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Learning and Representation Capabilities of

Echo State Networks

Abstract

We present results on the capability of echo state networks (ESNs) to gener-

ate and learn sinusoidal oscillations, and on the sufficiency condition for ESNs to

exhibit the echo state property. In particular, we show analytically and verify nu-

merically that, provided N ≥ 2K, the adjustable weights of a linear ESN with N

reservoir nodes can be chosen so that the ESN generates a linear superposition

of K sinusoidal oscillations having arbitrary prescribed periods, including periods

long compared with the network dynamics, and multiple incommensurate periods.

These weights can be learned using the usual MSE minimization training proce-

dure; however, the accuracy with which they are learned is limited by numerical

round-off error. When the network activities (after training) are temporarily per-

turbed by random noise, the periods of the individual oscillations comprising the

signal are recovered correctly by the ESN, but their amplitudes and relative phases

are not. We also present numerical results on the ability of nonlinear ESNs to learn

individual sinusoidal oscillations and their superpositions. Finally, we demonstrate

through explicit example that not all ESNs having reservoir connection matrices

with spectral radii less than unity possess the echo state property. The probability

of encountering such counterexamples decreases with increasing N , consistent with

a conjecture by Jaeger.

Key words: Echo state network (ESN); Echo state property; Learning
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1 Introduction

The “echo state network” (ESN) (Jaeger & Haas, 2004), and the closely-related

“liquid state machine” (Maass, Natschläger, & Markram, 2002), are recurrent

neural network architectures in which only a small fraction of the connections

have modifiable weights. A general ESN comprises (a) input nodes I, “reser-

voir” nodes R, and output nodes O; (b) feedforward connections (specified by

a weight matrix W I) from I to R, feedback connections (matrix W F ) from

O to R, and a typically sparse set of recurrent connections (matrix W ) from

R to R, where all of these weight matrices are randomly chosen and fixed;

and (c) adjustable-weight feedforward connections W IO from I to O, and WL

from R to O, whose values are to be learned by a training process. The input

nodes (and their connections), and the feedback connections W F , are optional.

Each node i, at each discrete time step t, has a real-valued activity x
{I,R,O}
i (t);

the corresponding activity (column) vector for each set of nodes is denoted

x{I,R,O}(t). All weights are real-valued. The goal of the training process is to

learn adjustable weights so that a measure of the discrepancy between xO(t)

and a prescribed teacher function z(t) is minimized. To function as an ESN,

a network must satisfy the “echo state property” (ESP, defined below).

The dynamics of ESN activity are given by (Jaeger & Haas, 2004)

xO(t) = f [WLxR(t) +W IOxI(t)] ,

xR(t+ 1) = f{WxR(t) +W IxI(t) +W F [az(t) + (1− a)xO(t)] + n(t)} ,(1)

where a = 1 when the teacher function provides the feedback input to the

network, a = 0 when the network is “free-running” without teacher feedback,
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and n(t) denotes an optional noise term.

The invertible function f operates separately on each component of its vec-

tor argument; it is typically a nonlinear monotonic sigmoidal or “squashing”

function such as tanh, but is the identity function for the special case of a

linear ESN. The adjustable weights can be learned, e.g., by minimizing the

“training error”

MSE = 〈‖ WLxR(t) +W IOxI(t)− f−1[z(t)] ‖2〉 (2)

where ‖ · ‖ denotes the L2 norm, and 〈·〉 denotes an average over the training

time interval.

The training and use of an ESN comprises several stages in sequence:

(1) A startup interval of length Tstart, starting with arbitrary xR(0), during

which a = 1 and prescribed {xI(t), z(t)} are provided to the network.

Since a = 1, xO(t) is not used, and the first of Eqs. 1 is not computed.

(2) A training interval of length Ttrain, with a = 1 and prescribed {xI(t), z(t)},
during which the values of {xR,I(t), f−1[z(t)]} are stored.

(3) A learning step in which the values of WL,IO are computed by minimizing

MSE of Eq. 2. The training error is the minimum value of the MSE thus

obtained.

(4) A “free-running” interval of length Tfree, with a = 0 and prescribed

{xI(t)}, during which the learned WL,IO are used to compute outputs

{xO(t)}. The “test error” can be computed using Eq. 2.

