
RC24123 (W0611-189) November 28, 2006
Computer Science

IBM Research Report

Dynamic Policy Disk Caching for Storage Networking

Eric Van Hensbergen
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

Ming Zhao
University of Florida

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Dynamic Policy Disk Caching for Storage Networking

Abstract

Storage networking is becoming increasingly important,
especially with the emergence of SAN over IP technolo-
gies. It plays an important role in resource consoli-
dation and management for various systems, spanning
from a large-scale data center to a set of interconnected
workstations. However, existing storage systems may
not scale well under the load from relatively large num-
ber of clients. Local disk caching has the potential to
solve this problem by leveraging data locality with client-
side storage, but it is lacking for typical storage net-
works. Addressing to this, this paper presents a general
block-level disk cache, named dm-cache, built on top of
Linux’s device-mapper architecture. It can be transpar-
ently plugged into a client for any storage systems, and
supports dynamic customization for policy-guided opti-
mizations. Experimental evaluation based on file system
benchmarks and a typical application has been conducted
to investigate its performance over iSCSI in a typical
blade center. The results show that dm-cache can sig-
nificantly improve the performance and scalability of the
storage system by orders of magnitude.

1 Introduction

The desire for increased density and maintainability
along with recent advances in networking technology
and bandwidth have led to a growing academic and com-
mercial interest in storage networking. Consolidating
storage resources for a data center, compute node clus-
ter, or set of workstations eases the administrative tasks
of software installation, data backup, and hardware re-
placement. It produces economies of scale for storage
equipment, such as RAID arrays, by sharing it among
several systems. Remote storage resources also provide
an easy medium for sharing common information and ap-
plications across many client machines. The delivery of
commercial, blade-based servers [6] [5] [2] adds addi-

tional impetus for the introduction of storage networking
[16]. The compact form factor of many server blades
allows little room for storage, usually allowing for only
two laptop-sized disks.

In the research efforts of the 1980s, there was a signif-
icant amount of interest in the use of remote disk stor-
age to support not only the long-term storage of user
data but also program binaries, libraries and configura-
tion data. For example, the V System [14] created a
complete computing system using multiple nodes, some
disk-less workstations and some disk-based servers us-
ing a novel interconnection protocol, VMTP [15]. The
Plan 9 Research Operating System [29] also attached
disk-less workstations and disk-less compute servers to
a specialized central file server. Leveraging centralized
network storage for root file systems in order to simplify
systems management has made a come back both in large
scale HPC clusters [19] [4], workstation environments
[32] [13], and servers [28] [34].

Modern storage networking technologies naturally di-
vide into two categories: distributed file systems, re-
ferred to as network-attached storage (NAS) and remote
block device access mechanisms, called storage-area net-
works (SANs). The difference between the two is in the
level of the interface that they offer to remote data. NAS
offers access to files using a standard distributed file sys-
tem protocol, such as the Network File System (NFS)
[9] or the Common Internet File System (CIFS) [23],
while SAN provides block-level access to remote disk
resources. Today, these storage networking technologies
generally are implemented using standard, layered pro-
tocols based on the TCP/IP protocol stack. In particular,
with the emergence of SCSI over IP (iSCSI [33]), ATA
over Ethernet (AOE [12]) and Fibre Channel over IP
[31], the SAN environment is increasingly using TCP/IP,
and the distributed file system protocols used by NAS are
almost universally based on it.

Caching of remote file systems within local mem-
ory and on local disks has long been a component of

network-attached storage systems. Sun’s cachefs, the
AutoCacher [25], Andrew File System [22], Plan 9’s
cfs [1] and Coda [24] all had the ability to use local
disks in order to improve data access efficiency, facilitate
disconnected operation and reduce load on centralized
network-attached storage. More recently, David How-
ells’ FS-Cache [20] provided a generalized local disk
caching facility for the Linux kernel.

What has been lacking is a similar local-disk caching
facility for storage networks such as fibre channel, iSCSI,
and AoE. The exclusive access nature of SAN technolo-
gies reduce or eliminate the need to maintain coher-
ence, further increasing the performance benefits of lo-
cal caching. We have attempted to address this gap with
a generalized block cache facility named dm-cache, built
on top of Linux’s device-mapper [3] block device vir-
tualization framework. It can be transparently plugged
into the clients of different storage systems, and sup-
ports dynamic customization for policy-guided optimiza-
tions. Extensive experiments have also been conducted
to investigate its performance over iSCSI in a blade cen-
ter. The results show that by leveraging data locality
with dm-cache, the performance of the system can be
improved by orders of magnitude, especially when the
number of clients is relatively large.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the design and implementation of dm-
cache. Then two usage examples are discussed in Sec-
tion 3. Section 4 presents the experimental evaluation.
Section 5 examines the related work, and Section 6 con-
cludes the paper.

2 Design and Implementation

2.1 Background
Our approach leverages the block device virtualization
provided by the device-mapper framework. Device-
mapper is a block device mapping facility available in
Linux kernel since the 2.6 releases. It is a component
required by the LVM2 (Logical Volume Management
toolset) to support the mapping between logical volumes
and physical storage devices. Furthermore, it also pro-
vides a generic framework for block device virtualiza-
tion. A virtual block device is typically created through
device-mapper’s userspace library, which communicates
with its kernel component via an ioctl interface. Block
I/O operations issued on the virtual device are forwarded
by device-mapper to an I/O handling target, which is
mainly responsible for mapping the concerned virtual
blocks to the actual blocks of the underlying block de-
vice. For instance, a linear mapping target (dm-linear) is
used by LVM2.

