360. URL: 
http://www.research.ibm.com/journal/sj/264/ib
msj2604D.pdf 
   
50.  Varian, M. VM and the VM Community: 
Past Present, and Future. in SHARE 89, 
Sessions 9059-9061. August 1997. URL: 
http://www.princeton.edu/~melinda/25paper.pd
f 
   
51.  Wall, D.W. Global Register Allocation at 
Link Time. in Proceedings of the SIGPLAN 
'86 Symposium on Compiler Construction. 
25-27 June 1986, Palo Alto, CA: ACM 
SIGPLAN Notices, Vol. 21, No. 7. p. 264-275.  
   
52.  Wall, D.W. Register Windows vs. Register 
Allocation. in Proceedings of the ACM 
SIGPLAN 1988 Conference on 
Programming Language Design and 
Implementation. 20-24 June 1988, Atlanta, 
GA: ACM SIGPLAN Notices, Vol. 23, No. 7. 
p. 67-78.  
   
53.  Webb, C.F. and J.S. Liptay, A High-
Frequency Custom CMOS S/390 
Microprocessor. IBM Journal of Research 
and Development, July/September 1997. 
41(4/5): p. 463-473. URL: 
http://www.research.ibm.com/journal/rd/446/w
ebb.pdf 
   
54.  Whitaker, A., M. Shaw, and S.D. Gribble, 
Denali: Lightweight Virtual Machines for 
Distributed and Networked Applications, 
University of Washington Technical Report 02-
02-01, 2001, University of Washington: Seattle, 
WA. URL: 
http://denali.cs.washington.edu/pubs/distpubs/p



14 

apers/denali_usenix2002.pdf  
   
55.  Wilcox, J. and M.A. Farmer, Compaq, Intel 
boost Itanium in chip deal. c|net News.com, 25 
June 2001. URL: http://news.com.com/2100-
1001-268944.html 
   
 



15 

 
 


