
RC 24111 (W0611-124), 27 November 2006
Computer Science

IBM Research Report

Performance and Security Lessons Learned from
Virtualizing the Alpha Processor

Paul A. Karger

IBM Research Division
Thomas J. Watson Research Center

P. O. Box 704
Yorktown Heights, NY 10598, USA

Research Division
IBM Almaden – Austin – Beijing – Delhi – Haifa – T.J. Watson – Tokyo – Zurich

Limited Distribution Notice: This report has been submitted for publication outside of IBM and will probably be copyrighted if
accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of
copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and
specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g.,
payment of royalties). Some reports are available at http://www.research.ibm.com/resources/paper_search.html. Copies may
requested from IBM T.J. Watson Research Center, 16-220, P.O. Box 218, Yorktown Heights, NY 10598 or send email to
reports@us.ibm.com.

This paper has been submitted to the 27th International Symposium on Computer
Architecture (ISCA 2007).

1

Performance and Security Lessons Learned from
Virtualizing the Alpha Processor

Paul A. Karger
IBM Thomas J. Watson Research Center

PO Box 704, Yorktown Heights, NY 10598
karger@watson.ibm.com

ABSTRACT

Virtualization has become much more important throughout the computer
industry both to improve security and to support multiple workloads on the same
hardware with effective isolation between those workloads. The most widely
used chip architecture, the Intel and AMD x86 processors, have begun to support
virtualization, but the initial implementations show many problem areas. This
paper examines the virtualization properties of the Alpha architecture with
particular emphasis on features that improve performance and security. It shows
how the Alpha’s features of PALcode, address space numbers, software handling
of translation buffer misses, lack of used and dirty bits, and secure handling of
unpredictable results all contribute to making virtualization of the Alpha
particularly easy. The paper then compares the virtual architecture of the Alpha
with Intel’s virtualization technology for x86 and, AMD’s virtualization
architecture. It also comments briefly on Intel’s virtualization technology for
Itanium, IBM’s zSeries and pSeries hypervisors and Sun’s UltraSPARC
virtualization. It particularly identifies some differences between translation
buffers on x86 and translation buffers on VAX and Alpha that can have adverse
performance consequences.

1 Introduction
The purpose of this paper is to examine the features
of Digital Equipment Corporation's (DEC's) Alpha
processor [3] that are specifically designed to
support virtual machine monitors (VMMs) and to
reflect on how these features might apply to
virtualization of other CPUs. These features were
designed into the Alpha architecture from the very
beginning of the Alpha design, but rationale for
those features was never documented, in part
because DEC's VMM project was canceled [33].
HP Labs did eventually implement a special
purpose hypervisor [39] on the Alpha, but this was
never intended for general deployment. The
virtualization features of the Alpha processor were
designed primarily by Paul A. Karger, Andrew H.
Mason, and Timothy E. Leonard.

The virtualization features of the Alpha processor
were developed, based in large measure on DEC’s
experience in virtualizing the VAX architecture

[16]. The VAX virtual machine monitor is
described in [33] and the specific processor
architecture features are described in [26] and [32].
Both the VAX and Alpha virtualization changes
were designed to support self-virtualization, and
both solved the problem of virtualizing multiple
protection rings with ring compression. Ring
compression avoided the need for an extra
protection ring by choosing a pair of adjacent rings
and mapping them into the same real protection
ring.

This paper will particularly highlight how the Alpha
processor’s use of PALcode (defined below in
section 2.1) and it’s unique handling of
UNPREDICTABLE results (defined in section 3)
made the Alpha architecture particularly well-suited
to supporting secure hypervisors.

After presenting the Alpha virtualization approach,
this paper briefly compares it to the virtualization
strategies employed by Intel and AMD on their x86
processors, and points out some problems in the x86

2

approaches. It also briefly compares the Alpha to
virtualization approaches by IBM on zSeries and
pSeries, by Intel on Itanium, and by Sun
Microsystems on UltraSPARC. The purpose of
these comparisons is NOT an in-depth analysis, but
rather to suggest where some lessons learned on the
Alpha virtualization could be applied to improve the
performance and security of hypervisors on other
processors.

All of the information presented in this paper is
based on publicly available specifications for the
various processors in question.

2 PALcode
One of the key aspects of the design of the Alpha
processor was the ability to emulate some of the
complex instructions from the VAX on the new
RISC processor without using microcode by instead
implementing new or complex instructions in
Privileged Architecture Library code or PALcode.
These PALcode instructions proved very useful for
virtualization, as will be shown in this section.
PALcode instructions are very similar to Alpha
native instructions, but they run in a special mode
called PALmode. Unlike microcode, PALcode
would be used only for these special or complex
instructions. Most Alpha instructions would be
directly implemented by the chip. PALcode
instructions would trap to a special mode in which
regular Alpha instructions, as well as special
processor-model-specific instructions could be used.
These processor-model-specific instructions would
allow direct access to internal processor registers
that were unique to that particular model of Alpha
processor, rather than architected to be identical on
all processor models. An example of such an
instruction might allow access to the memory
bus interlock registers, so that a PALcode
routine could implement complex instructions
like the VAX interlocked queue instructions
that were extensively used in the VAX/VMS
operating system [34]. Implementing those
instructions on Alpha would make porting the
operating system much easier. PALcode was not a
new concept in Alpha. PALcode is very similar to
extracode that was part of the Atlas computer
system [35].

2.1 Sensitive Instructions and
PALcode

The most essential requirement for a CPU
architecture to be virtualizable is that all sensitive
instructions trap to the virtual machine monitor.
This requirement was first identified by Goldberg in
[24] and [46]. In essence, the requirement is that all
sensitive instructions and all references to sensitive
data structures trap when executed by unprivileged
code. A sensitive instruction is one that either
reveals or modifies the privileged state of the
processor.