A mapping table is used by device-mapper to set up

the mapping and the target. For example, the follow-
ing table maps the virtual device’s block address range,
which starts at sector 0 and has a length of 65536 sectors
(512 bytes per sector), to the linear target. The parame-
ters after the target name are target-specific, and they are
here to specify that this virtual block segment should be
mapped onto /dev/sdb, starting from sector 0.

echo 0 65536 linear /dev/sdb 0

A growing list of kernel modules has been developed
for pluggable device-mapper targets, such as stripe, mir-
ror, snapshot and raid. Some targets do more than just
mapping block addresses, e.g. an encryption target (dm-
crypt) provides transparent encryption of blocks; dm-
raid implements software RAID support. The logic and
management of the proposed block-level disk cache are
also developed as a new target, called dm-cache, based
on the device-mapper framework. The rest of this sec-
tion discusses in details the design and implementation
of dm-cache.

2.2 Architecture

By leveraging the device virtualization provided by
device-mapper, we can conveniently and transparently
intercept kernel file systems’ block I/O requests, and per-
form the necessary cache operations for them. A disk
cache is constructed by the creation of a virtual block
device through device-mapper, and a mapping between
the original device which is usually accessed through a
storage network, and the local device that is used to store
the cache contents. The virtual device can be used in the
same way as the original device, and then the block I/Os
that are issued onto the virtual device will be handled by
dm-cache. Figure 1 illustrates the architecture of a stor-
age system with the use of dm-cache.

Dm-cache operates at the granularity of block I/Os.
The following operations are typically involved in a re-
mote data access when a disk cache is used (Figure 1).
(1) A user application accesses a file located in the file
system mounted from the virtual block device. (2) It trig-
gers the kernel file system’s block I/O onto the virtual
block device. The request is handled by device-mapper
which then passes it onto the dm-cache target. Dm-cache
checks whether the concerned sectors are already stored
in the cache device or not. (3) If yes, then the request
is performed on the local cache. (4) Otherwise, it is for-
warded to the remote device accessed through the storage
network protocol, e.g. FCP, iSCSI and AoE, etc. The re-
sults returned from the remote device are forwarded back
to the application and also inserted into the disk cache.
Then next time when these sectors are requested again,
they can be directly satisfied from the cache without con-
tacting the remote storage. Note that if the block I/O is a

Figure 1: The architecture of a storage system with the use of dm-cache disk caching.

write operation, the cache logic is slightly more compli-
cated, which will be explained later in Section 2.5.

In the above discussion the first two steps are the same
as in any regular I/O operation, which means that the
cache is completely transparent to both user applications
and kernel file systems. This is an important merit of our
approach, which is inherited from the device-mapper’s
block device virtualization. The existence and operations
of a disk cache are encapsulated within device-mapper
and dm-cache, and to the outside the presented virtual
block device works just like a regular block device.

On the other hand, dm-cache is also completely agnos-
tic of the kernel file systems, which is a significant advan-
tage of this design over other disk caching approaches.
The simplicity and stableness of the Linux generic block
device layer interface, which dm-cache works with, has
greatly facilitated a robust implementation and mainte-
nance of the dm-cache code. Working at the block level
also lets dm-cache inherently support all storage network
protocols, and therefore it can seamlessly fit into any
storage systems.

2.3 Structure
A disk cache consists of two parts, the actual data cached
from the original block device, and the metadata associ-
ated with the cache. Data are organized as blocks and
stored on the cache device. Data blocks are typically in
the size of multiple sectors, and organized into sets, as in
traditional set-associative cache designs. The block size
and cache associativity are both configurable per disk
cache (see Section 2.5 for details). A hash table based
algorithm is currently used to map the blocks from the
original block device to the cache frames.

When a block is inserted into a cache set, the algorithm
firstly tries to find an invalid block, i.e. an empty frame,
to use. If cache replacement turns out to be necessary, the
eviction favors clean blocks over the dirty blocks which
store the delayed write operations. Then within the same
type of eviction candidates, the LRU (Least Recently
Used) policy is used to pick the best one for the replace-
ment. The cache algorithm is implemented in a way that
the above policies can be realized with only one scan of
the entire set.

Modern disk drivers and devices often use buffers to
coalesce adjacent small accesses in order to improve the
utilization of raw disk bandwidth. A naive hash based
mapping may cause adjacent blocks from the original
disk to be mapped to very distinct locations in the cache
disk, and thus lead to poor performance. Addressing to
this problem, the cache mapping algorithm is optimized
to have a certain number of consecutive blocks mapped
into consecutive frames in the cache, so that the cache
disk’s bandwidth can be effectively utilized.

Compared to other complex, full-associative caching
algorithms, our hash-table based set-associative scheme
is uncomplicated and thus potentially requires less CPU
processing power, and yet it is very flexible for cus-
tomization. Further, its effectiveness is also proved by
the experimental evaluation, as presented in Section 4.

