
RC24121 (W0611-182) November 28, 2006
Computer Science

IBM Research Report

Proactive Security for Mobile Messaging Networks

Abhijit Bose
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Kang G. Shin
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Proactive Security For Mobile Messaging Networks

Abhijit Bose
∗

IBM T. J. Watson Research Center
19 Skyline Drive

Hawthorne, NY 10532

bosea@us.ibm.com

Kang G. Shin
Department of Electrical Engineering and

Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

kgshin@eecs.umich.edu

ABSTRACT
The interoperability of IM (Instant Messaging) and SMS (Short
Messaging Service) networks allows users to seamlessly usea va-
riety of computing devices from desktops to cellular phonesand
mobile handhelds. However, this increasing convergence has also
attracted the attention of malicious software writers. In the past
few years, the number of malicious codes that target messaging net-
works, primarily IM and SMS, has been increasing exponentially.
Large message volume and number of users in these networks ren-
ders manual mitigation of malicious software nearly impossible.
This paper proposesautomatedandproactive securitymodels to
protect messaging networks from mobile worms and viruses. First,
we present an algorithm for automated identification of the most
vulnerable clients in the presence of a malicious attack, based on
interactions among the clients. The simplicity of our approach
enables easy integration in most client-server messaging systems.
Next, we describe a proactive containment framework that applies
two commonly-used mechanisms—rate-limiting and quarantine—
to the dynamically-generated list of vulnerable clients ina messag-
ing network whenever a worm or virus attack is suspected. Finally,
we evaluate the effectiveness of proactive security in a cellular net-
work using data from a large real-life SMS customer network,and
compare it against other existing approaches. Most messaging net-
works can implement our proposed framework without any major
modification of their existing infrastructure.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
ALGORITHMS, SECURITY

Keywords
Proactive security, Instant Messaging (IM), SMS/MMS, mobile viruses,

∗This work was performed while the author was at the University
of Michigan, Ann Arbor, Michigan, and was supported in part by
NSF Grant No. CN 0523932.

worms, containment

1. INTRODUCTION
The exponential growth of messaging in both home and enter-

prise environments has made it a potent vector for the spread of
malicious code [1]. Social engineering techniques are very effec-
tive in spreading malware in these networks since infected mes-
sages appear to come from addresses in personal contact lists, ad-
dress and phone books. The problem is compounded further by the
increasing convergence of various messaging platforms. For ex-
ample, users can now send IM messages from mobile phones, and
SMS messages to mobile phones via SMS gateways on the Inter-
net. Given the extremely large number of messages in public IM
and SMS networks,1 the potential for damage from rapidly propa-
gating malicious software is very high in messaging networks. This
has not escaped the attention of malicious code writers. According
to [1], self-propagating worms represented 91% of malicious code
in large public IM networks in the second half of 2005—a number
that has been steadily rising. Similarly, there are now a growing
number of malicious codes written for mobile handsets that ex-
ploit SMS/MMS to proliferate [2]. It is clear that if a response can
be taken in the early stages of an epidemic in these networks, the
spread can be limited to a small number of clients. Therefore, de-
velopingproactive securityframeworks in mobile messaging net-
works is an important area of research. However, most mobile
network operators and messaging providers have not implemented
proactive security for the following reasons.

A key aspect of proactive security is to take stepsbeforea client
is compromised or at the earliest indication of a virus or worm ac-
tivity in the network. Therefore, finding vulnerable clients to a
given malicious software is a key first step to any proactive secu-
rity strategy. Note that this step must be entirely automated or the
window of opportunity will be lost. Given the large number and
distributed nature of messaging networks, it is not possible to place
monitors everywhere in such networks. However, the messaging
server—the Short Messaging Service Center (SMSC) in case of
SMS/MMS messages, and the IM server—provides a natural way
to identify such clients as we explain later.

One may argue that the time window between detection and
proactive containment can be very small and no proactive action
can stop a fast-spreading malicious code. For example, it is theoret-
ically possible to have “Flash Worms” [3, 4] that can infect most of
the vulnerable hosts of an enterprise within seconds. While such at-
tacks are possible, there has been a noticeable decrease in malicious

1More than 1000 billion SMS messages were sent in 2005, and
according to [1], the three largest IM providers—AOL, MSN, and
Yahoo!—each accounted for over 1 billion IM messages sent per
day.

95

agents that spread very fast via random scanning and simply clog
corporate networks. However, there has been a steady increase in
stealthy Trojans, and malicious agents that install adwareand spam
relays, exploit enterprise applications such as database servers, and
host malicious websites. For example, Win32.Opanki.d [5] arrives
as a link via the AOL IM network and when executed, it opens a
backdoor via an IRC channel. For these emerging threats, discover-
ing group associationswith an already-infected or suspected client
in near real time will lead to better proactive containment and it is
an important focus of our work.

Finally, any proactive response must address the potentialloss
of service and delays in the messaging network due to preemptive
shutdown or policing of clients. Since it is common for anomaly
detection systems to generate many false positives, a straightfor-
ward quarantine of clients based on alerts may result in unaccept-
able levels of message loss and delay. Therefore, one must design
proactive strategies that increase the level of countermeasure with
increasing alert correlation.

Most of the published studies on modeling and containment of
malicious software have focused on scanning- and email-worms
due to their prevalence and several successful large-scaleattacks
on the Internet. On the contrary, there appears to be very little pub-
lished work on proactive security of messaging networks. This is
the primary motivation of our work. In this study, we would like
to achieve three primary goals: (i) automated compilation of the
list of messaging clients that are vulnerable to a spreadingvirus
or worm attack, (ii) development of a group-behavior-basedproac-
tive response framework using client interactions in a messaging
network, and (iii) compare the effectiveness of proactive response
with traditional reactive mechanisms (e.g., anti-virus tools). The
starting point of our study is observed interactions among clients
comprising the “service-behavior” topology of the messaging net-
work. The containment itself is implemented in the form ofclient
rate-limiting [6] (also known as “throttling”) andclient quarantine.
However, instead of a straightforward application of thesemecha-
nisms, we build a behavioral alert-based system that progressively
mounts a stronger response with increasing alerts, and backs off
when alert levels decrease with time.

The framework is implemented typically at the messaging ser-
vice center (i.e., SMSC in case of SMS/MMS and IM servers)
where logs of client communication are available. These logs can
be analyzed to generate a service-behavior graph for the messaging
network. It is then further processed to generate behavior clusters,
i.e., groups of clients whose behavior patterns are similarwith re-
spect to a set of metrics:interaction frequency, attachment and
message size distributions, number of messages, number of outgo-
ing connections to other clientsand list of traced contacts. When
the number of alerts in a particular behavior cluster reaches a thresh-
old, the messages belonging to that behavior cluster are first rate-
limited to slow down a potential malicious worm or virus. The
effect of repeated similar alerts and false positives is kept below
a threshold during this initial containment step. When the alerts
reach a second threshold, the containment algorithm applies proac-
tive quarantine, i.e., it blocks messages from suspicious clients of
these behavior clusters. This step essentially enables thebehavior
clusters to enter into a group defense mode against the spreading
malware. This combined approach of rate-limiting and quarantine
with increasing response to alerts in the network provides agraceful
service degradation, yet a very powerful defense as our evaluation
will show.