The ESP is defined as follows, paraphrasing (Jaeger, 2002, p.29): Assume

an untrained network with weights {W I ,W,W F} is driven by inputs xI and
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teacher signals z drawn from compact intervals. The network satisfies the ESP

(with respect to these intervals) if the network state xR(t) is uniquely deter-

mined by any left-infinite sequence of input and teacher signals {z(−∞), xI(−∞), . . . ,

z(t − 1), xI(t)}. Informally, the ESP is satisfied if xR at asymptotically long

times is independent of the initial xR.

Although interesting practical applications of ESNs have been described, the

theoretical understanding of these networks is at an early stage. It has been

suggested on empirical grounds (Jaeger, 2002, p.41) that it is “almost im-

possible . . . to obtain ESN generators of very slow sinewaves” using standard

sigmoidal networks; alternative ESN dynamics (e.g. a leaky integrator network

having an adjustable time constant) have been invoked in order to generate

slowly varying signals. It has also been noted that “in practice it was consis-

tently found that when . . . the spectral radius of the [reservoir] weight matrix”

ρ(W ) (i.e., the maximum of the absolute values of the eigenvalues of W) is

less than 1, the resulting network satisfies the ESP (Jaeger, 2002, p.30; Jaeger

& Haas, 2004, Supporting online material, p.6). The best analytic bounds on

the ESP are that (a) ρ(W ) < 1 is a necessary condition (Jaeger, 2001) and

(b) µ(W ) < 1 is a sufficient condition (Buehner & Young, 2006) for the ESP,

where µ(W ) ≡ infD σ(DWD−1), σ(Z) denotes the largest singular value of Z,

D ranges over the set of diagonal matrices of the same size as W (this limita-

tion on D arising because f is assumed to be a nonlinear “squashing” function

acting on each component of its vector argument), and “inf” denotes the infi-

mum. For specially structured W (including normal and triangular matrices),

ρ(W ) = µ(W ), so the bound is tight. For general W , ρ(W ) is typically less

than µ(W ), so there is a gap between the necessity and sufficiency conditions.

Jaeger (2002, p.30) has conjectured that, for arbitrary small δ and ε, there
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exists a network size N such that a random N ×N matrix W , scaled so that

ρ(W ) = 1−δ, satisfies the ESP with probability 1− ε; this conjecture remains

open.

In this paper we present analytic and numerical results concerning the above

questions. We first show analytically that linear ESNs can generate sine waves

of arbitrary prescribed period (including periods much greater than the time

scale of the network dynamics, and greater than the training time interval),

and can also generate superpositions of sine waves having arbitrary (including

incommensurate) prescribed periods, by an appropriate choice of WL. Once

the correct WL has been specified, the network can be perturbed by noise, and

a superposition of sine waves having the same set of periods is again sponta-

neously generated after the noise has been turned off. The original amplitudes

and phases of each sine wave component are, however, not remembered. We

illustrate these results numerically for linear ESNs, and compare these behav-

iors with those found for nonlinear (sigmoidal) ESNs.

Finally, we explore numerically the question of whether ρ(W ) < 1 is sufficient

for W to satisfy the ESP for nonlinear ESNs (as it is for linear ESNs). We

find that it is not sufficient: For random W matrices satisfying ρ(W ) = 0.99

and µ(W ) > µ0(> 1), we find that a small fraction of such W s violate the

ESP. This fraction tends to decrease as the size of the reservoir is increased,

consistent with Jaeger’s conjecture (Jaeger, 2002).
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2 Analytic results on generation of periodic states by a linear ESN

To understand how linear ESNs succeed in generating functions consisting of

one or more sinusoidal oscillations of arbitrary prescribed period, we consider

for simplicity a noiseless N -node ESN reservoir connected to a single output

node (and having no input node), so that W F is a (nonzero) N×1 matrix and

WL is a 1×N matrix. Equations 1 then yield xR(t+1) = WxR(t)+W F z(t) for

the teacher-forcing (a = 1) phase, and xR(t+ 1) = Mx(t) for the free-running

(a = 0) phase, where M ≡ W +W FWL.