A disk cache’s metadata consists of its parameters,
such as the capacity, block size, associativity etc., and
the dynamic status of each cache block, including the
mapping, i.e. the corresponding offset of the cached data
in the original block device, and the state. As mentioned
above, a cache block can be in three different states, in-
valid, clean or dirty. In every disk cache, there is a seg-

ment at the end of the cache device that is reserved for
storing the cache metadata. However, in order to achieve
the best performance, the metadata is always kept in
memory and only synchronized with the disk when it is
necessary.

There are two issues with these approaches. The first
one is the limited kernel memory for storing the meta-
data. When a cache’s capacity is large and its block size
is small, the amount of metadata can be considerably
large. To solve this problem without reducing the cache
size, the block size needs to be increased so that the cache
can operate at a larger granularity of disk sectors, which,
as a side effect, will cause the cache to use more aggres-
sive prefetching. A memory usage threshold can be set
in dm-cache, and when the available quota is not enough
to create a cache, an error will be reported to suggest the
user to use a larger block size or a smaller cache size.
The other issue is about reliability when the in-memory
metadata are not consistent with the disk cache contents,
which will be discussed in Section 2.6.

2.4 Deployment

Dm-cache is implemented as a loadable kernel module
to the Linux 2.6 releases. Hence, its deployment does
not require any kernel modifications, given that device-
mapper is already deployed in the mainstream Linux ker-
nels by default. This is very important in that dm-cache
can be conveniently integrated with the existing Linux
compute servers. A disk cache can be created using the
device-mapper userspace tool, dmsetup. For example,
the following command line creates a disk cache with
the desired parameters for a block device.

echo 0 131072 cache /dev/sdb
/dev/sda6 0 8 65536 256 | dmsetup
create cache1

It uses dmsetup to create a virtual device called
cache1, which appears on the compute server as
/dev/mapper/cache1, and passes the mapping table,
which includes the parameters after the echo command,
to the dmsetup program for setting up the cache. The
first two parameters correspond to the size of the original
block device. The third parameter tells device-mapper
to use our new cache target for the mapping of this vir-
tual device. The following parameters are specific to
dm-cache. They specify that the device to be cached is
/dev/sdb and the local device used to store the cache con-
tents is /dev/sda6. The other parameters customize the
configuration of the cache, which starts at sector 0, oper-
ates at the block size of 8 sectors (4KB), has a capacity
of storing 64K blocks, and is 256-way associative.

We have also developed another program for the man-
agement of disk caches, based on the device-mapper

userspace library. It has a much more user-friendly in-
terface, and can automatically find out the correct size of
the original device, which is a necessary parameter for
the cache setup. Furthermore, this program provides a
central management for all the disk caches on the same
compute server, which is discussed in the following sub-
section.

2.5 Dynamic Policy

A session-based semantics is employed to customize and
manage disk caches. A session is typically associated
with the deployment and execution of an application. A
disk cache is created for a session, and removed after the
session completes. For each session, its disk cache can be
customized according to the application’s requirements
and characteristics, and the resource utilization policies.

As discussed before, a disk cache’s parameters, in-
cluding capacity, block size and associativity can be con-
figured as desired. For example, a cache’s capacity can
be configured based on an estimation of the application’s
working dataset size, or its business value. A cache’s
block size is usually configured to be 4KB, because ker-
nel file systems operate at the granularity of pages, which
are in this size. However, it can also be customized
according to the application’s data access pattern. For
example, if substantial sequential data accesses are ex-
pected, then the cache block size can be configured larger
to take advantage of more aggressive prefetching.

Another important cache customization is on the
choice of write policy: write through or write back. With
the write-through policy, a write block I/O is performed
on the remote storage as well as in the cache. The two
write operations can be conducted simultaneously and
both asynchronously, and dm-cache does not need to
wait for the cache write to finish before it acknowledges
the original request’s completion. So the cache’s perfor-
mance is not affected by the use of this policy. More
importantly, write-through guarantees the consistency of
data on the storage server, which is very important in
some scenarios, e.g. where data loss is very expensive
and the client-side storage device is much less reliable
than the servers.

When the write-back policy is used, a write request
is only performed in the cache and its submission to the
storage server is delayed. Therefore, it can alleviate the
load of the storage network and server, and also improve
the application’s performance, especially when the stor-
age system is under a considerable load from multiple
clients, as demonstrated by our experimental evaluation.

The delayed writes can be submitted at the end of the
session, after the application completes its execution, in
which case, the application can potentially achieve the
best performance. However, the flush of large volume of

dirty cache blocks may hurt the performance of other ac-
tive sessions. Two approaches can be used to solve this
problem. The first one is developed by giving dm-cache
the ability of self-throttling bandwidth utilization. As the
flushing phase starts, dm-cache increases the bandwidth
usage for writing back gradually. It doubles the num-
ber of simultaneously submitted blocks every round, and
also monitors the average response time for the requests
of each round. If a significant deterioration of the respon-
siveness is detected, it means that the storage system is
probably saturated, and thus dm-cache reduces its band-
width usage by halving the block submission rate.

Another approach leverages middleware for more pre-
cise resource utilization monitoring and scheduling, in
which the middleware is responsible for tracking the
storage server’s load and controlling the client to flush
the dirty cache blocks when the server is relatively idle.
It will be discussed shortly in Section 3 that middle-
ware can play an important role in the effective usage
of client-side disk caches. The cache management pro-
gram discussed above is part of this middleware, acting
as the control point on a compute server. For example, it
records the setup of each local disk cache on the compute
server, and prevents two caches on the same disk volume
from overlapping each other. It also generates a unique
string for each cache to use as its identifier.