This paper makes three primary contributions. First, it presents
a method for automated identification of vulnerable clientsin a
messaging network. Second, it provides a practical solution for

improving security in these networks based on an adaptive group-
behavior-based proactive approach. Third, it demonstrates that proac-
tive security can offer an order-of-magnitude improvementin con-
taining malicious software in messaging networks, over existing
“detect-and-block” approaches.

The rest of this paper is organized as follows. Section 2 presents
motivations behind the behavior-clustering approach. Section 3
describes how behavior clustering can find vulnerable clients for
proactive response. Section 4 describes the proactive rate-limiting
and quarantine algorithms, and their group-behavior-based imple-
mentation. Section 5 evaluates proactive security in a messaging
network using data from a large real-life SMS customer network.
Section 6 reviews recent literature on malware targeting messaging
networks, and malware containment. We describe future workand
make concluding remarks in Section 7.

2. MOTIVATION: FINDING VULNERABLE
CLIENTS

The most common form of proactive defense isgetting there first,
for example, to patch a client to protect against an existingvulnera-
bility, or to remove capabilities from the client, making itmore se-
cure. However, a central problem of proactive defense is to decide
which clients are the most vulnerable when a malicious activity is
identified in the network, be it an intrusion, a virus or worm.This
is fundamentally different from reactive or “detect-and-block” de-
fense which is activated only when a client is in the process of being
compromised. Generating a list of vulnerable clients on-demand
in near real time is, therefore, a fundamental problem to study in
proactive defense. The more accurate the list of vulnerableclients,
the faster the attack can be suppressed with less interruption to the
users. Our motivation in studying group-behavior of clients is to
generate this list by analyzing Charging Data Records (CDRs) [7]
and message headers that are logged at the centralized store-and-
forward messaging servers.

Before discussing our approach, we first need a brief discussion
of the SMS messaging system. When a mobile user sends a mes-
sage from a handset (i.e., Mobile Originated or MO) or a web-based
gateway to another phone, the message is received by the BaseSta-
tion System (BSS) of the service provider. The BSS then forwards
the message to the Mobile Switching Center (MSC). Upon receiv-
ing a MO message, the MSC sends the end-user information to the
Visitor Location Register (VLR) of the cell and checks the message
for any violation. It then forwards the message to the provider’s
SMSC. The SMSC stores the messages in a queue, records the
transaction in the network billing system and sends a confirmation
back to the MSC. The status of the message is changed from MO
to Mobile Terminated (MT) at this point. Through a series of steps,
the message is then forwarded by SMSC to the receiving user’s
MSC. The MSC receives the subscriber information from the VLR
and finally forwards the message to the receiving handset. The
store-and-forward nature of SMS/MMS networks makes it possible
to collect client interaction patterns from the time-stamped logs. A
similar observation can be made for IM servers as well, although
the procedure to store and forward messages is much simpler.Most
IM messages between users are mediated by the IM server. In some
networks, file-transfer request and response messages are relayed
through the server, but the actual file data are transferred between
the entities directly. This makes the task of collecting information
about client interactions very easy by simply monitoring the con-
nection logs at the server.

Next, we provide the motivations for development of a group-
behavior-based proactive defense strategy. Traditional end-point

96

solutions (e.g., switching off service ports on individualclients or
at firewalls) can detect and protect against only specific types of at-
tacks. A more effective defense can be built by studying how clients
interact with each other in the network from periodic inspection of
the server logs. If clients can be grouped together based on their
commonbehavior, it may be possible to contain a broad range of
attacks that manifest in specific behavior anomalies. The building
block of our approach is finding clusters of such common behavior
called “behavior clusters.” Once a virus or worm activity isde-
tected at a client, members of its behavior cluster can be puton the
list of vulnerable machines since they may be the most likelyand
immediate target of the malicious activity. This is often the case
for topological worms that spread via IM, email, SMS and P2P
file-sharing.

n1

n240

n245

n269

n2

n241

n3

n242

n281

n4 n243

n5

n6

n7

n8 n244

n257

n265

n9
n10

n154

n251

n12

n14

n19

n31

n36

n41

n44

n45

n48n51

n56

n58

n59

n60

n63

n64

n65

n70

n71

n74

n77

n79

n83

n84

n85

n91

n96

n97n98

n103

n104

n105

n106

n109

n111

n118

n125

n127

n128 n129

n131

n132

n133

n134

n135
n136

n138
n139

n140

n142

n144

n145n148

n149

n153

n156

n159

n163

n164

n166

n171

n172

n173

n174

n175

n177

n179

n180

n182

n190

n191

n194

n197

n202

n203

n204

n206

n210

n212

n213

n215

n216

n217

n218

n220

n221
n222

n223 n224

n225

n226

n228

n230

n231

n232

n233

n235

n239

n303

n11

n13
n270

n272

n15

n16

n17

n18

n178

n261

n264

n273

n274

n287

n20

n21

n22

n27

n23

n24

n25

n26

n28

n29

n246

n30

n32
n247

n285

n293

n33

n248

n34

n249

n277

n35

n250

n37

n252

n282

n38

n49

n253

n39

n254

n40

n255

n256

n263

n42

n258

n43

n259

n260

n278

n284

n290

n46

n47

n262

n267

n268

n289

n50

n52

n266

n53

n54

n271

n55

n57

n275

n276

n279

n280

n61
n62

n66

n295

n67

n68

n283

n286

n69

n72

n73

n75

n76

n288

n78

n80

n81

n82

n170

n86

n87

n88

n89

n90

n291

n92

n93

n94

n95

n292

n99

n100

n101

n294

n102

n107

n108

n110

n112

n113

n114

n115

n116

n117

n119

n296

n120

n121

n297

n122

n123

n298

n124

n126

n130

n301

n299

n137
n141

n143

n146

n147

n150

n151

n152

n155 n157

n158

n160

n300

n161

n162

n165

n167

n168

n169

n176

n181

n183

n184

n302

n185

n186

n187

n188

n189

n192

n193

n195

n196

n198

n199

n200

n201

n205

n207

n208

n209

n211

n214

n219

n227

n229

n234

n236

n237

n238

1

2

3

6

7

9

8

5

4

1011

12

16

13

14

15

17

(a) (b)