2.1 The case N = 2

Let us first specialize to the case N = 2 and a teacher signal z(t) that is

a single sine wave of unit amplitude: z(t) = sin(2πt/τ), for arbitrary period

τ . During the initial training phase, z(t) induces in the two components of

xR(t) a sinusoidal oscillation of period τ . Once transients have died away and

this oscillation is established, the weights WL are chosen to minimize the

MSE over some number Ttrain of training time steps. Thereafter the teacher

input is turned off (a = 0), and we want the free-running dynamics using the

chosen WL to spontaneously reproduce the desired sinusoidal oscillation in

the output xO(t). This implies that xR(t) must oscillate with period τ , which

in turn implies that WL must be chosen to make the eigenvalues of the matrix

M equal to e±iφ where φ = 2π/τ . Solving the eigenvalue equation (which is

linear in WL) yields a solution for WL provided the components of W and

W F satisfy

W F
1 W

F
2 (W11 −W22) + (W F

2 )2W12 − (W F
1 )2W21 6= 0 . (3)
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The accuracy with which the desired oscillation period can be reproduced by

the ESN is limited by numerical round-off error (or other noise if present), pro-

vided that the training phase is long enough for the oscillation of the teacher

signal to be accurately reflected in the behavior of the reservoir. Note also

that, having learned the values of WL necessary to generate a desired sinu-

soidal oscillation, a linear ESN will continue to generate a sine wave of the same

period even if it is temporarily subjected to noise or other disturbance. Once

the disturbance is removed, the sinusoidal oscillation will reappear, though its

amplitude and phase will no longer be the same as that of the teacher signal

it was designed to replicate. The neutral stability to changes in amplitude is

of course a standard feature of linear systems, while the neutral stability to

changes in phase is a standard feature of any system (such as the ESN with

a = 0) having dynamics that are time-translation invariant but with an output

that breaks the time-translation symmetry.

2.2 The case N ≥ 3

We give first a general proof that a sine wave of arbitrary period, or a su-

perposition of K sine waves of arbitrary periods τk, can be generated by a

linear ESN that is generic (i.e., provided a singularity condition is avoided)

and has at least 2K nodes. We then give an alternative, more intuitive ex-

planation of this result. To generate such a superposition, we want to show

that a WL exists such that M has K conjugate pairs of eigenvalues exp(±iφk)
(denoted λ1 · · ·λ2K) where φk ≡ 2π/τk, and such that all other eigenvalues of

M (denoted λ2K+1 · · ·λN) lie strictly within the unit circle. Choose arbitrary

values for λ2K+1 · · ·λN that satisfy |λk| < 1. By definition, each eigenvalue
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satisfies det(P (k)) = 0 where P (k) ≡ M − λkI. Note that each det(P (k)) is

linear in WL. [To see this, assume without loss of generality that W F
1 6= 0,

and subtract W F
i /W

F
1 times the first row of P (k) from the ith row (for all

i > 1) of P (k). Then the resulting matrix has a term proportional to WL
j in

the jth column of row 1, and no WL dependence in any other rows.] The

system of linear equations det(P (k)) = 0 includes complex-conjugate pairs of

equations; replace these by equations for the real and imaginary parts to ob-

tain a real system AWL = B of N linear equations in N unknowns. Provided

A is nonsingular, WL exists. When N = 2, Eq. 3 is explicitly recovered.

Note that the above argument ensures that a suitable WL exists and can

be constructed in the generic (nonsingular) case whether or not the network

satisfies the ESP, and that the free-running state having that WL will generate

a superposition of sines having the desired periods. However, for such a WL

to be learned by the process of minimizing the MSE during a training period,

we require the ESP to be satisfied, so that the reservoir activity during the

training period reflects the teacher signal, rather than an intrinsic activity

consisting of modes whose eigenvalues have magnitude greater than one (in

the absence of the ESP).

To understand the construction of WL more intuitively, consider first the case

of an N -node reservoir that we wish to use to generate a single sine wave of

specified period. Assuming W satisfies the ESP, its eigenvalues must all lie

within the unit circle. There exists a real matrix S such that the similarity

transformation W → W ′ ≡ S−1WS yields a real W ′ in block-diagonal form,

with a 1×1 block corresponding to each real eigenvalue of W and a 2×2 block

corresponding to each complex conjugate pair of eigenvalues. Thus the linear

N -node ESN reservoir effectively is transformed into a “quasinode” network
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that is a disjoint collection of 1- and 2-node subnetworks. Let W ′F ≡ S−1W F

be the transformed version of W F ; i.e., the feedback connection weights to

the quasinodes. Let the row vector W ′L be the adjustable weights (to be

determined) from the quasinodes to the output node. Set W ′L
i = 0 for all

i > 2, and choose W ′L
1 and W ′L

2 (as in the N = 2 argument above) so that the

upper 2× 2 block of the matrix M ′ ≡ W ′ + W ′FW ′L has eigenvalues e±2πi/τ .