Finally, it is worth to be noted that a disk cache’s cus-
tomization can also be dynamically adapted according
to the policy changes. For example, a resource utiliza-
tion policy may decide to shrink an existing session’s
cache in order to save space for a more important ses-
sion. A performance requirement may choose to switch
a cache’s write policy to write-back so that the applica-
tion’s execution deadline can be satisfied. Through the
management program, an existing cache can be signaled
to reload its configuration parameters and perform the
desired changes. However, such a process may take a
considerable time to complete, in which case the cache
can be suspended temporarily for carrying out this adap-
tation.

2.6 Reliability and Failure Handling

Dm-cache disk caching is inherently reliable because the
data are always stored on persistent storage. Further,
when the storage server is crashed due to failure or not re-
sponsive because of overloading, a warm disk cache can
even help the client to continue operating till the server is
recovered. However, if a cache operation to the cache de-
vice does raise an I/O error, then this error will be hidden
by dm-cache from the kernel file system and user appli-
cation. The original request that triggers this cache I/O
will be forwarded to the storage server, and the error will
be logged for the administrator to examine. Specifically,

when a read to a cached block or a write for a write-back
block fails, dm-cache will recover this error by complet-
ing the request on the remote storage device instead.

A cache’s metadata are always maintained in mem-
ory and kept consistent with the data blocks on disk. If
a compute server shuts down gracefully, dm-cache can
also safely flush the metadata to disk so that when the
system is up again, the metadata can be reloaded from
disk and the cached data blocks can be reused. However,
if the compute server is recovered from a crash, then the
metadata retrieved from disk may not be in a consistent
state with the cached data. To solve this problem, the
cache can be configured in three different ways in order
to recover from such a client-side failure.

The first solution is to invalidate the entire cache and
discard all the cache contents when the system is recov-
ered. In this configuration, the cache metadata in mem-
ory does not need to be synchronized with the cache
disk, but write-back caching cannot be used otherwise
data may be lost when a failure happens. The disadvan-
tage of this approach is that cached data are wasted after
the recovery and the performance may be hurt without
using write-back. However, because it avoids the over-
head from synchronizing metadata, it can also be effi-
cient given that failures are rare and write operations are
much more infrequent than reads. In addition, it is also
suitable when the reliability of the compute server’s local
disks are not trusted.

The second solution synchronizes the in-memory
metadata with the disk whenever the metadata is
changed, i.e. when a cache insertion, invalidation or
write-back has taken place. This configuration has the
highest synchronization overhead compared the others,
but it can be used when the compute server is not in a
stable operating state. The third solution is a trade-off
between the first two, in which only the metadata of dirty
cache blocks are always kept consistent on disk. In this
case, only the insertion or submission of a write-delayed
block triggers the synchronization between memory and
disk. This approach can guarantee the data integrity and
also achieve a very good performance. Therefore, it is
used as the default configuration in most scenarios.

3 Usage Examples

3.1 Dynamic Application Environment In-
stantiation

An Application Environment (AE) is an encapsulation
of an execution environment, including the O/S, libraries
and other software installations that are customized for a
particular application. This is a concept that is often used
by data centers, where multiple AEs are hosted on dy-
namically allocated pool of resources to provide differ-

Figure 2: Dynamic Application Environment Instantia-
tion.

Figure 3: Cluster Software Provisioning.

ent application services (Figure 2). The AEs are stored
as images on the central image servers, and dynamically
deployed and destroyed on the compute servers on de-
mand. An AE can be directly instantiated on a dedicated
physical node ([26]), or multiple AEs can be instantiated
within individual isolated virtual machines which share
the underlying physical resources ([35]).

Such a scenario can be realized on top of a storage net-
work to support high-performance image accesses. Lo-
cal disk caches can be deployed on the compute servers
to further speed up the instantiation of AEs. A disk cache
is bound to a specific AE with a unique identifier, as men-
tioned in Section 2.5, that describes the AE. However, it
can be persistent on the compute server across the AE’s
lifecycles. Then when the middleware decides to deploy
an AE, it can match the AE with the available client-
side disk caches, and choose the matched one to use, so
that the cached data can be leveraged to achieve instan-
taneous instantiation.

3.2 Cluster Software Provisioning

The system management of a computing infrastructure is
becoming increasingly complex. For example, a small or
medium-sized firm typically has a cluster of servers run-
ning software suites for internal use as well as services
for customers. The provisioning of a software compo-
nent is often a long and manual process, entailing the in-
stallation and configuration of the base O/S and the nec-
essary software. Further, it has to be repeated whenever
a reprovision is required.

Such a process can be greatly simplified and expe-
dited by employing role-based software management and
storage virtualization technologies ([28]). A key soft-
ware component, such as a base O/S, a web server and a
database server, can be designated a role and stored in a
storage layer on the storage server. The later-on upgrades
to the software component will lead to different versions
of the same role and be encapsulated in individual Copy-
on-Write (CoW) layers. In this way, the provisioning of
a software component only involves giving the compute
server accesses to the corresponding role’s storage layers
(Figure 3). A local disk cache can be established along
with the provision in order to relieve the storage server’s
load and improve the software’s performance. The cache
is also bound to the software component with an iden-
tifier that describes the provision. Then when a repro-
vision occurs to the compute server, the disk cache can
be checked against the new provision in order to decide
whether it can be reused or should be invalidated.