Figure 1: (a) Clustering of common behavior, (b) Microscopic
view

We motivate the usefulness of behavior clusters with a simple ex-
ample. We collected messages from a small departmental network
of 200 unique hosts, and constructed a service-behavior topology
based on open client and server port bindings among the hosts(Fig-
ure 1(a)). Figure 1(b) shows the service-behavior graph fora small
subset of nodes at a given time—the actual number of nodes (504,
including nodes external to the network) and edges (230) aretoo
large to display in both figures. We show a 4-color clusteringof
this subset of nodes. The arrows in Figure 1(b) indicate the direc-
tionality of messages as inferred from the traces. The nodeswithout
any arrows denote bidirectional messages. To generate the clusters,
we considered a simple metric of number of neighbors, and mini-
mized the overlap among the four clusters. Note that nodes 10, 11
and 16 form a disjoint group from the rest of the nodes and haveno
interactions with the rest of the network, other than their internal
dependencies. These nodes can be grouped into a single behavior
cluster (denoted in white circles). Upon detection of a malicious
software on any one of these three hosts, one can proactivelyquar-
antine the other two nodes without affecting messaging in the other
clusters. On the other hand, if one quarantines the cluster with
nodes (denoted in black circles) completely from the rest ofthe net-
work, the total cost of quarantine will be the sum of messagesex-
changed along overlapping edgese3,5,e4,13,e7,13,e13,15, ande5,14.
Note that the three clusters form a logical partition of the network.
Each cluster provides a list of vulnerable clients any time aclient
inside the cluster raises an intrusion or malware alert. We give a
more formal treatment of the behavior clustering and partitioning
problem in Section 3.2.

3. FINDING VULNERABILITY BY ASSO-
CIATION

We mentioned in Section 2 that the first step in applying any
proactive mechanism is to find a set of vulnerable clients in near

Config
Info

I. Behavior
Vectors

III. Forecasting
II. Service-
Behavior

Graph

IV. Behavior
Clusters

Server
Logs

List of
Vulnerable

Clients

Alerts
+

Figure 2: Generating behavior clusters from message logs

real time, i.e., as soon as an attack is detected. In this section, we
propose an approach calledbehavior clusteringto generate this list.
The underlying principle of behavior clustering is to find vulnera-
bility by association. It assumes that the vulnerability index of a
client is increased sharply if it has come incontactwith an infected
client in recent past. Bycontact, we mean messages exchanged be-
tween the two clients, e.g., a text or multimedia message. Whether
a client is infected by the way of such communication with an in-
fected client depends on whether it shares the same vulnerability.
Therefore, our goal is to develop an automated procedure to clus-
ter clients into behavior groups based on their messaging patterns
and application/protocol stacks installed on them. The rest of this
section describes the steps necessary to generate these clusters.

Figure 2 shows the three steps necessary for automated behavior
clustering: (i) calculation ofbehavior vectorsand service-behavior
graph, (ii) short-term forecasting of behavior vectors, and (iii) gen-
eration of behavior clusters by partitioning the service-behavior
graph. These steps are repeated periodically depending on how
often the behavior vectors change among clients, and the outcome
is a set of closely-related behavior clusters for the network that can
be used to find vulnerable clients upon detection of an attack.

3.1 Step I: Behavior Vectors
We define a “behavior vector” as a collection of features about

any client in the messaging network. The behavior vector, denoted
asθu(t) at any clientu at timet, is calculated from two sources: ver-
sion information (‘physical’ feature) and messaging logs (‘tempo-
ral’ features). Most malware spread by taking advantage of known
exploits in software and protocol stacks. Therefore, an accurate
snapshot of how clients are configured across a network is very
useful to determine which clients are vulnerable to a spreading ma-
licious software. Enterprise networks typically install configuration
management databases (CMDBs) [8] that contain details of the ap-
plications (email, P2P, IM, SMS) and software stack (OS, network)
on each host. Queries to CMDBs can therefore yield the physi-
cal feature of the behavior vector at a host. We collectivelydenote
the physical feature space asφc. This feature space can be parti-
tioned to find clusters of similar configurations. Then, whenever a
virus or worm is discovered targeting a specific applicationclient or
software exploit, one can readily find the most vulnerable clusters
where a proactive action is needed. In public IM or SMS networks,
it is not possible to access client OS and application stack infor-
mation. However, most messaging clients transmit client version
information and a few additional details about the client environ-
ment (e.g., Windows or UNIX) during the connection setup. This
information can be extracted from the server logs where access to
enterprise-level CMDBs is not possible.

The second component of a behavior vector is calculated by an-
alyzing messages exchanged among the clients, and therefore, it is
a temporal feature. The generic parameters that we have imple-
mented are: CDF (cumulative density function) of neighbor inter-
actions (nm) (“how often a client exchanges messages with another
client”), number of outgoing connections to unique user IDs(ng)
(“importance of a client”), and mean and maximum of message
inter-arrival times (tmean, tmaxm).

97

In summary, the vulnerability index of a client in the messaging
network depends on its physical and temporal features, or, in short,
its behavior vector. The components of the behavior vector at a
client u at timet are given as:
θu(t) = [{φc},{nm,ng,tmean, tmaxm}].
This vector is updated whenever their values change based onfilters
placed on the server.

3.2 Step II: Service-Behavior Graphs
While behavior vectors represent client-level observations as logged

by the server, they do not describe interactions among the clients.
This is captured by creating a service-behavior graph for the net-
work. We represent the service interactions with adirected graph,
G(Vd,Ed), in which Vd is the set of vertices (i.e., unique partici-
pants or client IP addresses) in the network andEd is the set of
edges. G(Vd,Ed) is generated by applying the following simple
rules.

R1. A pair of vertices(u,v)∈Vd are assigned adirected edge euv∈
Ed if and only if there exists a non-zero contribution to their
respective behavior vectors viaeuv.

R2. IP addresses that are external to the networks are labeled with
an additional flag. The edges belonging to these hosts rep-
resent “outside” connections to the network and therefore,
should be quarantined during an attack. Examples are http
links embedded in messages.

3.3 Step III. Short-term Forecasting of Behav-
ior Vectors

Since behavior vectors of clients change frequently in mostmes-
saging networks, logs collected at different time intervals may indi-
cate different behavioral patterns. Therefore, the service-behavior
graph, generated at fixed time intervals, may differ from theactual
behavioral patterns of the network when the list of vulnerable ma-
chines need to be generated. Therefore, a proactive action based on
a straightforward application of behavior vectors computed in the
last analysis period may not be the most effective. Since behavior
vectors have a strong temporal component, we apply a short-term
forecasting algorithm to the parameters such that a prediction can
be made from the observed values in recent past. This is currently
achieved by applying the standard exponential smoothing proce-
dure [9].

3.4 Step IV. Behavior Clustering
The final step is to group the vertices inG(Vd,Ed) into a num-

ber of clusters based on their behavior vectors, where clients in the
same cluster are similar in terms of their physical and temporal pat-
terns. There are a number of techniques for classification and clus-
tering in the literature. We adopt a hierarchical graph partitioning
approach as presented below, although other approaches canalso
be used.