Most modern CPUs do not meet this requirement.
The first virtualizable CPUs were a specially
modified IBM 7044 [45] and a specially modified
IBM 360/40 [18, 37]. The IBM System 360/67 met
these requirements for the first commercially
available virtual machine monitor, CP67/CMS [40],
as do the current generation IBM zSeries
mainframes for zVM. However, the VAX
architecture did not meet the requirements and had
to be modified [26, 32]. Similarly the Intel x86
architecture does not [47, 48], although Intel [9] and
AMD [5] are deploying modified processors to
support virtualization. PowerPC did not originally
support virtualizability, but now does [20]. Itanium
also did not support virtualizability [31], but Intel
has developed modifications [13].

The need for trapping all the sensitive instructions
can easily lead to performance problems for the
virtual machine monitor. If the sensitive
instructions are executed very frequently, then the
cost of trapping and emulating the instructions can
lead to extreme levels of performance degradation.
Section IX of [33] discusses the evolution of the
VAX VMM and where some of the performance
issues were found. As a result, a major goal of the
Alpha architecture design was to be virtualizable
from the beginning and to ensure that the overhead
for trapping and emulating sensitive instructions
would be minimized.

By requiring that all sensitive instructions be
implemented in PALcode, the basic trapping
overhead for those instructions was made part of the
basic machine architecture, rather than extra
overhead solely for virtual machine monitors. As a
result, the CPU designers would be naturally
encouraged to reduce that overhead to a minimum.
However, PALcode was not just a benefit for virtual
machine monitors. As we have already seen,

3

PALcode was conceived first to help implement
some of the complex instructions inherited from the
VAX architecture. However, PALcode gave
additional benefits. Alpha was intended to support
the OpenVMS1, the DEC OSF/12, and Windows NT
operating systems. PALcode allowed special
custom instructions that were unique to a particular
operating system3.
Trapping into PALmode can be very fast, because
the typical Alpha processor implementation has a
small number of extra registers dedicated for
PALcode. For example, the 21264 Alpha chip [2,
section 6.6] has eight extra registers, called shadow
registers. Other Alpha implementations could have
different extra registers. In this way, PALcode can
minimize the need to save and restore registers
belonging to the current process. Only a small
number of extra registers are provided, because
most PALcode routines are small and do not need
large amounts of state. Only those PALcode
routines that require additional registers or further
context switches need save and restore the regular
registers.
An Alpha hypervisor can handle the guest operating
systems’ PALcode in several different ways.
Ideally, the hypervisor developers should have
access to both the source code and specifications of
the PALcode routines for each guest operating
system. This is so that the hypervisor PALcode can
handle the various special instructions and handle
the translation buffer misses properly, as discussed
in section 2.2 below. Either the hypervisor has to
implement the same functions, or if the source code
for the guest PALcode is available, the hypervisor
could just modify that code. The hypervisor also
needs to know which virtual machine is running
which operating system, but that is easily
determined at virtual machine boot time. If the
guest operating system PALcode is completely
unknown and unspecified to the hypervisor team,

1 OpenVMS was the successor to the VAX/VMS

operating system.
2 DEC OSF/1 was Digital Equipment Corporation's

brand for their version of the UNIX operating system,
based on the OSF/1 operating system from the Open
Software Foundation.

3 For example, the VMS operating system PALcode
included the interlocked queue instructions from the
VAX. However, DEC OSF/1 had no need for such
instructions, so they were omitted from the DEC
OSF/1 PALcode. By contrast DEC OSF/1 PALcode
included instructions for reading and writing process
unique values that OpenVMS did not need.

there are two other options. The hypervisor could
implement a just in time (JIT) compiler for guest
PALcode, similar to what is done in VMware [19]
or the hypervisor could run the guest PALcode in a
less privileged ring, just as the guest operating
system. In this case, the special processor-specific
instructions would trap, and the hypervisor’s
PALcode could emulate them This approach would
lose the performance benefits of PALcode, but
would certainly handle all possible cases.

2.2 Virtual Memory and PALcode
Handling the translation buffer of a processor is
extremely critical to both the performance and the
security of a virtual-memory operating system and
even more so for a virtual machine monitor. The
Alpha architecture borrows another idea from the
Atlas computer system [35]. Unlike more recent
virtual memory systems, the Atlas did not specify a
page table structure. The Atlas hardware simply
had an associative translation buffer, and address
translation misses in the translation buffer trapped
to software. Similarly, the Alpha processor has
only a translation buffer, and misses in the
translation buffer trap directly to PALcode routines.
This simplifies the hardware of the processor, as it
does not have to include circuitry to walk a
sequence of page table entries. (Of course, the
translation buffer miss handler must carefully avoid
causing recursive translation buffer misses.)
However, the benefits go beyond processor
simplification. Each operating system on the Alpha
processor can choose its own page table
organization structure that optimizes how that
operating system uses virtual memory. One OS
could have a single linear page table, another could
have a series of cascading page tables, and a third
could even support a hashed or inverted page table,
such as first implemented in the IBM System/38
[29] and the IBM RT/PC [49].

2.2.1 Address Space Numbers
The cost of refilling the translation buffer after
context switching can be reduced by storing entries
from more than one address space simultaneously.
Essentially, the lookup tag in the translation buffer
would be extended by an address space number
(ASN) that would be assigned by the operating
system or hypervisor to each distinct address space.
Address Space Numbers were first used in the MU5
computer system [41, 42]. Their first wide-spread
commercial use was in the IBM System/370 where
the translation-lookaside buffer (TLB) could be

4

searched based in part on the segment-table origin
address of the current process [10, p. 59]. In
particular, the IBM System/370 Model 168 [7, p.
62], which first shipped in 1973, supported a 6-entry
segment table origin address stack (STO-stack) that
essentially allowed the TLB to store entries from up
to six different processes or virtual machines at a
time.

The CPU would provide a current address space
number on every search of the translation buffer.
Assuming that the operating system switches from
one address space to another and then back to the
first, entries could remain in the translation buffer to
be re-used after the switch back. Of course, as
Clark and Emer point out [23], the translation buffer
must be quite large to make address space numbers
worthwhile. Declining memory costs make such
large translation buffers more feasible.

An address space number would be assigned
dynamically to each process, as it was scheduled to
run. To prevent the tag in the translation buffer
from getting too large, the number of ASNs must be
limited. The Alpha architecture supports a model-
specific maximum number of ASNs. A limit of 256
ASNs or an 8-bit extension to the tag might be
reasonable for current technology.

