
RC24124 (W0611-190) November 28, 2006
Computer Science

IBM Research Report

Evaluating Stackable Storage as the Building Block
for Systems Management

Eric Van Hensbergen
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

Gorka Muzquiz
Ray Juan Carlos University

Fabio Oliveira
Rutgers University

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Evaluating Stackable Storage as the
Building Block for Systems Management

Abstract

Centralized systems management approaches have been
recently investigated in the academia and implemented
in the industry aiming to facilitate the deployment of
disk images to groups of machines. The old approach
of installing and configuring each machine individually
is most of the time impractical and error-prone. How-
ever, no study to date has sought to investigate different
design alternatives for storage systems supporting cen-
tralized disk image management, or evaluate their per-
formance and scalability. In this paper, we first propose
the notion ofstackable storageas a mechanism to orga-
nize disk images on centralized storage servers, and show
how this mechanism would help the system administra-
tor to perform typical management tasks. We next dis-
cuss different design options by varying three key com-
ponents of thestackable storagedesign space. Finally,
we prototype the design options and evaluate their per-
formance behavior and scalability.

1 Introduction

The computing infrastructure on which small and
medium-sized firms rely is becoming increasingly com-
plex. Many such companies depend on software compo-
nents distributed over a number of servers running inter-
nal application suites or providing on-line Internet ser-
vices. These distributed components include database
servers, email servers, identity management servers, ap-
plication servers, Web servers, load-balancers, and many
others. This diversity of mutually dependent software
complicates the fundamental tasks of systems manage-
ment: initial installation, software upgrade, new hard-
ware deployment, and coherent cluster configuration.

A descentralized systems management approach is
still adopted by some organizations, where each machine
is individually installed from CD-ROM or DVD media
and manually configured. If the administrator needs to

deploy new hardware to expand the system capacity, or
to reprovision a cluster to balance the workload, the te-
dious process of installation and configuration has to be
repeated, making sure that all necessary software com-
ponents are installed on each node — an error prone task
at best —, not to mention the need to keep all machines
up-to-date with the most recent patches. That humans
invariably make mistakes worsens the problem. Several
studies have shown that human mistakes committed dur-
ing system administration were the predominant cause of
service disruptions and outages [12, 22, 21, 20].

It comes as no surprise that centralized systems man-
agement mitigates the aforementioned problems and sig-
nificantly reduces the management costs. In light of
this observation, approaches to centralized management
have been investigated in the academia [6, 32] and imple-
mented in the industry [3, 30], aiming at facilitating disk
image manipulation and deployment by means of shar-
ing. However, thus far no study has investigated different
design alternatives of centralized storage servers for the
purpose of disk image management, evaluated them, or
characterized their performance behavior and scalability.

In this paper, we address this issue in three steps.
We first propose a mechanism for centralized disk im-
age management which we callstackable storage. The
namestackable storagestems from the idea of compos-
ing different views of the storage system by stacking lay-
ers of disk image. This mechanism makes it easy to
segregate user or machine-specific data from OS and ap-
plication images, a characteristic on which most exist-
ing approaches to centralized management rely. Next,
we identify different policies for the stackable storage
mechanism by varying the granularity at which disk im-
age layers can be stacked — block level or file system
level —, the target of the stacking code — storage server
or clients —, and the type of data transport protocol used
by the clients to access their logical volumes — file ac-
cess protocol or block access protocol. Finally, we eval-
uate and compare those policies of stackable storage in

order to unveil their design idiosyncrasies, performance
behavior, and scalability.

Our proposed mechanism can provide the foundations
for implementing centralized disk image management
systems, and our evaluation is a first step towards under-
standing the intricacies of this emerging trend in systems
management. The results of our analysis provide some
guidance on how to exploit the convenience of central-
ized management without sacrificing efficiency and scal-
ability.

The remainder of the paper is organized as follows.
Section 2 enumerates the related work. In section 3 we
describe the idea behindstackable storageand how it
eases the management of disk images, whereas section 4
discusses the possible ways of implementing the mecha-
nism ofstackable storage. Section 5 evaluates stackable
storage in terms of performance and scalability and, fi-
nally, section 7 draws our conclusions.