The partitioning problem can be formulated as a multi-constraint,
connected and boundedk-way graph partitioning problem as fol-
lows. Givenan undirected graph of service interactions,G(Vd,Ed)
with scalar edge weightswe : Ed → N, each vertexv∈Vd having

ann-dimensional behavior vectorθ(n)
v of sizen (∑∀v∈Vd

θ(i)
v = 1.0

for i = 1,2, · · · ,n), and an integerb∈ {2,3, · · · ,‖Vd‖}, partitionVd

into k clusters,V1
d ,V2

d , · · · ,Vk
d , such that

• Gi = (V i
d,Ei

d) induced inG by thei-th cluster is connected;

• ∀i ∈ {1,2, · · · ,k}: 1≤ ‖V i
d‖ ≤ b;

Figure 3: Behavior clustering of an IM network (k = 4)

• ∑sw(e)(s) wheres∈ Ed,s /∈ Ei
d, is a minimum

∀k∈ {2,3, · · · ,‖Vd‖}; and

• the following constraints are satisfied:

∀k : ℓi ≤ ∑
∀v∈Vk

d

θ(i)
v ≤ ui (1)

where[ℓi ,ui] for i = 1,2, · · · ,n aren intervals such thatℓi < ui and
ℓi +ui = 1.

Note that the number of clusters,k, is not provided as input to
the above problem, and therefore, must be evaluated as the num-
ber of distinct behavior clusters in the graph. As an exampleof
Steps I-IV, Figure 3 shows the partitioning of an IM network of 450
clients (i.e., unique IP addresses) into four behavior clusters(k= 4)
based on traces we collected from a large enterprise network. The
IM users of this network used three public-messaging protocols—
Yahoo Messenger (YMSG), MSN Messenger (MSNMS) and AIM—
to communicate with each other. Therefore,φc for a host consisted
of one or more elements of{YMSG, MSNMS, AIM}, depending
on which IM protocols were used from that host. The rest of thebe-
havior vector parameters were calculated directly from thetraces.
This approach to behavior clustering offers several benefits when a
proactive response is taken in the network.
(1) Connectedness among the vertices within a cluster:This prop-
erty guarantees that any two vertices within a cluster be closer to
each other in terms of their features and connectivity than vertices
in another cluster. This is important for localizing messages within
a cluster while other clusters are proactively contained, so that di-
rect peer-to-peer file transfers between clients are alwaysavailable.
(2) Minimization of service-edge costs:The cost of the cut (called
“edge-cut”) determines the quality of the clusters, and is,there-
fore, the primary partitioning objective. There are many possible
choices for the partitioning objective function. For the containment
problem, we minimize the sum of the weights of the edges that
span multiple clusters. The goal is to minimize the number ofmes-
sages exchanged between different clusters. Then, any proactive
quarantine or rate-limiting of a cluster will cause minimalmessage
interruption to other clusters.
(3) Satisfaction of vertex constraints within the clusters: The k-
way partitioning algorithm takes into account the relativeweights
of the vertices as well as those of the corresponding edges. The
constraints as shown in Eq. (1) can be used to balance the partitions
in terms of the vertex constraints, e.g., for including the clients’ ge-
ographic domains.

An important deployment question is how often the service-behavior
graph should be updated. We can apply thetriggered updatescon-
cept implemented in many intrusion detection systems, e.g., GrIDS [10].

98

Using triggered updates, the service-behavior graph is updated when-
ever (i) new vertices and edges are added (or subtracted) to (or
from) the last computed graph, and (ii) the parameters of thebehav-
ior vectors change by a certain threshold over previous values. This
is part of our ongoing work in which we are studying logs collected
from a real-world messaging server to understand the temporal as-
pects of service-behavior graphs.

The overall complexity of the partitioning phase isO(‖Ed‖),
and therefore, is determined by the size of messaging network,
G. In reality, this step is extremely fast. For example, the time
required to generate behavior clusters for a service-behavior graph
withVd = 9269 hosts andEd = 9836 edges ranges from 0.04 second
(2 clusters) to 0.16 second (32 clusters) on a dual-CPU (1.5GHz)
AMD Opteron 240 platform.

4. PROACTIVE CONTAINMENT METHODS
In this section, we explain the basic rate-limiting and quaran-

tine mechanisms that serve as the building blocks of our proac-
tive response framework. While scan detection-based methods [11,
12] protect an enterprise from incoming infections, rate-liming and
quarantine seek to contain outbound infected messages. These meth-
ods can be applied on both individual as well as a group of clients.
When these are applied on a group of clients as in the case of proac-
tive defense, the first step is to obtain a list of vulnerable clients
most relevant to the generated alerts. We assume that this list can
be obtained on-demand via the behavior clustering algorithm de-
scribed in Section 3.

4.1 Rate-limiting
The rate-limiting (also known as “virus throttling”[6, 13,14]) is

a general class of response techniques that seek to limit thespread
of a worm or virus once it is detected on a host. For example,
it has been applied to contain IM worms in [13]. It is based on
the observation that normal or acceptable behavior of many Inter-
net protocols such as TCP/IP, email and IM differs significantly
from the corresponding worm-like behavior. Most users of email,
SMS and IM interact with a slowly-varying subset of other users
as compared to malicious codes that attempt to send messagesto
all contacts in a victim’s address book or buddy list. The original
virus throttling algorithm proposed by Williamson [6] limits the
rate of outgoing connections to new machines that a host is able
to make in a given time interval. Figure 4 explains the basic rate-
limiting mechanism. Aworking setof specified length (n = 4 in
Figure 4) is maintained for each user that keeps track ofn recent
addresses that the user has interacted with. When the user attempts
to send a message to a new contact, the recipient’s address (“h”
in Figure 4) is compared with those in the working set. If the ad-
dress is in the working set, the message is allowed to pass through.
Otherwise, the message is placed on adelay queuefor sending at
a later time. At periodic intervals, the delay queue messages are
processed as follows: the destination address of the message at the
head of the queue is added to the working set replacing the old-
est address in the working set (using a least-recently used or LRU
algorithm). Then, all messages in the delay queue destined for the
newly-admitted address are removed from the queue and sent to the
recipient address. When the length of the delay queue exceeds a
pre-determined threshold, all new contact attempts from the client
can be blocked, e.g., by reducing the size of the working set to
zero, and the user may be asked to validate the messages in the
queue. The rate-limiting mechanism is implemented at the server
since it initiates or processes all requests made by the clients. Fur-
ther, when implemented at the server, users are not able to modify
the rate-limiting configuration parameters. Therefore, rate-limiting

a f

h

dcb

g

e

Queue
Length

Detector

Rate Timer clock

Process

Working Set
n = 4

Request

new

add

update

not-new

Delay
Queue

Figure 4: Virus throttling algorithm by Williamson [11]

can be implemented easily for email, IM, SMS and centralizedP2P
file-sharing (e.g., Napster). The most important advantageof rate-
limiting is its ability to enforce containment in a gentle manner, as
opposed to quarantine which results in complete shut-down of the
client. Therefore, rate-limiting mechanisms are generally preferred
by enterprise networks over quarantine. We should note thatsev-
eral variants of rate-limiting have been proposed to date. Recently,
Wong et al. [14] have presented an excellent empirical study of
these schemes as well as a new DNS-based rate-limiting algorithm
for general worm containment.