Since there can only be a limited number of ASNs,
the system will eventually run out of them. When
that occurs, the operating system completely flushes
the translation buffer and recycles all the ASNs.
However, these complete flushes will occur much
less frequently than in a processor without address
space numbers.

2.2.2 Used and Dirty Bits
Most virtual memory machines have both used and
modified bits in the page table entries (PTEs) that
are set by the hardware whenever a particular page
is used or modified.4 With these bits, an operating
system can construct a close approximation to a
least recently used (LRU) algorithm for selecting
pages for removal from primary memory, and can
keep track of which of such pages must be written
to backing store.

The VAX architecture eliminated the used bit from

4 Used and dirty bits do not have to be stored in the

page table entries. The IBM mainframes have stored
the used and dirty bits with the physical pages, rather
than in the PTEs. They can only be referenced with
privileged instructions which makes virtualization
significantly easier.

the page table entry as a way to simplify the virtual
memory hardware and to reduce the size of each
page table entry (PTE) that must be stored in the
translation buffer. A VAX operating system can
still approximate a least recently used page
replacement algorithm by moving pages from a list
of pages currently in use to a list of free pages on a
first-in first-out (FIFO) basis. FIFO page
replacement algorithms are usually much less
optimal than LRU algorithms, so a VAX operating
system does not automatically remove such pages
from primary memory. Instead, it marks the page as
being in transition and if a page fault is taken on
such a page, the page is immediately moved back to
the list of currently in use pages without having to
read the page from the backing store. This
algorithm in the VAX/VMS operating system is
described in detail in [34, section 15.2.1.2].

The Alpha processor takes this one step further and
eliminates the modified bit from the page table
entry as well. Instead an Alpha operating system
can determine when a page has been modified by
marking the page as read-only, and marking the
page as modified when a write protection trap
occurs.

By eliminating both the used and modified bits, the
Alpha processor eliminates the need for circuitry to
set those bits, and by making the page table entries
smaller by two bits, the amount of memory needed
for the translation buffer is reduced. Reducing the
gate count could either reduce the cost of the chip or
allow the use of additional gates for some other
performance critical function. The two bits that
have been freed from every page table entry could
also be used to implement address space numbers.
From a software perspective, the operating system
already has to handle used and modified pages.
Eliminating the bits from the hardware does not
change this software requirement, and it can
significantly simplify how the hypervisor handles
shadow page tables.

2.3 Security and PALcode
Developing truly secure computing systems has
always been very difficult, and the security
community has developed standards for evaluating
how secure a particular system may be. Achieving
the highest levels of security requires drastic
reduction of complexity, so that independent third-
party evaluators can sufficiently analyze the system
to determine it’s security. The VAX VMM security
kernel [33] was designed to be evaluated at A1
under the US Department of Defense Trusted

5

Computer Security Evaluation Criteria (the so-
called Orange Book) [6]. A1 evaluation did not
require evaluation of processor microcode.
However, in reality, processor microcode can also
be a source of security vulnerabilities, and the VAX
8800 microcode was larger and more complex than
the VAX VMM security kernel. Furthermore, the
VAX 8800 used horizontal microcode that was very
difficult to read, understand, or evaluate, even if the
A1 evaluation had required it.

By contrast, PALcode on the Alpha processor is
simply normal Alpha assembler code with some
additional instructions. In theory, you could even
write PALcode in a higher level language. This
code is much simpler to read and understand and
could easily be evaluated as part of the evaluation of
an Alpha VMM security kernel.

The net result is that a high assurance evaluation on
an Alpha processor could cover more of the security
critical code. Of course, the question of evaluating
the chip layout itself remains.

3 Unpredictable and
Undefined

Many CPU specifications include operations whose
results may be unpredictable or undefined. For
example, the result stored as the quotient of a divide
instruction would be unpredictable if a divide by
zero occurred. Requiring a specific result in such a
case might be an unreasonable burden on the CPU
designer. Undefined refers to particular
configurations that only privileged software, such as
an operating system or hypervisor could control.
For example, some combination of settings in an
interrupt vector might be undefined.

3.1 Unpredictable
However, the usual definition of unpredictable
permits a security violation, because the CPU has
access to data to which the currently running
process should not have access. For example, the
VAX definition says, “Results specified as
UNPREDICTABLE may vary from moment to
moment, implementation to implementation, and
instruction to instruction within implementations.
Software can never depend on results specified as
UNPREDICTABLE.” [16, Section 1.2.2] This
definition does not prohibit a VAX implementation
from storing as the quotient of a divide by zero
operation, the value of a cryptographic key that
belonged to some process other than the one

currently executing on the processor, simply
because that cryptographic key might still be stored
in an internal processor register. Such a result
(however absurd) would be a very serious security
violation.

To resolve this problem, the Alpha Architecture [3]
defines unpredictable in section 1.6.3 as quoted
below:

• Results or occurrences specified as
UNPREDICTABLE may vary from moment
to moment, implementation to
implementation, and instruction to
instruction within implementations.
Software can never depend on results
specified as UNPREDICTABLE.

• An UNPREDICTABLE result may acquire
an arbitrary value subject to a few
constraints. Such a result may be an
arbitrary function of the input operands or
of any state information that is accessible to
the process in its current access mode.
UNPREDICTABLE results may be
unchanged from their previous values.

• An occurrence specified as
UNPREDICTABLE may happen or not
based on an arbitrary choice function. The
choice function is subject to the same
constraints as are UNPREDICTABLE
results and, in particular, must not
constitute a security hole. Specifically,
UNPREDICTABLE results must not depend
upon, or be a function of, the contents of
memory locations or registers that are
inaccessible to the current process in the
current access mode.

• Also, operations that may produce
UNPREDICTABLE results must not:

o Write or modify the contents of
memory locations or registers to
which the current process in the
current access mode does not have
access, or

o Halt or hang the system or any of
its components.