These choices for W ′L guarantee that the first two eigenvalues of M ′ generate

the sin(2πt/τ) oscillation, while all other eigenvalues remain the same as those

of W , i.e., less than unity in magnitude. Finally, defining WL ≡ W ′LS−1,

we know by construction that the matrix M has the same eigenvalues as

M ′ = S−1MS.

In order to generate a superposition of sine waves having arbitrary periods

(whether commensurate or not), note that applying the above method for one

of the periods yields an M ′ that does not, in general, have the block-diagonal

form of W ′, owing to W ′L
1 and W ′L

2 being nonzero. However, we can apply a

second real similarity transformation to produce a matrix M ′′ that is again

real, block-diagonal, and has the same eigenvalues as M ′. Applying the method

of the previous paragraph, with M ′′ now playing the role of W ′, and repeating

this process as needed, yields the desired result.

3 Numerical results

3.1 Learning of single sine waves

We find that a sine-wave teacher function is readily learned by a linear ESN,

even when its period τ is very long compared with the intrinsic time scale of
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the dynamics, and long compared with the duration of the training interval.

In an example run, an ESN having N = 20 reservoir nodes, 15% connectivity,

and spectral radius ρ(W ) = 0.85, learns a sine wave of τ = 4111 essentially

perfectly (i.e., with a test error of < 10−13) in the absence of noise. The nodes’

activities are initially random, and the run parameters (see Introduction for

definition) are Tstart = 1000, Ttrain = 1000 (i.e., only one quarter-period is

used for training), and Tfree = 150000. When i.i.d. noise n(t) from a uniform

distribution on [−nmax, nmax] with nmax = 0.001 is inserted for 50000 time

steps during the free-running period, and free-running is then continued in the

absence of noise, a sine wave having the trained period is regenerated, although

the original training amplitude and phase are of course not recovered. Also,

if a network is trained using a sine of period τ , and is then teacher-forced by

a sine of different period (without retraining), the network’s output rapidly

reverts (during the free-running interval) to a signal of period τ .

If low-level noise (nmax = 10−10) is applied during the training interval, the

learned period is approximately equal to τ , with an error whose s.d. is approx-

imately 6%.

A nonlinear ESN (using f = tanh) fails to learn a sine wave having long

period τ , consistent with Jaeger’s observations (Jaeger, 2002). Even when

initial activities and teacher signals are scaled to lie within a weakly nonlinear

regime [e.g., xR(0) and z(t) ∼ O(10−5) to O(10−2)], and Tstart and Tlearn are

increased to 30000, the free-running behavior does not have the desired period,

and depends upon the random initial conditions [W and xR(0)]. In some cases

the period of the learned oscillation is of the same order as the teacher period,

and in other cases it is much shorter [e.g., of O(10)].
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When the sine wave period is of moderate length (e.g., τ ∼ 20), an ESN op-

erating in the strongly nonlinear regime [teacher signal and initial activities

of O(1)] will learn the teacher signal accurately. If noise of O(10−3) is added

during free-running, then removed, both the amplitude and the period of the

sine wave will rapidly return to their learned values. An ESN in the weakly

nonlinear regime [e.g., teacher signal and initial activities of O(0.01)] can also

accurately learn a sinusoidal teacher signal of moderate period, and will also

recover its approximate learned amplitude, although more slowly than in the

strongly nonlinear case. In neither case is the correct phase (i.e., that corre-

sponding to a fully noiseless run) recovered.

3.2 Learning of sine wave superpositions

We consider the training of an ESN by a teacher signal that equals the sum of

two moderate-period sines; the periods τ1 and τ2 may or may not be commen-

surate. A linear ESN learns to generate a superposition of both sine waves,

regardless of period commensurability. Inspection of the eigenvalues of the

learned matrix M (see “Analytic results” above) shows that two conjugate

pairs of eigenvalues lie on the unit circle in the complex plane at angles of

±2π/τ1 and ±2π/τ2, and all other eigenvalues lie within the unit circle. When

noise is applied during the free-running interval, then turned off, the two

learned periods are recovered, but neither the relative amplitude nor the rel-

ative phase of the two sinusoidal components is recovered by the network.