2 Related Work

The concepts of stackable storage are present in many file
server software stacks, employed primarily as a mech-
anism to allow for temporal snapshots of the filesys-
tems. Some systems, such as Linux’s LVM [18],
are architected to keep temporary snapshots to facili-
tate backup. Others such as NetApp’s Write Anywere
File Layout (WAFL) file system [7] and ext3cow [23]
keep snapshots around for an extended period of time.
Other approaches, such as the Plan 9 File Server [25]
kept snapshots on a permanent basis by storing them on
WORM optical jukeboxes. Later versions [28] lever-
aged content-addressable-storage [27] to accomplish the
same purpose with more frequent snapshots. File sys-
tems such as Elephant [9] offer more granular version-
ing and allow different retention policies for historical
versions. More recently, Peabody [17] provided time-
traveling disks which expose a block-level interface and
provide complete versioning of disk operations regard-
less of the file system using it.

Stackable file system design is a relatively old concept
[31]. Within the Linux community, more complicated
stackable file systems have been enabled via the File Sys-
tem Translator language (FiST) [39]. It has been used
to implement a variety of file system extensions includ-
ing encrypted file system layers [15] and compressed
file system stacks. More relevant to our purposes, it was
used to implement a versioning file system [19] which
provided fine grain versioning of file modifications sim-
ilar to CVFS [33]. FiST was also employed in the cre-
ation of Unionfs [26], which we use as the basis for our
stackable file system evaluation.

Another form of file system based stackable storage
was developed with the intent of coalescing duplicate

files This can be found in the Windows 2000 server oper-
ating system in the form of their single instance storage
components [5]. It searched through the file system for
identical files, replacing copies with special links, and
employed a copy on close mechanism to recitfy changes
made to instances of the file. The primary use of SIS was
in support of thier Remote Install Server, allowing rapid
deployment of new systems.

Stackable block storage can often be found in the ser-
vice of virtualization technology. VMware [37], Xen
[10], and even full-system emulators such as QEMU [4]
use virtualized disks with the ability to use block-level
copy on write mechanisms to share common base im-
ages. Virtualization aware file systems such as Ventana
[24] attempt to merge aspects of stackable file systems
with stackable block storage.

The increased popularity of scale-out server systems
along with the desire to improve manageability of client
systems has led to a large number of network install and
provisioning management systems. These range from
disk imaging systems such as Symantec Ghost [34] to
more complicated solutions combined with provisioning
products such as Tivoli’s Provision Manager for OS De-
ployment [36]. Other imaging solutions, such as IBM
Director’s Remote Deployment Manager (RDM) [16]
can also link to server storage provisioning tools (SSPT)
[13] which can optimize disk imaging directly on the
back-end storage server.

Another class of management software seeks to de-
ploy systems in diskless and psuedo-diskless configura-
tions using network file systems. Blade Fusion [1] pro-
vides products which allow rapid deployment to blades
by dedicating one or two blades as management systems
and dedicated file servers. ”Golden” file system images
are stored on the central file server, and cloned to dedi-
cated file hiearchies which are then exported to individ-
ual blades. Other firms such as [2] provide wider area
deployment and storage management solutions. Levanta
provides the Intrepid M [3] Linux management appli-
ance which provides a complete solution for rapid de-
ployment of Linux systems using a combination of NFS
and their own stackable file system solution called mapfs.

While there has been many recent studies [29] [35]
[14] comparing SAN and NAS technologies – there were
none who combined this analysis with evaluation of
stackable storage technologies and tested in scale-out
configurations. We seek to provide such an evaluation
in section 5.

RO

RO

RW

Base OS

Personality

Web Server 1.0.33

Figure 1:Layers of a Web server logical volume.

3 Stackable Storage for Systems
Management

In this section, we describe our stackable storage mecha-
nism in the context of centralized systems management,
and discuss how this mechanism can be used to carry out
management tasks on behalf of the system administrator.

3.1 Stackable storage

We refer to stackable storage as a mechanism to stack
layers of disk image in order to compose different views
of a centralized storage system, where each stack defines
a logical volume on which a particular client machine re-
lies. A storage server (or storage appliance) maintaining
all layers exported to client machines is the single point
of management.

Our management model is based on three types of disk
image layers. On the bottom of all stacks is thebase
operating system layerwhich is shared by all client ma-
chines. It consists of the base file system that the operat-
ing system needs to function.