4 Experimental Evaluation

4.1 Setup

This section evaluates the performance of the proposed
disk cache for a typical storage network. Experiments
were conducted in a blade center, where 1 of the blades
was dedicated as the storage server, and 8 others were
used as compute servers to run the applications. Each
blade has two dual-core 2.4GHz Opetron processors with
2GB of memory and a 73GB 10K RPM SCSI disk ex-
hibiting an average seek time of 4.1ms, and runs Ubuntu
6.06 with 2.6.17.7 kernel. The blades are interconnected
via Gigabit Ethernet, and iSCSI is used as the storage
network protocol. The storage server uses iSCSI enter-
prise target 0.4.13 [8] and the compute servers use Open-
iSCSI 1.0-485 [7] as the initiators. Each compute server
is allocated an independent 8GB disk volume on the stor-
age server, and accesses the storage data through a local
ext3 file system with the default parameters.

In this particular setup, each compute server’s local
disk has an O/S installation, which is used to support the
applications as well as dm-cache. However, this is not al-

ways necessary since the servers can be network-booted
(e.g. through NFS root), in which case the client-side
disks can be fully utilized for caching. For all the ex-
periments, the disk cache on each compute server was
configured with 8GB of capacity, 1024-way associativity
and write-back policy, and used 4KB block size unless
otherwise noted.

Three benchmarks were selected for this evaluation,
including two typical file system benchmarks, IOzone
and PostMark, and a typical application, kernel compi-
lation. In order to investigate the scalability of the stor-
age system, the benchmarks were executed with various
number of compute servers. When multiple servers were
considered, each of them executed the same benchmark
concurrently and accessed the storage server in paral-
lel. In this case, the results averaged across the involved
servers are reported. In addition, every test was started
with cold memory buffer and disk cache by unmounting
the file system and flushing the disk cache beforehand.

The rest of this section presents the results and analy-
sis from the experiments with these benchmarks. We fo-
cus on the performance comparison between two cases:
iSCSI with the use of dm-cache (labeled as dm-cache in
the results) and plain iSCSI without disk caching (labeled
as plain iSCSI in the results).

4.2 IOzone

IOzone [27] is a commonly used benchmark that ana-
lyzes the file system performance for a given computer
platform. It typically measures the throughput for read
and write operations on a large file with a variety of
access patterns. In our experiment it was used to in-
vestigate the performance of dm-cache for large volume
of sequential reads and writes. Two different IOzone
tests were considered: read/reread, in which a 4GB
input file was sequentially read and then reread once;
write/rewrite, in which the program sequentially wrote
and then rewrote a 4GB file once. Note that because the
dataset is larger than the available memory on a com-
pute server, it is guaranteed that when the file is reread
it cannot be completely served from the server’s mem-
ory buffer so that we can have a realistic measurement of
the storage system. In addition, a block size of 256KB is
used by dm-cache to take advantage of more aggressive
prefetching.

4.2.1 Read/Reread

Figure 4(a) shows the throughputs for the read and reread
phases as the number of clients, the compute servers,
scales from 1 to 8. The read phase started with cold
caches, which were filled up as the input file being
read by IOzone. The overhead from writing blocks into

cache is high compared to the speed of reading blocks
across the iSCSI network. Therefore, the throughput of
this phase is hurt by the use of dm-cache. However,
as the storage server gets loaded up from more clients,
the throughput of iSCSI drops substantially and so does
the difference between dm-cache’s and plain iSCSI’s
throughput.

Once the caches become warm, the leverage of data
locality helps to improve the performance, which is
demonstrated by the reread phase. However, the use of
memory buffer is inadequate due to its limited capac-
ity and the performance of iSCSI still drops quickly as
more clients access the storage server at the same time.
In contrast, the use of dm-cache can completely satisfy
the clients’ data accesses from local disks, and thus the
reread phase’s throughput is not impacted by the num-
ber of clients at all. As the result, the throughput of the
dm-cache case for 8 clients is higher than plain iSCSI by
more than 9 folds.

The total runtime of the IOzone read/reread test is il-
lustrated in Figure 4(b) for the different cases. In the dm-
cache case, the benchmark was executed consecutively
twice, while the second run starts with cold memory
buffer but warm disk cache. The results further demon-
strate that the availability of warm disk cache can greatly
improve the scalability of the storage system. The dm-
cache case’s speedup over plain iSCSI grows to more
than 13 folds when 8 clients are in use.

4.2.2 Write/Rewrite

The second IOzone experiment used the write/rewrite
test. The write phase also started with cold caches, but
different from the read phase of the previous test, the
writing of cache blocks is more efficient than the writ-
ing of data over iSCSI, and hence the dm-cache case
has higher throughput than plain iSCSI (see Figure 5(a)).
Further, as more clients writing concurrently, the storage
server gets saturated with plain iSCSI and its through-
put drops significantly. But in the dm-cache case the
throughput remains the same regardless of the number of
clients since each client is writing to its own local disk.
Similar trend can also be observed in the rewrite phase.