Therefore, the teacher signal pattern (i.e., the sum of the sinusoids, with the

correct relative amplitudes and phases of the two components) is not recov-

ered after a noisy interval, even if the LCM of the two periods is much shorter
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than the training interval.

As K is increased (e.g., for K = 4 with N = 20), the eigenvalues of M =

W + W FWL that result from the minimum-MSE training procedure do not

precisely yield 2K conjugate pairs lying on the unit circle and having the

correct phases, owing to numerical round-off error. In this case even a small

error, leading to a pair having modulus > 1, will result in unstable behavior

even in the absence of intentionally added noise.

A nonlinear ESN often, but not always, learns the sum of two sines that

have moderate (rather than long) periods that are commensurate (their LCM

being small compared with Tlearn), and recovers the correct pattern (i.e., in-

cluding amplitudes and relative phases of the components) after an interval of

noise during the free-running period. Whether or not learning and/or recovery

occurs depends on the random choice of network. For example, we used pa-

rameters N = 200 with 5% connectivity, a teacher signal that is a sum of sines

having periods 7 and 11, Tstart = Ttrain = 4000 or 10000, Tfree = 30000, and

ρ(W ) = 0.85, with xR(0) and z(t) either of O(1) or O(0.05), and noise (during

part of the free-running interval) of amplitude 0.0002 (relative to the signal).

For different random networks, either (a) the pattern was learned and was

recovered post-noise (except of course that the pattern was out-of-phase with

the teacher signal), (b) the pattern was learned, but the post-noise output re-

covered neither the pattern nor the power spectrum of the teacher signal (e.g.,

high-frequency components were added), or (c) the pattern was not learned

(i.e., even the pre-noise free-running output differed from the teacher signal).

When two sines have incommensurate periods, we find that their superposition

is not learned, consistent with Jaeger’s observations (Jaeger, 2002).
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3.3 Exploration of the sufficiency condition for the echo state property

For a linear ESN in which the eigenvalues ofW all lie within the unit circle (i.e.,

ρ(W ) < 1), it is clear that the echo state property (ESP) is always satisfied.

Given two runs, starting with different initial states x(0) and x̃(0), and using

the same stream of teacher signals, the difference y(t) ≡ x(t) − x̃(t) evolves

according to y(t) = Wy(t − 1); i.e., y(t) = W ty(0). Thus limt→∞ y(t) = 0,

satisfying the ESP.

For a nonlinear ESN, the situation is more complicated, and the best suffi-

ciency condition for the ESP is that of Buehner and Young (2006): µ(W ) < 1.

Also as noted in the Introduction, Jaeger (2002; Jaeger & Haas, 2004) had ear-

lier noted that in all cases he had tried, an ESN having ρ(W ) < 1 consistently

satisfied the ESP, although this was purely an empirical observation.

We have explored numerically the intermediate regime ρ(W ) < 1 < µ(W ),

within which the ESP has been empirically reported to be consistently sat-

isfied, although no sufficiency condition for the ESP has been established.

For nonlinear (tanh) ESNs, and reservoirs of various sizes N , we generated

2000− 10000 random reservoir matrices W (each element chosen from a uni-

form distribution on [−1, 1], without imposing a sparseness condition), scaled

each W so that ρ(W ) = 0.99, and screened the W s, keeping only those W

for which µ(W ) > µ0 = 1.2, a value arbitrary chosen to ensure a significant

separation between ρ(W ) and µ(W ). For each of these W s, we considered

the simple case in which xI = z = 0, and we set x̃(0) = 0 for convenience,

so that y(t) = x(t) = tanh(Wx(t − 1)). The ESP condition (with respect

to any compact interval that includes xI = 0 and z = 0) then requires that
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limt→∞ y(t) = 0. We chose a random x(0) (uniform on [−xmax, xmax], with

xmax = 0.5 unless otherwise stated) and iteratively computed y(t) for enough

time steps (400 to 106 in various runs) to determine whether (a) y(t) converges

to zero as required if W satisfies the ESP [we will refer to this as a contracting

y(t)] or (b) W violates the ESP, with y(t) either converging to a nonzero fixed

point or limit cycle, or exhibiting apparently chaotic behavior.