• For example, a security hole would exist
if some UNPREDICTABLE result
depended on the value of a register in
another process, on the contents of
processor temporary registers left
behind by some previously running

6

process, or on a sequence of actions of
different processes.

The net effect of this definition is to say that
security holes created by an unpredictable result are
violations of the Alpha architecture. As long as the
unpredictable result does not cause a security hole,
as defined in section 1.6.2 of [3], then the CPU
designer has total freedom. However, if the
unpredictable result actually creates a security hole,
then the CPU is not a legal Alpha processor and the
hole must be fixed, thereby avoiding the types of
problems seen with the infamous Pentium FDIV
bug [25].

3.2 Undefined
UNDEFINED results can only be caused by
privileged software (running in kernel mode).
Unprivileged software can never cause an
UNDEFINED result. The Alpha Architecture [3]
defines undefined in section 1.6.3 as quoted below:

• Operations specified as UNDEFINED may
vary from moment to moment,
implementation to implementation, and
instruction to instruction within
implementations. The operation may vary in
effect from nothing to stopping system
operation.

• UNDEFINED operations may halt the
processor or cause it to lose information.
However, UNDEFINED operations must
not cause the processor to hang, that is,
reach an unhalted state from which there is
no transition to a normal state in which the
machine executes instructions.

Given that unprivileged software can never cause an
undefined result, the concern over security holes
does not apply to UNDEFINED.

4 Comparison with Other
Processors

4.1 PALcode and IBM zSeries
Millicode

IBM mainframes, starting with the Generation 4
(G4) processor [53] of the ESA/390 architecture and
continuing with the newer zSeries processors [28]
have used an approach similar to PALcode or
Extracode, called millicode to implement more
complex instructions. Millicode consists of zSeries

assembly instructions together with specialized
millicode-only instructions.

From an architectural point of view, there are three
major differences between PALcode and zSeries
Millicode. All of these differences lie in
requirement specifications rather than
implementation. First, the zSeries Principles of
Operation manual [17] does not mandate which
instructions shall be implemented in millicode.
Second, millicode is not required to be replaceable
so that it might not be customizable for each
operating system and/or hypervisor. Neither of
these differences were significant for IBM, because
the IBM mainframe processors have a long tradition
of supporting virtualization (going back to 1966).
By contrast, when the Alpha architecture was
developed, Digital Equipment Corporation had no
such tradition of supporting virtualization, and
difficulties in getting the architected virtualization
changes into various VAX processor
implementations (documented in [33]) made
mandating such requirements essential. Third,
millicode is not required to be present at all in a
particular zSeries processor, nor is it documented
for end-users. By contrast, DEC chose to document
[1, 2] how to write PALcode for any given Alpha
processor. Note that the special instructions used to
write PALcode could completely vary from one
Alpha chip to another. This kind of documentation
was made available by DEC to allow other
organizations to write Alpha operating systems.
These differences for IBM are much less
significant, because IBM’s support for hypervisors
in mainframes was a non-negotiable requirement,
while at the time the Alpha chip was under design,
several VAX processor development groups
explicitly chose not to implement the changes to
support virtualization. Making the PALcode
requirements explicit in the Alpha architecture
meant that no Alpha processor development group
could simply refuse to support virtualization.

The IBM zSeries processors are clearly very well
suited for virtualization. After all, the very first
commercial hypervisors were implemented for the
IBM System/360 Model 67. However, they are
much more complex processors than the Alpha, and
that makes passing a high assurance security
evaluation that much more difficult.

7

4.2 Intel VT-x Virtualization
Technology for x86

Intel has been modifying the x86 architecture to
support virtualization [12]. To achieve this, Intel
specified a virtual-machine control data structure
(VMCS) that can be used to store the state of each
virtual processor. Each VMCS is defined to be a 4
kilobyte region that stores the state of the virtual
machine. Intel calls the traps that cause the
processor to leave a virtual machine and transfer
control to the hypervisor VM Exits. VM Exits are
caused by the execution of a variety of sensitive
instructions or by a variety of exceptions and
interrupts. Whenever a VM Exit occurs, the state of
the virtual machine is stored in the VMCS for
access by the hypervisor. This can be a serious
performance problem, because VM Exits can occur
very frequently, and having to store 4 kilobytes of
data on every VM Exit could become prohibitively
expensive. To address this issue, Intel allows
particular processor models to implement the
VMCS in registers. As a result, Hypervisors are
forbidden from using normal memory reference
instructions to access the fields of the active VMCS.
Instead, the hypervisor is supposed to use the
special instructions VMREAD and VMWRITE, so
that regardless of whether the VMCS is
implemented in memory or in registers, the way to
access the fields remains the same. There are also
special restrictions on VMCS memory in
hyperthreaded processors and in symmetric multi-
processors. Intel also defines special instructions
VMLAUNCH and VMRESUME to start and
resume a virtual machine.
Questions have been raised [19] about the
performance of Intel’s VT-x technology. This
section compares Intel’s approach with the Alpha
approach and suggests some possible sources of
problems.
A large number of extra registers are required to
store all the VMCSs, particularly in hyperthreaded
processors. These registers are only used if the
processor is actually running a virtual machine
monitor or hypervisor. The registers (which use
very valuable chip real estate) go to waste on a
processor that is only running a single operating
system in a single partition. This cost could be
reasonable, if you expect almost all processors to be
running virtual machines, but that is not likely to be
the case in the near term. IBM now ships PR/SM
on all zSeries processors, because its use has
become so popular. However, that popularity took
many years to develop, and it is not clear how
quickly the Intel desktop and server markets will