Consequently, the runtime of the benchmark is greatly
improved when dm-cache is used, and at the point where
8 clients are used, the speedup is about 8 folds (Fig-
ure 5(b)). Note that the time needed for a client to
write back its locally cached dirty blocks is not counted
into the runtime, since the write-back happened after the
benchmark’s execution was completed – the computing
resources allocated to this task were released and its out-
put data were safely stored. In addition, the dirty data can
be submitted when the storage server is relatively idle, as
discussed in Section 2.5, so that its impact on the perfor-

(a) Throughput (b) Runtime

Figure 4: The throughput and runtime of IOzone read/reread test.

(a) Throughput (b) Runtime

Figure 5: The throughput and runtime of IOzone write/rewrite test.

mance of other tasks can be minimized.

4.3 PostMark
PostMark [21] is another popular file system benchmark,
but has very different data access pattern than IOzone.
It simulates the workloads from emails, news and web
commence applications, by performing a variety of file
operations on a large number of small files. The bench-
mark starts with the creation of an initial pool of files,
then issues a number of transactions, including create,
delete, read and append, on the pool, and finally removes
all the files. In contrast to the uniform, sequential data ac-
cesses with the IOzone read and write tests, the storage is
randomly accessed with a mixed sequence of operations
during the execution of PostMark.

In our experiment, the initial number of files is 8K
and the number of transactions is 64K, where the files
range between 1KB and 64KB in size, and the transac-
tions are equally distributed between create and delete,
and between read and append. With this configuration,
the entire execution of PostMark involves 1.3GB of reads
and 1.7GB of writes on the storage device. But because
the data being read are generated by the program’s earlier

write operations and the available memory on a compute
server is larger than the size of the reads, the operations
that are sent out to the storage network are eventually
mostly writes.

The total runtime and transaction rate of PostMark’s
execution are illustrated in Figure 6(a) for the plain iSCSI
and dm-cache cases with various numbers of clients.
They both show that the use of disk caching achieves
much better performance as well as scalability than plain
iSCSI. With only one client running PostMark, the per-
formance of iSCSI is improved by 1.5 times with dm-
cache. As the number of clients increases, iSCSI’s per-
formance drops dramatically, while the disk caches help
to prevent the performance degradation. When 8 clients
execute the benchmark concurrently, the speedup of dm-
cache versus plain iSCSI is already about 15 folds.

Figure 6(b) further breaks down the advantage of us-
ing disk caching by comparing the throughputs of Post-
Mark’s read and write operations. Similar observations
can also be made based on these data.

(a) Runtime and throughput (b) Throughput of read and write operations

Figure 6: The runtime and throughputs of PostMark.

Figure 7: The runtime of kernel compilation.

4.4 Kernel Compilation

Kernel compilation represents the typical file system us-
age in a software development environment. Very differ-
ent from the above two file system benchmarks, it is a
rather CPU intensive real-world application. The kernel
used in the experiment is Linux 2.6.17.7, and the com-
pilation generates more than 5 thousands of object files
which involves hundreds bytes of reads and writes on the
storage device. To leverage the available CPUs on the
compute servers, the compilation was conducted with 4
parallel jobs.

Figure 7 shows the total runtime of the kernel com-
pilation on iSCSI with and without disk caching. Be-
cause this task is much less I/O intensive than IOzone
and PostMark, the benefit of using disk caches is not that
obvious when the number of clients is small. With only
one client compiling the kernel, the use of dm-cache in-
troduces a 7% overhead relative to plain iSCSI. With 4
clients, the dm-cache case is only faster than plain iSCSI
by 4%. However, when 8 compilations are executed by
the compute servers concurrently, their average runtime
on plain iSCSI rises up significantly. In contrast, the run-
time in the dm-cache case only increases moderately, and

Table 1: I/O Volume (GB)

Table 2: Storage Server CPU Consumption Ratio

consequently it is 50% faster than the case without disk
caching. These results reveal that even for a not I/O in-
tensive task, the storage system still has serious scalabil-
ity problems. Nonetheless, the use of dm-cache can very
effectively resolve these problems by taking advantage
of the client-side storage and the data access locality.

4.5 Storage Server Utilization

Finally, we conclude this section with another group of
data, which explain the scalability of plain iSCSI and
iSCSI with dm-cache by comparing their utilization of
the storage server as the aforementioned benchmarks are
executed by the 8 clients concurrently. Table 1 lists the
volume of I/O that is served by the storage server during
the execution of the benchmarks (the write-back phases
are included). The data from the file system bench-
marks, IOzone and Postmark, both show that a substan-
tial amount of I/O is saved on the storage server through
the use of client-side disk caching. The I/O saved during
the kernel compilation is only hundreds of megabytes per
run. However, considering that it represents the typical
applications that are frequently running on the compute

servers, e.g. as in a data center, the save of the storage
servers I/O load will still be considerable.

Serving the iSCSI I/O requests consumes not only the
storage server’s I/O bandwidth, but also its CPU cycles,
which are spent as the requests traverse the kernel layers
of networking, iSCSI server and storage device driver.
Table 2 compares the CPU consumption between plain
iSCSI and dm-cache for the various benchmarks (the
write-back phases are also included). It can be seen that
an order of magnitude of CPU processing power is also
saved on the storage server when dm-cache is used with
the storage network.