For our implementation of proactive rate-limiting, we chose to
implement the Williamson’s throttling algorithm as the basic per-
client rate-limiting mechanism, with an important difference. We
implement rate-limiting only for messaging services, and not the
other ports on the host. This prevents the excessive delays and
blockage of all legitimate applications on the host in case of an
infection, as reported in [14]. Note that the messaging wormprop-
agation doesn’t result in large volumes of failed connections or data
in the network. But, the rate at which an infected client sends mes-
sages to other clients in the network may deviate significantly from
its normal sending rate. This can be detected efficiently by the
Williamson’s virus throttling algorithm although the algorithm is
prone to high false positive rates when a client has been infected.
We deal with this problem by applying a group-behavior-based ap-
proach that effectively reduces the false positive rates.

4.2 Quarantine
In contrast with rate-limiting, quarantine-based systemsprevent

a suspicious or infected client from sending or receiving messages.
This can be implemented at the messaging server so that any con-
nection attempt by the user on an infected client is refused.Recent
industry initiatives such as Network Admission Control (NAC) [15]
and Network VirusWall [16] are intended to enforce established se-
curity policies to endpoint devices as they enter a protected net-
work. The Cisco NAC allows non-compliant devices to be denied
access and placed in a quarantined local network, or given restricted
access to resources. However, such systems are in very earlystages
of development for SMS/MMS networks.

In our implementation of quarantine, we simply reduce the size
of the working set to zero in the rate-limiting module on a client and
let the delay queue grow without triggering any new malicious soft-
ware alert. This is enforcedafter an alert has already been issued
from the client and a malicious activity has been detected. This
effectively quarantines the client from sending any more messages.

Next, we propose a proactive group behavior containment (PGBC)
algorithm that combines the basic rate-limiting and quarantine mech-
anisms described above with behavior clusters to develop a proac-

99

Figure 5: Proactive rate-limiting and quarantine for a behavior
cluster

tive response scheme at the messaging server.

4.3 Proactive Group Behavior Containment
Figure 5 presents the steps of the PGBC algorithm as imple-

mented in the server. When an anomaly is detected at a clienti,
e.g., by monitoring its delay queue length (or via a malware detec-
tion agent running at the server), the algorithm incrementsa client
alert level (δi) by a valueδk

i that depends on the severity of the alert.
The PGBC algorithm suppresses alerts for a period ofπdelay sec-
onds before allowing a single alertβk

i for client i in the algorithm.
The purpose of the hold-off counter,πdelay, is similar to the back-
off counter described in [17]: it prevents a single client that triggers
a stream of alerts from forcing the entire messaging networkto en-
ter into a proactive defense mode. When the alert level on a client
violates a pre-determined threshold value (i.e.,βk

i is reached), the
server activates a rate-limiting for messages sent by the client, i.e.,
the size of its working set is reduced and outgoing messages from
the client are queued at the server. A separate process decrements
the alert level at every time step until it reaches zero, at which point,
the rate-limiting is stopped for messages sent by the client.

The messaging server generates behavior clusters at periodic in-
tervals from the messages exchanged among the clients, using the
clustering algorithm described in Section 3. Whenever an alert
level βk

i is generated for a client, the algorithm updates the total
alert levelβ of the corresponding behavior cluster. When the be-
havior cluster alert level reaches a threshold value (βth), the server
activates a rate-limiting on the most vulnerable clients ofthe behav-
ior cluster, namely, the nodes that have exchanged messageswith
the infected client. This list is computed via a setintersectionof the
client in the behavior cluster and the working sets of the infected
client at current and previous time steps. This step of the algorithm
also enforces a quarantine of all messages from the infectedclient
(i.e., it is no longer rate-limited but is blocked from messaging). A
separate process decrements a backoff timer (tb) from the value of
T assigned at the beginning of the group defense mode, and transi-
tions the behavior cluster from the proactive defense mode back to
the normal mode when either (i) there are no more alert messages

Packet
Traces

T
ra

ce
 C

o
lle

ct
io

n

S
er

vi
ce

-M
o

d
el

E

xt
ra

ct
io

n

Service Model (P2P,
IM, Email, Bluetooth,

etc.)

Service Topology

A
g

en
t-

B
as

ed
 M

al
ic

io
u

s
C

o
d

e
S

im
u

la
ti

o
n

 Initialize Domain,
Segments, Agents

Update Topology,
Locations

Process Messages

Yes

No

Infection
Models

Lo
op

 o
ve

r
tim

es
te

ps

Lo
op

 o
ve

r
si

m
ul

at
io

n
ru

ns

 Infection?
Activate
Defense

Collect Infection
Statistics

Averaged Infection
Statistics

Detection
Models

Figure 6: Flowchart of AMM emulation steps

or (ii) tb becomes 0.
Note that PGBC gradually slows down outgoing messages from

a group of clients and brings them back to the normal mode when
no alerts are received for a period of time. This is in contrast with
the traditional detect-and-block schemes that cause sudden mes-
sage loss and delay in the network.

5. EVALUATION OF PROACTIVE DEFENSE
IN AN SMS NETWORK

5.1 Agent-Based Malware Modeling
In this section, we briefly discuss an agent-based malware mod-

eling (AMM) framework that we have developed to investigatema-
licious software propagation in a variety of wired and wireless net-
works. We refer to [18] for a detailed description of AMM and its
various capabilities. In AMM, we model a mobile network as a col-
lection of autonomous decision-making entities calledagents. The
agents represent clients within the network such as PDAs, mobile
phones, service centers(e.g., SMS Center) and gateways. Incase
of agents representing mobile devices, the connectivity changes as
users roam about the physical space of the network. The behaviors
of the agents are specified by a set of services running on them. For
example, an agent may consist of client applications for email and
SMS/MMS messaging, whereas the SMSC agent may consist of a
store-and-forward server only. Thus, there are two types oftopolo-
gies in our simulation environment. Thephysicalconnectivity is de-
termined by the physical network infrastructure, movementof the
agents, location of access points and base stations, whereas thelog-
ical connectivity is determined by the messages exchanged among
the agents.