adopt the use of virtual machines. By contrast, the
VAX and Alpha virtual machine support did not
dedicate such a large number of registers to store
the virtual machine state information. Instead, the
choice was made to let the hypervisor itself decide
how much state information must be saved on any
particular trap from the virtual machine. For many
such traps, the hypervisor need only use one or two
machine registers and then return immediately to
the virtual machine. A good example of this is in
Section IX of [33] which describes how the VAX
instruction to set the Interrupt Priority Level (IPL)5
required extremely frequent traps to the hypervisor,
and how that particular VM Exit and resume path
was specially optimized. In the x86, the counterpart
is the Task Priority Register (TPR), and Intel
defines a special TPR-shadow to optimize its
virtualization.
By avoiding a large VMCS, the valuable chip real
estate could instead be devoted to a larger cache or
larger translation buffer, etc. In the case of the
Alpha chip, such trap routines would be in PALcode
which had a small number of extra registers for
private use anyway. If the hypervisor needed
frequent access to portions of the virtual machine’s
state, such memory locations would naturally
remain in the cache. However, if no hypervisor was
in use, then the additional cache space could be
used for normal program data.
The VMRESUME instruction is a good example of
complexity in the Intel virtualization strategy that
may not be needed. In the prototype of the VAX
virtual machine monitor, described in section IX of
[33], DEC implemented special instructions, similar
to VMRESUME, to dispatch exceptions and
interrupts to the virtual machine. When DEC
moved from the prototype VAX-11/730 to the
product implementation on the VAX 8800, it
became clear that these special instructions required
large amounts of microcode to implement and saved
little if any performance over the hypervisor just
using a standard return from exception or interrupt
(REI) instruction. Section 7.2 of [26] discusses this
in additional depth, and agrees with Olbert’s
conclusions [44] that special microcode should only
be used after the software (in this case, the
hypervisor) has been implemented, optimized and
performance monitoring indicates the need for
further optimization.
Neiger, et. al. [43] suggest the directions that Intel
may be taking in the future to deal with some of

5 This instruction was actually a Move to Privilege

Register (MTPR) instruction with the IPL register as
an argument.

8

these issues. In particular, Intel may be adding
address space numbers to the translation buffer,
which would certainly improve their performance.

4.3 Shadow Page Tables and
Translation Buffer Invalidation

Many of the recent hypervisor developments for
x86 processors have complained about the difficulty
of implementing shadow page tables efficiently.
Adams and Ageseon [19] report that VMware has to
mark page tables read-only so as to trap all changes
to the page table entries. Barham [21] similarly
reports in section 3.3.3 that Xen [21] has to trap all
changes to page table entries and that this leads to
performance problems. However, Karger, et. al.
[33] report no such problem in their implementation
of shadow page tables for the VAX architecture.
A careful examination of the specifications for the
VAX translation buffer [16, p. 5-22] and for the Intel
x86 translation lookaside buffer [8, p. 3-46] reveals
the problem. In the VAX architecture, “The
translation buffer must not store invalid PTEs.
Therefore, the software is not required to invalidate
translation buffer entries when making changes for
PTEs that are already invalid.” By contrast, in the
x86 architecture, “Whenever a page-directory or
page-table entry is changed (including when the
present flag is set to zero), the operating-system
must immediately invalidate the corresponding
entry in the TLB so that it can be updated the next
time the entry is referenced.” These two approaches
to translation buffer invalidation are exact
opposites. The VAX explicitly requires that invalid
PTEs never be stored in the translation buffer. This
means that the hypervisor need not track every
change to a PTE, but need only wait until the guest
operating system flushes the corresponding
translation buffer entry (either by flushing that one
entry or the entire buffer). The Intel x86 specifies
the exact opposite. Every time the guest operating
system changes a PTE, even if the page is not
present (equivalent to invalid in the VAX), the guest
must immediately flush the corresponding
translation lookaside buffer (TLB) entry. This
requirement, even for pages that are not present
makes shadow page tables much more expensive to
maintain, as every write to a PTE must be tracked.
The Intel x86 architecture does not explain why this
requirement exists for pages that are NOT marked
present. Storing such PTEs in the TLB would seem
to simply waste space in the TLB, because such
entries will ALWAYS cause a missing page fault.
It is interesting to note that the AMD specification

for their implementation of the x86 architecture [4,
Section 5.5.2, p. 173] does not contain a similar
requirement. The AMD specification is ambiguous
about whether invalidating the TLB for PTEs that
are not marked present is or is not required. As a
result, it is very hard to tell whether the Intel
requirement is simply a design error or whether
there is some subtle, but undocumented, reason for
allowing PTEs for pages that are not present in
memory to be stored in the TLB.

4.4 AMD Secure Virtual Machine
(SVM) Technology

The AMD Secure Virtual Machine (SVM)
Technology, described in chapter 15 of [4], is
conceptually very similar to Intel’s VT-x
virtualization technology, although some specific
details are different. AMD supports a 4 kilobyte
virtual machine control block (VMCB) much like
Intel’s VMCS. However, AMD already supports
address space numbers in the translation buffer,
which will help their performance. Because the
AMD and Intel approaches are so similar, the
concerns over the cost of traps into the hypervisor
raised above in section 4.2 all hold for AMD just as
for Intel.

4.5 Intel VT-i Virtualization
Technology for Itanium

Compared to the approach for virtualizing the x86
processor, Intel’s approach for virtualizing the
Itanium processor [13] is actually much closer to
that taken in the Alpha processor. In particular,
Itanium has a processor abstraction layer (PAL)
described in chapter 11 of [11] that bears some
resemblance to the Alpha’s PALcode. This is not
surprising, considering that Compaq (who had
previously acquired DEC) sold the Alpha
intellectual property to Intel [55] and Intel hired
many of the Alpha designers to work on Itanium.

4.6 IBM POWER5 LPARs
Virtualization on IBM’s POWER5 processors is
implemented in firmware, and the high-level
features are described here [20, 22]. The POWER5
hypervisor makes extensive use of
paravirtualization. The term was first used in the
Denali project [54] to refer to the use of special
system calls to the hypervisor to improve
performance, rather than relying solely on
trapping and emulation. However, the
technique of using special system calls to the

9

hypervisor was not new to Xen. As early as
CP-67/CMS Version 3.1 in 1971, the
System/360 DIAGNOSE instruction was used
as a hypervisor call instruction to provide I/O
performance enhancements [50]. What is
different in Xen and in the POWER5
hypervisor is that the paravirtualization
hypervisor calls are not just to improve
performance. They are required to support
virtualization at all, because some sensitive
instructions do not trap on POWER5.
As a result of the use of paravirtualization,
many of the issues of saving the state of the
virtual machine do not arise for POWER5,
except when actually scheduling a different
VM. However, the use of paravirtualization
requires changes to the guest operating systems.
This is easy for IBM, because there are only
three operating systems supported on the
POWER5 hypervisor – AIX, i5/OS, and Linux.
IBM controls the source code for the AIX and
i5/OS, and Linux is open source software, so
making the necessary modifications is easy.