It is understood that some of the scalability issues ex-
hibited by this iSCSI-based storage system can be at-
tributed to the fact that a single disk is used to serve the
concurrent client accesses. However, as demonstrated by
the above experiments, the performance bottlenecks ap-
pear even for a small number of clients. Therefore, it is
reasonable to believe that the same issues will still per-
sist for a better-equipped and more load-balanced stor-
age system, when the number of clients is relatively lager
than the current setup.

5 Related Work

Caching is a classic idea that has been very success-
fully employed by many different types of computer sys-
tems. It improves a system’s performance by exploiting
temporal and spatial locality of references and provid-
ing high-bandwidth, low-latency access to cached data.
Naturally, caching has also been implemented in various
distribute systems in order to hide network latency. Most
distributed file systems leverage the client-side memory
for caching data and metadata. For example, the NFS
protocol allows the results of various NFS remote proce-
dure calls to be cached in a client’s memory [9].

However, memory caching is often not sufficient due
to its limited capacity and non-persistent nature. There-
fore, disk caching has been proposed to further take ad-
vantage of data locality. A disk cache can complement
the memory buffer and form an effective cache hierar-
chy. There are several distributed file system solutions
that also exploit the advantages of disk caching. Sun’s
cachefs, the AutoCacher [25], AFS [22], Plan 9’s cfs
[1] and Coda [24] all have the ability to utilize local disks
to improve the efficiency of remote data access, facilitate
disconnected operation and reduce load on centralized
network-attached storage. More recently, a generalized
filesystem caching facility, FS-Cache [20], has been pro-
vided for the Linux kernel.

In the context of wide-area/Grid systems, the use
of disk caching becomes especially important because
WAN typically has much higher latency and lower band-
width. In such systems middleware is often involved in

the cache management. Globus GASS [11] caches the
files that are used by a Grid job on the execution host in
order to speed up the subsequent executions. BAD-FS
[10] improves the performance of batch workloads by
using cache volumes to hold read-only data and scratch
volumes to buffer local modifications, and also expos-
ing the control of volumes to the scheduler. GVFS [35]
customizes disk caching based on application-tailored
knowledge, which has been employed to support the in-
stantiation of virtual machines across Grids. Collective
[13] is a cache-based management system for delivering
virtual machine based appliances.

Compared to these filesystem-level disk caching solu-
tions, our approach is a general block-level disk cache
that inherently supports all file system and storage net-
work protocols, and can be deployed in storage systems
spanning from SAN to WAN. Furthermore, there are sev-
eral advantages of building a general disk cache at the
block-level than at the filesystem-level. Firstly, the lat-
ter approach has to deal with the various complex and
often changing interfaces of DFSs. For example, NFS
V3 has 21 different procedure calls, while NFS V4 uses
the compound procedure call which can combine 37 dif-
ferent operations. In contrast, dm-cache works on the
generic block layer interface, which is very simple and
stable, and only needs to handle block read and write.

Secondly, in order to intercept a DFS’s I/O requests
and implement the caching functionality, it is necessary
to either modify the DFS, which hurts the applicability,
or use a loopback server to proxy the requests, which
incurs performance overhead. These restrictions do not
apply to dm-cache, since it is based on the kernel’s native
block device virtualization. In addition, using file system
to cache data often has the problem of double buffering
(the same data are cached in both the DFS’s pages and
the pages of the cache’s file system), which also does not
happen in block-level disk caching. Finally, dm-cache
is based on storage network protocols, which typically
have much higher performance and scalability than the
DFS protocols which filesystem-level disk caches rely on
[30].

Although disk caching is typically lacking for exist-
ing storage networks, there are several related solutions
that have also recognized its importance. STICS [18]
introduces a SCSI-to-IP appliance that encapsulates the
functionality of protocol conversion and caching. iCache
[17] is a iSCSI driver that implements local disk caching.
Compared to them, dm-cache is a more generalized disk
cache that can be transparently plugged into the clients of
different storage networks. In addition, we have demon-
strated the scalability of our approach with experiments
on a relatively large number of clients, which is lacking
from those two papers.

6 Conclusions and Future Work

Storage networking is becoming increasingly impor-
tant in resource consolidation and system management.
However, existing storage systems may not scale well
under the load from relatively large number of clients.
Addressing to this problem, we have developed a gen-
eral block-level local disk cache, named dm-cache, built
on top of Linux’s device-mapper architecture. Our ex-
perimental evaluation has demonstrated that it can sig-
nificantly improve a storage system’s performance and
scalability, by leveraging the data locality with client-
side storage.

Based on dm-cache, our future research will be fo-
cused on further improving the effectiveness and effi-
ciency of storage network caching by embedding more
intelligence into the cache management, especially on
the decision of prefeching, replacement and write-back;
building cooperative caching scheme to allow clients
sharing cached data in a peer-to-peer manner; and inte-
grating disk caching with cluster file systems that permit
concurrent access to the shared storage volumes.

References

[1] Cfs - cache file system. Plan 9 Manual Pages.

[2] Dell poweredge blades. http://www.dell.com/blades.

[3] Device-mapper. http://sourceware.org/dm/.

[4] Exterme cluster administration toolkit. http://xcat.org.

[5] Hp bladesystem. http://www.hp.com/products/blades.

[6] Ibm bladecenter. http://www.ibm.com/systems/bladecenter.