Figure 6 shows a high-level flowchart of AMM. The first step
is to prepare the following input parameters: (i)infection-model
parametersfor the target service (SMS for the present study), (ii)
topologyof service interactions among the agents (i.e., SMS mes-
saging patterns among the users), (iii)locationof base stations, (iv)

100

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
er

ce
nt

ag
e

in
fe

ct
io

ns
, E

(I
(t

))

Time (seconds)

No defense
Williamson RL only
PGBC

Figure 7: Overall performance of PGBC and WRL

mobility modelsfor agents that are mobile, (v)infection and repli-
cation state machine(i.e., attack vector) of the malicious software,
(vi) detection modeland (vii) an attack response model. We have
implemented PGBC, Williamson’s rate-limiting (WRL) and reac-
tive (i.e., detect-and-block) responses to compare their effective-
ness. At each timestep, the coordinates of mobile agents areup-
dated based on their mobility models resulting in new connectivity
graphs. Next, each agent exchanges messages with other agents ac-
cording to the SMS service model—the probability of any of these
messages being infected is calculated from the service-infection
model. The time steps are repeated over a user-specified number
of trials so that the results can be averaged over these trials. The
simulator is general enough to experiment with different algorithms
for malware detection and containment.

5.2 SMS Messaging Logs
The topology of a messaging network can be extracted from

CDRs collected from a real-world cellular network, and the rele-
vant parameters are then input to AMM. To the best of our knowl-
edge, there does not exist any malware propagation model using
SMS/MMSservices in a cellular network. A recent study [19] of
SMS usage characterization collected call data records andSS7traces
over a three-week period from a large cellular carrier with 10 mil-
lion mobile users. The data allowed us to reconstruct a realistic
SMS messaging network with the following parameters: message
sending rates, message receiving rates, cumulative density func-
tions (CDF) of user-to-user message size (B) and message service
times at the SMSC, and the SMS service topology. The original
data involved a very large number of messages (over 59 million)
and users (over 10 million). Therefore, we scaled the data toa
small number of users (2000), while still preserving the basic char-
acteristics of the original data sets. Further informationon our re-
duction process and SMS malware propagation can be found in a
companion paper [2]. In the present study, we focus on the pro-
posed proactive defense strategy.

5.3 Performance of PGBC
In what follows, we evaluate and compare three different defense

strategies, Williamson’s rate-limiting (WRL), reactive (i.e., detect-
and-block) and PGBC, against a malicious code that spreads from
one client to another using the address book contacts found on an
already-infected client.2 We used a working set of 5 for WRL and a
delay queue threshold of 20 to indicate a malicious code infection.
All simulations started with only 1 initial infection (i.e., I(0) =

2We will denote this as the “SMS worm” for the rest of this section.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400 450 500A
ve

ra
ge

 p
er

ce
nt

ag
e

E
(I

(t
))

,E
(R

L(
t)

),
E

(P
(t

))

Time (seconds)

No defense
Williamson RL only
PGBC

Figure 8: Percentage of clients rate-limited (WRL) and
proactively-contained (PGBC)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
er

ce
nt

ag
e

in
fe

ct
io

ns
, E

(I
(t

))

Time (seconds)

T=30s
T=60s
T=90s

Figure 9: Effect of PGBC backoff timer (βk = βth = 8, r = 30s)

1) and we averaged the results of 20 runs for each parameter to
compute the expected number of infections,E(I(t)), clients with
WRL, E(RL(t)), and clients under quarantineE(Q(t)), at each time
stept. We report these numbers as a percentage of the total number
of clients in the messaging network.
5.3.1 Overall Performance

Figure 7 shows the overall performance of WRL and PGBC
against the SMS worm during the first 500 seconds of its propaga-
tion. For comparison, we also show the epidemic in a network with
no defense, i.e., an entirely unprotected network. Note that in the
unprotected network, nearly 40% of the clients are already infected,
indicating very fast propagation in a highly-connected topology
such as an SMS network. The PGBC algorithm performs an order-
of-magnitude (E(I(t)) = 2%) better than WRL (E(I(t)) = 21%).
Given this excellent performance, we now explore the effectof
various PGBC parameters on its performance. Figure 8 shows the
percentage of clients that are rate-limited (E(RL(t))) using WRL,
proactively-contained (E(P(t))) in PGBC and infected (E(I(t))) in
case of an unprotected network. PGBC results in a larger number of
clients participating in proactive group defense, roughly20% more
than WRL allows—this is one of the reasons why PGBC keeps the
infection level so small in the network. However, when proactive
group defense is applied, the affected messages are delayedby an
amount equal to the PGBC backoff timer,T.

5.3.2 Effect of PGBC Backoff Timer,T

The PGBC backoff timer (T) determines how long a behavior

101

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
er

ce
nt

ag
e

E
(P

(t
))

Time (seconds)

T=30s
T=60s
T=90s

Figure 10: Number of proactive clients for different PGBC
backoff timer values (βk = βth = 8, r = 30s)

cluster should remain in the proactive defense mode once it has
been activated (i.e., its alert level,β, has reached the thresholdβth).
Figure 9 shows the percentage infections for different values of
T = 30, 60 and 90 seconds. To eliminate the effect of other pa-
rameters, all the results are forβk = βth = 8 and a throttle rate (r)
for 30 seconds. It is clear from Figure 9 that a longer group defense
timer results in a smaller number of infections. However, this has
a delaying effect on the messages in the SMS network since clients
undergoing proactive rate-limiting will have to wait untilthe ex-
piration of T seconds before sending messages again. Note that
T = 60 seconds or a minute results in approximately 7% of infec-
tions compared to a longer timer (2%). Since the overall infections
are still much lower than that of an unprotected network as well
as a network with WRL, we recommend usingT = 60 seconds—a
delay of 1 minute in sending/receiving SMS messages is reason-
able during an attack. Figure 10 shows the percentage of proactive
client nodes for different values ofT. The growth of proactive
clients in the group defense mode is nearly identical for allthree
values, meaning that the decision to chooseT should be guided by
the maximum level of infections that can be tolerated by the mes-
saging service provider. For example, critical messaging networks
may decide to choose a higher value ofT to keepI(t) very small.

5.3.3 Effect of Alert Levels,βk

The alerts (βk or “L” in Figures 11 and 12) are generated for indi-
vidual clients when their delay queues reach a threshold indicating
the presence of a worm. However, the hold-off counter (πdelay)
makes sure that repetitive alerts from the same client in consecu-
tive periods are suppressed so that one client node cannot force a
behavior cluster to enter the PGBC mode. The choice ofβth de-
termines how frequently a behavior cluster enters PGBC given βk
alerts sent from its constituent clients. Figure 11 presents the re-
sults for different alert levelsβk equal to 2,4 and 8. The rest of the
parameters are: threshold alert levelβth = 8, backoff timerT = 60
seconds and throttle timerr = 60 seconds. We also plot the same
results for a different throttle timer ofr = 20 seconds in Figure 12.
The results indicate that client alert levels (βk’s) are sensitive to the
throttle timer, especially at low alert levels. Based on ourexperi-
mental results, we recommend settingβk = 4, i.e., two new alerts
force the behavior cluster enter into PGBC mode.