4.7 UltraSPARC

Sun Microsystems has developed a hypervisor
mode for their UltraSPARC Architecture [14,
15]. While this architecture seems to support
hypervisors well, there are remaining issues
with the SPARC register window architecture
that can pose both performance and security
problems. SPARC optimizes subroutine calls
by maintaining a large set of register windows,
so that few, if any, registers have to be saved
and restored on each procedure call. However,
this large set of registers led to performance
problems on process switches, because all the
windows had to be saved and restored. In
subsequent versions of the SPARC architecture,
some of these problems were reduced by
tagging register windows that could not be
referenced in the next process context and by
dedicating some of the register windows to
interrupt handlers and to different processes.
Some of these changes are summarized in [27].
However, Wall [51, 52] showed that you could
achieve the same performance gains by clever
allocation of registers without requiring the

CPU to actually implement so many register
windows. Furthermore, the mechanism that
SPARC uses to protect register windows
between contexts could become a covert
communication channel [36, 38]. SPARC has
privileged registers, CANSAVE,
CANRESTORE, and CLEANWIN that indicate
how many register windows can still be saved
without having to save past windows, how
many are currently in use, and how many can
be saved without having to be cleaned. In a
single machine environment, the trusted
operating system can use these registers to
optimize the saving and restoring of register
windows. However, in a virtual machine
environment, where the individual guest
operating systems are NOT trusted, the values
of these registers cannot be allowed to pass
between virtual machines without creating a
covert communications channel. It will be a
genuine challenge for the hypervisor to
simultaneously prevent a covert channel and
make the best possible use of the register
windows without requiring excessive register
saves and restores.
Covert channels in CPUs is a major topic itself,
and the interested reader should see Hu’s work
[30] on countermeasures to such channels.

5 Conclusions
The Alpha processor architecture combined the
simplicity of a RISC architecture with strong
support for virtualization and unique security
features that make it particularly attractive for
secure hypervisors. By using PALcode for all
sensitive instructions and requiring that PALcode be
modifiable, by avoiding the used and modified bits
in the page table entries, and by handling translation
buffer misses in software, the Alpha makes it very
easy to implement a high performance hypervisor
without the use of complex microcode or firmware.
The Alpha’s specification of security requirements
for unpredictable processor results eliminated many
categories of security vulnerabilities that could be
present in other CPU architectures, without forcing
the chip designers to over-constrain their designs.
While the Alpha processor is no longer in
production, designers of virtualization support for
other processor architectures should look carefully
at the Alpha features to improve both the
performance and the security of their hypervisors.

10

6 Acknowledgements
I must thank Leendert van Doorn for first
pointing out to me the performance issues in the
Intel and AMD virtualization approaches, and
Michel Hack for particularly detailed comments
on this paper and on some of the history of
virtualization on IBM processors. In addition, I
must thank J. R. Rao, David Safford, Leendert
van Doorn, Eric Hall, Reiner Sailer, Suzanne
Macintosh, Xiaolan Zhang, Sam Weber, Ray
Valdez, and Andrew H. Mason for their useful
review comments.

References
1. Alpha 21164 Microprocessor Hardware
Reference Manual, Order No. EC–QP99C–TE,
December 1998, Compaq Computer
Corporation. URL:
http://ftp.digital.com/pub/Digital/info/semicond
uctor/literature/164hrm.pdf

2. Alpha 21264 Microprocessor Hardware
Reference Manual, Order Number: EC–
RJRZA–TE, July 1999, Compaq Computer
Corporation. URL:
http://ftp.digital.com/pub/Digital/info/semicond
uctor/literature/21264hrm.pdf

3. Alpha Architecture Handbook, Order
Number: EC-QD2KC-TE, October 1998,
Compaq Computer Corporation. URL:
http://ftp.digital.com/pub/Digital/info/semicond
uctor/literature/alphaahb.pdf

4. AMD64 Architecture Programmer's Manual
Volume 2: System Programming, Publication
No. 24593, December 2005, Advanced Micro
Devices. URL: http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_
docs/24593.pdf

5. AMD64 Virtualization Codenamed
“Pacifica” Technology: Secure Virtual
Machine Architecture Reference Manual,
Publication No. 33047, Revision 3.01, May
2005, Advanced Micro Devices: Sunnyvale,
CA. URL: http://www.amd.com/us-

en/assets/content_type/white_papers_and_tech_
docs/33047.pdf

6. Department of Defense Trusted Computer
System Evaluation Criteria, DOD 5200.28-
STD, December 1985: Washington, DC. URL:
http://csrc.nist.gov/publications/history/dod85.p
df

7. A Guide to the IBM System/370 Model 168,
GC20-1755-2, June 1975, IBM Corporation:
White Plains, NY. URL:
http://www.bitsavers.org/pdf/ibm/370/GC20-
1755-2_370-168gdeJun75.pdf

8. IA-32 Intel Architecture Software
Developer's Manual: Volume 3A: System
Programming Guide, Part 1, Order Number:
253668-020US, June 2006, Intel Corporation:
Denver, CO.

9. IA-32 Intel Architecture Software
Developer's Manual: Volume 3B: System
Programming Guide, Part 2, Order Number:
253669-020US, June 2006, Intel Corporation:
Denver, CO.

10. IBM System/370 Principles of Operation,
GA22-7000-4, September 1974, IBM
Corporation: Poughkeepsie, NY. URL:
http://www.bitsavers.org/pdf/ibm/370/GA22-
7000-4_370PoO_Sep75.pdf

11. Intel Itanium Architecture Software
Developer's Manual: Volume 2: System
Architecture, Document No. 245318-005,
Revision 2.2, January 2006, Intel Corporation.
URL:
ftp://download.intel.com/design/Itanium/manua
ls/24531805.pdf

12. Intel Virtualization Technology
Specification for the IA-32 Intel Architecture,
C97063-002, April 2005, Intel Corporation.