[7] Open-iSCSI Project. http://www.open-iscsi.org/.

[8] The iSCSI Enterprise Target Project.
http://iscsitarget.sourceforge.net/.

[9] NFS Illustrated. Addison-Wesley, 2002.

[10] BENT, J., THAIN, D., ARPACI-DUSSEAU, A., AND

ARPACI-DUSSEAU, R. Explicit control in a batch-
aware distributed file system. In Proceedings of the First
USENIX/ACM Conference on Networked Systems Design
and Implementatio (2004).

[11] BESTER, J., FOSTER, I., KESSELMAN, C., TEDESCO,
J., AND TUECKE, S. Gass: a data movement and access
service for wide area computing systems. In IOPADS ’99:
Proceedings of the sixth workshop on I/O in parallel and
distributed systems (New York, NY, USA, 1999), ACM
Press, pp. 78–88.

[12] CASHIN, E. L. Ata over ethernet: putting hard drives on
the lan. Linux Journal.

[13] CHANDRA, R., ZELDOVICH, N., SAPUNTZAKIS, C.,
AND LAM, M. S. The collective: A cache-based system
management architecture. In Proceedings of the Second
Symposium on Networked Systems Design and Implemen-
tation (NSDI ’05) (May 2005).

[14] CHERITON, D. R. The v distributed system. Communi-
cations of the ACM 31, 3.

[15] CHERITON, D. R. Vmtp: A transport protocol for the
next generation of communication systems. In Proceed-
ings of the 1986 ACM SIGCOMM Conference on Com-
munication Architectures and Protocols (1986), ACM,
pp. 406–415.

[16] G. PRUETT, E. A. Bladecenter systems management soft-
ware. IBM Journal of Research and Development.

[17] HE, X., YANG, Q., AND ZHANG, M. A caching strategy
to improve iscsi performance. In LCN ’02: Proceedings
of the 27th Annual IEEE Conference on Local Computer
Networks (Washington, DC, USA, 2002), IEEE Com-
puter Society, p. 0278.

[18] HE, X., ZHANG, M., AND YANG, Q. Stics: Scsi-to-
ip cache for storage area networks. J. Parallel Distrib.
Comput. 64, 9 (2004), 1069–1085.

[19] HENDRIKS, E. A., AND MINNICH, R. G. How to build
a fast and reliable 1024 node cluster with only one disk.
The Journal of Supercomputing.

[20] HOWELLS, D. Fs-cache: A network filesystem caching
facility. Proceedings of the 2006 Linux Symposium.

[21] KATCHER, J. Postmark: A New Filesystem Bench-
mark. Technical Report TR3022, Network Appliance,
1997. http://www.netapp.com/tech library/3022.html.

[22] KAZAR, M. L. Synchonization and caching issues in the
andrew file system. CMU-ITC-88-063.

[23] LEACH, P., AND PERRY, D. Cifs: A common internet
file system. Microsoft Interactive Developer.

[24] M. SATYANARAYANAN, E. A. Coda: a highly avail-
able file system for a distributed workstation enviorn-
ment. IEEE Transactions on Computers.

[25] MINNICH, R. G. The autocacher: A file cache which
operates at the nfs level. In Proceedings of the Winter
USENIX Technical Conference (San Diego, CA, 1993),
p. 77C83.

[26] MOORE, J., AND CHASE, J. Cluster On Demand.
Technical Report CS-2002-07, Duke University, Dept. of
Computer Science, May 2002.

[27] NORCUTT, W. The IOzone Filesystem Benchmark.
http://www.iozone.org.

[28] OLIVEIRA, F., PATEL, J., HENSBERGEN, E. V.,
GHEITH, A., AND RAJAMONY, R. Blutopia: Cluster
life-cycle management. IBM Research Report RC23784.

[29] PIKE, R., PRESOTTO, D., DORWARD, S., FLANDRENA,
B., THOMPSON, K., TRICKEY, H., AND WINTERBOT-
TOM, P. Plan 9 From Bell Labs. Usenix Computing Sys-
tems (1995).

[30] RADKOV, P., YIN, L., GOYAL, P., SARKAR, P., AND

SHENOY, P. A performance comparison of nfs and iscsi
for ip-networked storage. In Proceedings of the 3rd
USENIX Conference on File and Storage Technologies
(2004), p. 101C114.

[31] RAJAGOPAL, M., ET AL. Fibre channel over
tcp/ip (fcip). Internet Draft Document, draft-ietf-ips-
fcovertcpip-06.txt.

[32] SAPUNTZAKIS, C., BRUMLEY, D., CHANDRA, R.,
ZELDOVICH, N., CHOW, J., LAM, M. S., AND ROSEN-
BLUM, M. Virtual appliances for deploying and maintain-
ing software. In Proceedings of the Seventeenth Large In-
stallation Systems Administration Conference (LISA ’03)
(October 2003).

[33] SATRAN, J., ET AL. iscsi. Internet Draft Document,
draft-ietf-ips-iSCSI-08.txt.

[34] TOM KELLER, E. A. A study of the performance of disk-
less web servers. IBM Research Report RC22629.

[35] ZHAO, M., ZHANG, J., AND FIGUEIREDO, R. J. Dis-
tributed file system virtualization techniques supporting
on-demand virtual machine environments for grid com-
puting. Cluster Computing 9, 1 (2006), 45–56.