The second type of disk image layer is therole-specific
layer. This one lies on top of the base operating sys-
tem layer complementing it with the file system portion
whose contents define the role (or the purpose) of the
machine. The storage server might provide a number
of predefined roles tailored according to the needs of a
particular organization. For instance, in a typical multi-
tier online Internet service, the roles available for deploy-
ment could beLoad Balancer, Web Server, Application
Server, andDatabase Server.

Finally, each machine has its privatepersonality layer
on the top of its stack. The purpose of this layer is to store
all changes made to the contents of the logical volume of
the machine in question by means of a CoW (Copy-on-
Write) mechanism; as such, it is the only layer that gets
modified throughout the lifetime of the logical volume.
The contents of the role-specific and base operating sys-
tem layers remain intact since they are supposed to be
shared.

In our multi-tier Internet service example, the logical
volume of a machine that has been assigned the role Web
Server would comprise three layers, namely: a personal-

ity layer on top of the Web Server layer on top of the base
operating system layer. This logical volume is illustrated
in figure 1; on the right of each depicted layer is its sta-
tus — read-only or read-write. The Web Server machine
is oblivious to the fact that its logical volume is formed
by three layers. Internally, however, the stackable stor-
age mechanism guarantees that all changes made to the
contents of the logical volume are confined in the person-
ality layer, allowing the Web server layer to be shared by
all machines that have been assigned that role, and the
base layer to be shared by all machines. By merging the
logical volume layers and properly taking into account
the changes stored on the personality layer, the stackable
storage mechanism ultimately gives the machine the il-
lusion of a united file system on a typical storage device.

In addition to distinguishing and exporting multiple
role-specific layers, the storage server can also associate
versions with each layer.

3.2 Management tasks

The abstraction of stackable storage, although conceptu-
ally simple, is a powerful feature that facilitates common
base and role-specific images sharing, enables the stor-
age server to obtain instantaneous snapshots of all logi-
cal volumes as well as to quickly rollback to a previously
taken snapshot, and makes it trivial to perform fast sys-
tem reprovisioning through simple role re-assignments.
In the next paragraphs we describe how stackable stor-
age can be used to handle typical systems management
tasks.

Machine installation. From the administrator perspec-
tive, installing a machine is as easy as selecting a role
and instructing the storage server to apply the selected
role. As a result of this action, the appropriate storage
stack will be built and exported as a logical volume to
the machine.

Reprovisioning. We refer to reprovisioning as changing
the role of a machine. At the storage level, two steps are
performed to carry out this action. First, the machine’s
current role-specific layer is replaced with the layer cor-
responding to the new role. Second, in order for the ad-
ministrator to be able to rollback to the state of the ma-
chine before it was reprovisioned, the current personal-
ity layer is saved as part of the repository of checkpoints
and a new personality layer is assigned to the machine.
By saving the current personality layer the storage server
can recreate the original stack if required by the adminis-
trator. Figure 2 depicts a Web Server being reprovisioned
as a Database Server. On the left is the original stor-
age stack that is replaced with the logical volume whose
composition is shown on the right.

Checkpoint and rollback. To create a checkpoint of

Base OS RO

RO

RW

DB Server 4.11RO

RO

RW

Base OS

Personality 1 Personality 2

Web Server 1.0.33

Figure 2: Web Server is transformed into a Database
Server.

RO

RO

RW

DB Server 4.0.11

Base OS

Personality 1

(a)

RO

RO

RW

Base OS

Personality 2

(b)

RO

ROBase OS

RWPersonality 3

ROPersonality 2

(c)

Web Server 2.0.54Web Server 2.0.54

Figure 3:Rollback operation: (a) stack before rollback;
(b) stack corresponding to the snapshot chosen for roll-
back; (c) new logical volume created as a result of roll-
back.

the logical volume of a given machine, the storage server
performs three actions, namely: (1) it saves the current
personality layer along with the stack configuration; (2)
it transforms the current personality layer into a read-
only layer; and (3) it adds a new personality layer onto
the stack. Actions (2) and (3) guarantee that the changes
made to the logical volume after the checkpoint was
taken will be confined in a different personality layer. As
a consequence, action (1) will save only the difference
between the current state of the logical volume and the
state at the time the previous checkpoint was created.