13. Intel Virtualization Technology
Specification for the Intel Itanium Architecture
(VT-i), Document Number: 305942-002, 2005,
Intel Corporation. URL:

11

ftp://download.intel.com/technology/computing
/vptech/30594202.pdf

14. UltraSPARC Architecture 2005, Part No:
950-4895-08, Revision: Draft D0.8.8, 15 June
2006, Sun Microsystems: Santa Clara, CA.
URL: http://opensparc-
t1.sunsource.net/specs/UA2005-current-draft-
HP-EXT.pdf

15. UltraSPARC Virtual Machine Specification
(The sun4v architecture and Hypervisor API
specification), Revision 1.0, 24 January 2006,
Sun Microsystems: Santa Clara, CA. URL:
http://opensparc-
t1.sunsource.net/specs/Hypervisor-api-current-
draft.pdf

16. VAX-11 Architecture Reference Manual,
EK-VAXAR-RM-001, Revision 6.1, 20 May
1982, Digital Equipment Corporation: Bedford,
MA. URL:
http://www.bitsavers.org/pdf/dec/vax/archSpec/
EK-VAXAR-RM-001_Arch_May82.pdf

17. z/Architecture Principles of Operation,
SA22-7832-04, September 2005, IBM
Corporation: Poughkeepsie, NY. URL:
http://publibz.boulder.ibm.com/epubs/pdf/a227
8324.pdf

18. Adair, R.J., R.U. Bayles, L.W. Comeau,
and R.J. Creasy, A Virtual Machine System for
the 360/40, Report 320-2007, May 1966, IBM
Cambridge Scientific Center: Cambridge, MA.

19. Adams, K. and O. Agesen. A Comparison
of Software and Hardware Techniques for x86
Virtualization. in Twelfth International
Conference on Architectural Support for
Programming Languages and Operating
Systems. 21-25 October 2006, San Jose, CA:
published in ACM SIGARCH Computer
Architecture News, Vol. 34, No. 5. p. 2-13.
URL:
http://www.vmware.com/pdf/asplos235_adams.
pdf

20. Armstrong, W.J., R.L. Amdt, D.C.

Boutcher, R.G. Kovacs, D. Larson, K.A. Lucke,
N. Nayar, and R.C. Swanberg, Advanced
Virtualization Capabilities of POWER5
Systems. IBM Journal of Research and
Development, July/September 2005. 49(4/5):
p. 523-532. URL:
http://www.research.ibm.com/journal/rd/494/ar
mstrong.html

21. Barham, P., B. Dragovic, K. Fraser, S.
Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the Art of
Virtualization. in Proceedings of the
Nineteenth ACM Symposium on Operating
Systems Principles (SOSP). 19-22 October
2003, Bolton Landing, NY: ACM Press. URL:
http://www.cl.cam.ac.uk/Research/SRG/netos/p
apers/2003-xensosp.pdf

22. Blank, A., P. Keifer, C. Sallave Jr., G.
Valencia, J. Wain, and A.M. Warda, Advanced
POWER Virtualization on IBM System p5,
SG24-7940-01, December 2005, IBM
Corporation: Austin, TX. URL:
http://www.redbooks.ibm.com/redbooks/pdfs/s
g247940.pdf

23. Clark, D.W. and J.S. Emer, Performance of
the VAX-11/780 Translation Buffer: Simulation
and Measurement. ACM Transactions on
Computer Systems, February 1985. 3(1): p.
31-62.

24. Goldberg, R.P., Architectural Principles
for Virtual Computer Systems, Ph. D. thesis in
Division of Engineering and Applied Physics,,
February 1973, Harvard University:
Cambridge, MA. Published as ESD-TR-73-
105. HQ Electronic Systems Division,
Hanscom AFB, MA.

25. Halfill, T.R., The Truth Behind the Pentium
Bug. Byte, March 1995. URL:
http://www.byte.com/art/9503/sec13/art1.htm

26. Hall, J.S. and P.T. Robinson. Virtualizing
the VAX Architecture. in 18th International
Symposium on Computer Architecture. May
1991, Toronto, ON, Canada: published in

12

Computer Architecture News, Vol. 19, No. 3. p.
380-389. URL:
http://doi.acm.org/10.1145/115952.115990

27. Hamilton, G. and P. Kougiouris. The
Spring Nucleus: A Microkernel for Objects. in
Proceedings of the USENIX Summer 1993
Technical Conference. 21-25 June 1993,
Cincinnati, OH: USENIX Association. p. 147-
159. URL:
http://www.usenix.org/publications/library/proc
eedings/cinci93/full_papers/hamilton.txt

28. Heller, L.C. and M.S. Farrell, Millicode in
an IBM zSeries Processor. IBM Journal of
Research and Development, May/July 2004.
48(3/4): p. 425-434. URL:
http://www.research.ibm.com/journal/rd/483/he
ller.pdf

29. Houdek, M.E. and G.R. Mitchell,
Translating a Large Virtual Address, in IBM
System/38 Technical Developments. 1980,
G580-0237-1, IBM General Systems Division:
Atlanta, GA. p. 22-24.

30. Hu, W.-M. Reducing Timing Channels with
Fuzzy Time. in Proceedings of the 1991 IEEE
Symposium on Research in Security and
Privacy. 20-22 May 1991, Oakland, CA: IEEE
Computer Society. p. 8-20.

31. Karadeniz, K., Analysis of Intel IA-64
Processor Support for a Secure Virtual
Machine Monitor, March 2001, Naval
Postgraduate School: Monterey, CA. URL:
http://handle.dtic.mil/100.2/ADA391770

32. Karger, P.A., T.E. Leonard, and A.H.
Mason, Computer with virtual machine mode
and multiple protection rings, US patent No.
4787031, 22 November 1988.