For N = 2, approximately 30% of the rescaled random W s satisfied the

screening condition µ(W ) > µ0. Of those W s, about 1.5% did not satisfy

the ESP. An explicit example of a W that violates the ESP [in that y(t) con-

verges to a nonzero fixed point that depends on x(0)], is given by the 2 × 2

matrix W = [3.6136,−1.9339; 4.3328,−2.0476] (for which ρ(W ) = 0.99 and

µ(W ) = 5.8293).

For N = 4, about 60% of rescaled random W s satisfied µ(W ) > µ0, and about

0.5% of those W s did not satisfy the ESP. In most of these non-ESP cases,

the dynamics rapidly converged to a nonzero fixed point or to a limit cycle of

period 2 or 4; a minority of cases exhibited apparently chaotic behavior.

For N = 8, about 90% of rescaled random W s satisfied µ(W ) > µ0, and about

0.2% of those W s did not satisfy the ESP.

When the maximum initial node activity xmax was small, so that the x(t)

dynamics at early t lie in the weakly nonlinear regime, a smaller fraction of

W yielded noncontracting behavior than when xmax = 0.5 as above. This

is expected since, in the fully linear case, all W having ρ(W ) < 1 show

contracting behavior, and the only exceptions in the weakly nonlinear case

are those in which x(t) enters the strongly nonlinear regime by increasing to

O(1), which is less likely for smaller xmax. For example, for N = 2, choosing
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xmax = {1, 0.1, 0.01} led, respectively, to approximately {1.7%, 0.7%, 0.05%}
of the W s (after screening) yielding noncontracting behavior.

Our results on N -dependence provide support for the conjecture that, given a

random set of W s that satisfy ρ(W ) < 1 < µ0 < µ(W ), the fraction of those

W s that violate the ESP decreases with increasing N . This in turn is consistent

with Jaeger’s conjecture (see Introduction), in which, given arbitrarily small

positive δ and ε, an N is conjectured to exist.

4 Conclusions

In this paper, we have presented analytic and numerical results for the learning

of sine waves by linear and nonlinear ESNs. For the linear case, we demon-

strated analytically the existence of a set of values of the adjustable weights

WL that enable an ESN with N nodes, and arbitrary reservoir connection

strengths, to generate a linear superposition of K sine waves having arbitrary

prescribed periods, provided N ≥ 2K (and except for singular cases that span

a set of measure zero). The correct periods are stored in the form of complex-

conjugate pairs of eigenvalues of the matrix M = W + W FWL. When W

satisfies the ESP, such a WL is learned by the usual training process, with an

accuracy that depends on the training time, noise (if any), and the number

(and range of the set of periods) to be learned.

Having learned the desired weights and hence the teacher signal, the linear

ESN retains memory of the K sine-wave periods even after it is perturbed by

noise that is then turned off. The linear ESN has no way to retain memory of

the correct amplitudes or phases (even the relative phases) of the sine waves
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after being perturbed, however. This neutral stability with respect to changes

in amplitude and phase is of course a general feature of linear systems.

For nonlinear ESNs, we found numerically that a single sine wave is readily

learned provided its period is not very long compared with the dynamical

time scale. A sum of two sine waves having periods whose LCM is moderate

is often (but not always) learned and then recovered (along with the correct

amplitudes and relative phase) following a noisy interval when in free-running

mode. Memory of the overall phase of the pattern (relative to the teacher

signal) is of course destroyed by the noise perturbation, since all systems with

spontaneously broken time-translation invariance are neutrally stable with

respect to changes in overall phase. Analytic results on the learning of sine

waves by nonlinear ESNs would have obvious value, both for advancing the

general state of understanding of ESNs and as a guide for further numerical

experiments and applications.

Finally, although empirical results have suggested (Jaeger, 2002; Jaeger &

Haas, 2004) that ρ(W ) < 1 might be sufficient in practice for nonlinear ESNs

to satisfy the ESP, we have demonstrated the existence of nonlinear ESNs

having ρ(W ) < 1 but lacking the echo state property. The increasing scarcity

of such counterexamples with increasing N is consistent with a conjecture of

Jaeger.
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