5.3.4 Comparison of Reactive vs. PGBC Approaches
Next, we compare the traditional reactive (“detect-and-block”)

defense adopted by most anti-virus solution providers witha more
efficient approach such as PGBC. In reactive defense, a client can

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
er

ce
nt

ag
e

in
fe

ct
io

ns
, E

(I
(t

))

Time (seconds)

L=2,T=60s,r=60s
L=4,T=60s,r=60s
L=8,T=60s,r=60s

Figure 11: Number of infections for different PGBC alert levels
(T = 60s,r = 60s)

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
er

ce
nt

ag
e

in
fe

ct
io

ns
, E

(I
(t

))

Time (seconds)

L=2,T=60s,r=20s
L=4,T=60s,r=20s
L=8,T=60s,r=20s

Figure 12: Number of infections for different PGBC alert levels
(T = 60s,r = 20s)

be quarantined as soon as its delay queue reaches the threshold, i.e.,
all incoming/outgoing messages are blocked. The problem with
this approach is that by the time the infection is detected, the worm
may have already spread to other clients via previously sentmes-
sages. Figure 13 compares the reactive approach with two different
combinations of PGBC parameters. The reactive approach results
in over 12% of the total clients being infected within 500 seconds,
whereas either of the two PGBC configurations allows only less
than half that amount. This clearly demonstrates the need for a
group-behavior-based defense strategy in messaging networks than
isolated quarantine of clients.

5.3.5 Effect of False Positives
We define the false positive rate as the percentage of clients

that were misidentified as malicious by the detection mechanism.
Since PGBC applies proactive rate-limiting to some of the clients
in the same behavior cluster as the false-positive clients,we cal-
culate two quantities: percentage of false-positive clients (denoted
by E(F(t))) and percentage of clients that were proactively rate-
limited (denoted byE(P(t)))due toE(F(t)). Figure 14 plotsE(P(t))
andE(F(t)) for different PGBC backoff timer values. From our
results, we found thatE(F(t)) was limited to 6% of the clients,
andE(P(t)) to 12% of the clients in most cases. This means that
approximately 12% of the clients experienced a delay in receiv-
ing messages during the outbreak of the malicious code. Thisis
very promising, given that PGBC also limited the spread of the
epidemic to only 2–5% of the total number of clients. Figure 15

102

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
er

ce
nt

ag
e

in
fe

ct
io

ns
, E

(I
(t

))

Time (seconds)

Reactive Only
L=8,T=60s,r=20s
L=8,T=90s,r=30s

Figure 13: Comparison of reactive and PGBC defense ap-
proaches

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 P
er

ce
nt

ag
e

E
(P

(t
))

 a
nd

 E
(F

(t
))

Time (seconds)

P,T=30s
P,T=60s
P,T=90s
F,T=30s
F,T=60s
F,T=90s

Figure 14: E(P(t)) and E(F(t)) rates for different PGBC back-
off timer values (βk = βth = 8, r = 30s)

plots E(P(t)) for different values of PGBC alert levels. The data
for various parameters do not show a correlation, confirmingthat
the false-positive rates depend for the most part on the detection
mechanism and not on the containment strategy. Overall, PGBC
is found to perform very well against the SMS worm. Our results
indicate that a key benefit of PGBC is that one can maintain a small
throttle timer for per-client rate-limiting with an appropriate choice
of PGBC parameters (T, βk and βth). Therefore, the SMS users
do not experience a large delay in receiving messages duringan at-
tack. One aspect of PGBC that needs further study is how to choose
among the different tunable parameters for a given messaging net-
work.

6. RELATED WORK
The most relevant to the present study are malicious codes that

target messaging networks, intrusion detection systems such as GrIDS
[10], behavior-based worm detection [20] and Primary Response
from Sana Security [21]. Due to space limitation, we refer to[1, 22,
2] for a description of malicious codes targeting IM and SMS/MMS
networks. The above references also detail specific vulnerabilities
and social engineering techniques these malicious codes typically
exploit.

For Spyware and “zero-day” attacks, the conventional signature-
based anti-virus tools may result in high false negatives, i.e., attacks
that cannot be detected. The behavioral approaches [21, 20]are
more suitable to detect these types of attacks due to correlation of
behaviors among running processes and application-specific rules.
Moreover, upon detection of an attack at a given client, a behavioral

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 p
er

ce
nt

ag
e

E
(P

(t
))

Time (seconds)

L=2,T=60s,r=20s
L=4,T=60s,r=20s
L=8,T=60s,r=20s

Figure 15: False-positive detection rates for different PGBC
alert levels (T = 60s,r = 20s)

host-based intrusion prevention system (HIPS) may be able to de-
termine which services were targeted. Since it is crucial tocontain
these attacks at the earliest, PGBC can proactively rate-limit clients
in the same behavior-cluster identified by the detection system so
that these clients can be checked for updated HIPS and anti-virus
rules. For both known vulnerabilities and zero-day attacks, the pri-
mary role of proactive defense is to slow down the infected mes-
sages while the quarantined clients can be patched. The authors of
[23] recently presented a “Community of Interest” (COI) approach
for discovering host profiles within an enterprise network and then
applying rate-limiting to those that show worm-like behavior.

GrIDS [10] is a hierarchical intrusion detection system (IDS) that
aggregates host and network information as activity graphsrepre-
senting the causal structure of network activity. GrIDS organizes
the hierarchy in terms of departments within an organization. The
edges represent network traffic and attributes between the depart-
ments. Each department collects information from its childnodes
and passes summary information to its parent. GrIDS uses multi-
ple rule sets to determine how graphs are built and alerts generated.
In contrast, the hierarchy in PGBC is based on messaging patterns,
not the physical network infrastructure. The rule sets for gener-
ating service-behavior graphs are very simple to implementsince
they can be derived from server logs. Elliset al. [20] presented a
novel approach to automatic detection of worms using behavioral
signatures. These signatures are generated from temporal and char-
acteristic patterns of worm behaviors in network traffic, e.g., during
transfer of infected payloads to other hosts, tree-like propagation
and reconnaissance and changing a server into a client. Although
not considered, the behavioral signatures can be the basis for quar-
antining individual clients or groups of clients in their abstract com-
munications network (ACN). The Primary Response from Sana Se-
curity is another host-based behavioral approach that monitors run-
ning applications and employs multiple behavioral heuristics (e.g.,
writing to registry, calls to keylogging procedures, process hijack-
ing, etc.) to identify a malicious application. It also correlates
actions of multiple running applications to decide whetheran ap-
plication is Spyware. The current detection mechanism in PGBC
monitors the length of delay queues to identify worm-like behav-
ior. However, any of the above detection mechanisms can be im-
plemented in PGBC, resulting in more robust and reliable detection
of messaging worms.