33. Karger, P.A., M.E. Zurko, D.W. Bonin,
A.H. Mason, and C.E. Kahn, A Retrospective
on the VAX VMM Security Kernel. IEEE
Transactions on Software Engineering,
November 1991. 17(11): p. 1147-1165.

34. Kenah, L.J. and S. Bate, VAX/VMS
Internals and Data Structures. 1984,
Burlington, MA: Digital Press.

35. Kilburn, T., R.B. Payne, and D.J. Howarth.
The Atlas Supervisor. in Computers - Key to
Total Systems Control, Proceedings of the
Eastern Joint Computer Conference. 12-14
December 1961, New York, NY: Vol. 20.
American Federation of Information Processing
Societies (AFIPS), Macmillan Company. p.
279-294.

36. Lampson, B.W., A note on the confinement
problem. Communications of the ACM,
October 1973. 16(10): p. 613-615.

37. Lindquist, A.B., R.R. Seeber, and L.W.
Comeau, A Time-Sharing System Using an
Associative Memory. Proceedings of the
IEEE, December 1966. 54(12): p. 1774-1779.

38. Lipner, S.B., A comment on the
confinement problem. Operating Systems
Review, 19-21 November 1975. 9(5): p. 192-
196. Proceedings of the Fifth Symposium on
Operating Systems Principles.

39. Lowell, D.E., Y. Saito, and E.J. Sambert,
Devirtualizable virtual machines enabling
general, single-node, online maintenance, in
Proceedings of the Eleventh International
Conference on Architectural Support for
Programming Languages and Operating
Systems (ASPLOS) 9-13 October 2004: Boston,
MA. p. 211-223. URL:
http://www.ysaito.com/microvisor-asplos04.pdf

40. Meyer, R.A. and L.H. Seawright, A Virtual
Machine Time-Sharing System. IBM Systems
Journal, 1970. 9(3): p. 199-218. URL:
http://www.research.ibm.com/journal/sj/093/ib
msj0903D.pdf

41. Morris, D. and G.D. Detlefsen. An
Implementation of a Segmented Virtual Store.
in Conference on Computer Science and
Technology. 30 June - 3 July 1969, University
of Manchester Institute of Science and

13

Technology: Vol. IEE Conference Publication
55. Institution of Electrical Engineers. p. 63-71.

42. Morris, D. and R.N. Ibbett, The MU5
Computer System. 1979, New York: Springer-
Verlag.

43. Neiger, G., A. Santoni, F. Leung, D.
Rodgers, and R. Uhlig, Intel Virtualization
Technology: Hardware Support for Efficient
Processor Virtualization. Intel Technology
Journal, 10 August 2006. 10(03): p. 167-178.
URL:
http://www.intel.com/technology/itj/2006/v10i3
/1-hardware/1-abstract.htm

44. Olbert, A.G. Crossing the Machine
Interface. in MICRO 15: Proceedings of the
15th Annual Workshop on
Microprogramming. December 1982, Palo
Alto, CA: published in ACM SIGMICRO
Newsletter, Vol. 13, No. 2. p. 163-170. URL:
http://portal.acm.org/citation.cfm?id=800036.8
00946

45. O'Neill, R.W. Experience using a time-
shared multi-programming system with
dynamic address relocation hardware. in
Proceedings of the 1967 Spring Joint
Computer Conference. 18-20 April 1967,
Atlantic City, NJ: Vol. 30. Thompson Books. p.
611-621.

46. Popek, G.J. and R.P. Goldberg, Formal
Requirements for Virtualizable Third
Generation Architectures. Comm. ACM, July
1974. 17(7): p. 41-421.

47. Robin, J.S., Analyzing the Intel Pentium's
Architecture to Support Virtual Machine
Monitors, MS in Department of Computer
Science 1999, Naval Postgraduate School:
Monterey, CA. URL:
http://cisr.nps.navy.mil/downloads/theses/99the
sis_robin.pdf

48. Robin, J.S. and C.E. Irvine. Analysis of the
Intel Pentium’s Ability to Support a Secure
Virtual Machine Monitor. in 9th USENIX

Security Symposium. 14-17 August 2000,
Denver, CO: USENIX, the Advanced
Computing Systems Association. p. 129-144.
URL:
http://www.usenix.org/events/sec2000/robin.ht
ml

49. Simpson, R.O. and P.D. Hester, The IBM
RT PC ROMP and Memory Management Unit
Architecture. IBM Systems Journal, 1987.
26(4): p. 346-360. URL:
http://www.research.ibm.com/journal/sj/264/ib
msj2604D.pdf

50. Varian, M. VM and the VM Community:
Past Present, and Future. in SHARE 89,
Sessions 9059-9061. August 1997. URL:
http://www.princeton.edu/~melinda/25paper.pd
f

51. Wall, D.W. Global Register Allocation at
Link Time. in Proceedings of the SIGPLAN
'86 Symposium on Compiler Construction.
25-27 June 1986, Palo Alto, CA: ACM
SIGPLAN Notices, Vol. 21, No. 7. p. 264-275.

52. Wall, D.W. Register Windows vs. Register
Allocation. in Proceedings of the ACM
SIGPLAN 1988 Conference on
Programming Language Design and
Implementation. 20-24 June 1988, Atlanta,
GA: ACM SIGPLAN Notices, Vol. 23, No. 7.
p. 67-78.

53. Webb, C.F. and J.S. Liptay, A High-
Frequency Custom CMOS S/390
Microprocessor. IBM Journal of Research
and Development, July/September 1997.
41(4/5): p. 463-473. URL:
http://www.research.ibm.com/journal/rd/446/w
ebb.pdf

54. Whitaker, A., M. Shaw, and S.D. Gribble,
Denali: Lightweight Virtual Machines for
Distributed and Networked Applications,
University of Washington Technical Report 02-
02-01, 2001, University of Washington: Seattle,
WA. URL:
http://denali.cs.washington.edu/pubs/distpubs/p

14

apers/denali_usenix2002.pdf

55. Wilcox, J. and M.A. Farmer, Compaq, Intel
boost Itanium in chip deal. c|net News.com, 25
June 2001. URL: http://news.com.com/2100-
1001-268944.html

15