The “Firewall Network System” described in [24] places fire-
walls on physical segments of an enterprise network. The firewalls
specify access policies to allow only pre-defined service requests.
This approach requires accurate specification of all service requests

103

and firewall access rules for the entire enterprise network.The “dy-
namic quarantine” method in [25] is based on a preemptive quar-
antine approach that quarantines a host whenever its behavior is
considered suspicious by blocking traffic on the suspiciousport.
The authors of [26] discuss the possibility of deploying automated
responses to malicious code, e.g., by proactively mapping the local
network traffic components and topology usingnmap-like tools.
Upon receipt of an alert with concrete information about theunder-
lying vulnerability, the corresponding traffic may be blocked before
it can reach other parts of the network. The basic premise of our
approach is similar but based on a systematic study of messaging
patterns among the clients.

7. CONCLUDING REMARKS
We have presented a novel framework calledProactive Group

Behavior Containment(PGBC) to contain malicious software spread-
ing in messaging networks such as IM and SMS/MMS. The expo-
nential growth of malicious software targeting these networks in
recent years requires development of proactive security approaches
such as PGBC. Since all the information needed to build PGBC can
be obtained from server logs, it can be easily deployed in store-and-
forward networks such as SMS/MMS and server-initiated networks
such as IM. The primary component of PGBC are service-behavior
graphs generated from client messaging patterns and behavior clus-
ters that partition the service-behavior graph into clusters of similar
behavior. PGBC uses a combination of message rate-limitingand
quarantine with increasing reaction to alerts in the network. In our
evaluation results for an SMS network, PGBC is found to be several
orders-of-magnitude more effective than traditional defenses such
as “detect-and-block”and individual client rate-limiting. From our
simulation results, it is evident that proactive defense iskey to slow-
ing down malicious codes during the early stages of its spreading.
This is critical because there is only a small time window between
the time an infection is detected and the time the cumulativein-
fections reach an epidemic threshold. PGBC makes most of this
time window by proactively quarantining and rate-limitingvulner-
able clients in the network. There are several aspects of PGBC that
are part of our ongoing study. The time scale at which a service-
behavior graph should be updated for a given messaging network
needs further investigation. The scalability of PGBC to very large
messaging networks, perhaps with millions of clients, is yet to be
investigated. Finally, the effect of false negatives (i.e., infected
clients that were not detected by the detection mechanism) on over-
all infection rates should be studied as well.

8. REFERENCES
[1] Symantec, “Symantec internet security threat report,”

http://www.symantec.com/enterprise/threatreport/index.jsp,
March 2006.

[2] A. Bose and K. G. Shin, “On mobile viruses exploiting
messaging and bluetooth services,” inAccepted for 2nd IEEE
International Conference on Security and Privacy in
Communication Networks (SecureComm), August 2006.

[3] S. J. Stolfo, “Worm and attack early warning: piercing
stealthy reconnaissance,”IEEE Security & Privacy
Magazine, vol. 02, no. 3, May 2004.

[4] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the
internet in your spare time,”11th USENIX Security
Symposium, August 2002.

[5] Viruslist.com, “Instant messaging worm win32.opanki.d,”
http://www.viruslist.com/en/viruses/encyclopedia?virusid=84950.

[6] M. M. Williamson, “Throttling viruses: restricting
propagation to defeat malicious mobile code,” in18th

Annual Computer Security Applications Conference,
December 2002, pp. 61–68.

[7] 3GPP, “Ts 32.205 charging data description for the circuit
switched (cs) domain,” March 2003.

[8] IBM, “Ibm tivoli configuration manager,” http://www-
306.ibm.com/software/tivoli/products/config-mgr/.

[9] D. Montgomery, L. Johnson, and J. Gardner,Forecasting and
Time Series Analysis, 2nd Edition, McGraw-Hill, Inc., 1990.

[10] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger,
J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, and
D. Zerkle, “GrIDS – A graph-based intrusion detection
system for large networks,” inProceedings of the 19th
National Information Systems Security Conference, 1996.

[11] N. Weaver, S. Staniford, and V. Paxson, “Very fast
containment of scanning worms,” in13th USENIX Security
Symposium, August 2004.

[12] J. Jung, V. Paxson, A. Berger, and H. Balakrishnan, “Fast
portscan detection using sequential hypothesis testing,”in In
Proceedings of the IEEE Symposium on Security and
Privacy, May 2004.

[13] M. Williamson, A. Parry, and A. Byde, “Virus throttlingfor
instant messaging,” inVirus Bulletin Conference, 2004.

[14] C. Wong, S. Bielski, A. Studer, and C. Wang, “Empirical
analysis of rate limiting mechanisms,” inProc. 8th
International Symposium on Recent Advances in Intrusion
Detection (RAID), 2005.

[15] Cisco, “Cisco network admission control,”
http://www.cisco.com, 2003.

[16] Inc. Trend Micro, “Network viruswall outbreak prevention
appliance,” http://www.trendmicro.com, 2004.

[17] P. Porras, L. Briesemeister, K. Skinner, K.Levitt, J. Rowe,
and Y. A. Ting, “A hybrid quarantine defense,” inACM
workshop on Rapid malcode (WORM), October 2004, pp.
73–82.

[18] A. Bose, S. Boehmer, and K. G. Shin, “Malware spreading in
mobile enterprise environments,” University of Michigan
EECS Technical Report, June 2006.

[19] V. Samanta, “A study of mobile messaging services,”UCLA
Master’s Thesis, 2005.

[20] D. R. Ellis, J. G. Aiken, K. S. Attwood, and S. D. Tenaglia,
“A behavioral approach to worm detection,” inWORM ’04:
Proceedings of the 2004 ACM workshop on Rapid malcode,
2004, pp. 43–53.

[21] S. Hofmeyr and M. Williamson, “Primary response technical
white paper,” inSana Security, 2005.

[22] M. Mannan and P. C. van Oorschot, “Instant messaging
worms, analysis and countermeasures,” in3rd Workshop on
Rapid Malcode (WORM), 2005.

[23] P. McDaniel, S. Sen, O. Spatscheck, J. Van der Merwe,
B. Aiello, and C. Kalmanek, “Enterprise security: A
community of interest based approach,” inIn Proc. of NDSS,
2006.

[24] C. Zou, D. Towsley, and W. Gong, “A firewall network
system for worm defense in enterprise networks,” inUMass
ECE Technical Report TR-04-CSE-01, February 2004.

[25] C. Zou, W. Gong, and D. Towsley, “Worm propagation
modeling and analysis under dynamic quarantine defense,” in
ACM Workshop on Rapid Malcode (WORM), October 2003.

[26] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham,
“Large scale malicious code: A research agenda,” inDARPA
and Silicon Defense Technical Report, May 2003.

104