In rolling back a logical volume to a previous snap-
shot, the storage server first recreates the logical vol-
ume based on the stack configuration saved as part of
the checkpoint. Next, it transforms the personality layer
of the recreated stack into read-only and inserts a new
personality layer on the top of the stack. Adding a new
personality layer during a rollback ensures that all check-
pointed states remain valid at all times.

To illustrate the rollback operation, let us suppose that
a certain machine has its logical volume configured as
shown in figure 3(a), and that the system administrator
wishes to rollback to a snapshot corresponding to the
stack shown in figure 3(b). The logical volume given
to the machine as a result of the rollback operation will
have the layering configuration depicted by figure 3(c).
Note the new personality layer on top of the stack and
the change of the status of the previous personality.

Machine cloning. Stackable storage allows the system
administrator to easily clone a machine. To carry out
such an action the storage server saves the personality
layer of the machine to be cloned as a new personality
layer, and creates a stack identical to that of the original
machine, except that the copy of the original personality
layer is used. The new stack is then exported as a logical
volume to the clone.

Role publishing. The idea of role publishing is to extend
the storage server by either adding new roles or creat-
ing upgrades for existing ones so that the new roles and
upgrades are made available for future deployment. At
the storage level, each new role or new version of a role
translates into a new role-specific layer that can be se-
lected to integrate logical volumes.

In our model of stackable storage, adding a new role
can be done quite easily. To that end, the system ad-
ministrator might use a machine whose logical volume
is formed by only two layers: a clean personality layer
on top of the base operating system layer. From such a
machine, the administrator effectively installs the soft-
ware intended to be the new role. Once the installation is
complete, the administrator commands the storage server
to capture the personality layer of the logical volume on
which the installation was performed and to save it as a
new role with a given name and version.

Although adding new roles is rather trivial, the cre-
ation of upgrades bears subtleties that are worth dis-
cussing. There are two ways of reasoning about up-
grades, depending on the configuration of the logical vol-
ume from which they are derived. In its simplest form, a
new version of a role (an upgrade) is derived in the same
manner as a new role: from the base layer. Roles and
upgrades so derived depend on the base layer; in other
words, they will always be stacked on top of it.

For convenience of installation or space efficiency
considerations, upgrades might be derived directly from
the role to be upgraded, as opposed to from the base
layer. To clarify this issue, let us suppose that the admin-
istrator wants to create an upgrade for the Web Server
role. Instead of installing the new version from the
scratch, i.e., from the base layer, the administrator might
apply a patch to an already available older version of the
role. To do so, a machine with a logical volume con-
taining a clean personality layer on top of the layer cor-
responding to the older version of the Web Server role
should be used. Once the patch has been applied, the
administrator instructs the storage server to capture the
personality layer of the logical volume and to save it as a
new version of the Web Server role. Unlike the scenario
described in the previous paragraph, upgrades derived in
this fashion depend on the older version; therefore, the
layer corresponding to the newly created upgrade must

RO

RO

RW

Base OS

Personality

Web Server 3.1.1

Web Server 2.0.54

Figure 4:Creation of an upgrade for the role Web Server.
The personality layer is captured and saved as Web
Server version 3.1.1.

always be stacked on top of the layer containing the older
version. Figure 4 depicts the creation of an upgrade for
the Web Server role. The version 3.1.1 was derived from
the version 2.0.54. All stacks where the layer Web Server
3.1.1 appears will have the layer Web Server 2.0.54 un-
der it. Needless to say, in order to ensure that the stacks
satisfy this kind of dependency rules, the storage server
needs to record them.

Upgrade deployment. Once an upgrade is created and
published as discussed above, it becomes available for
deployment. Similarly to upgrade creation, there are two
different approaches to upgrade deployment. One pos-
sibility is to treat it as a reproviosining, in which case
the personality layer of the original logical volume is not
kept in the resulting stack, as illustrated in figure 2. The
assumption here is that the contents of the personality
layer are not relevant in the context of the new stack con-
figuration. Although this rationale makes sense when the
role of a machine is changed, it may be unreasonable
when the role remains the same. To accommodate the
situations where it is desirable to maintain the current
personality layer, the stack resulting from an upgrade de-
ployment would comprise the base layer, the layer cor-
responding to the upgrade (observing the dependency
rules), the original personality layer with read-only sta-
tus, and a new writable personality layer at the top. An
example of this scenario is shown in figure 5, where the
upgrade created in figure 4 is effectively deployed. Note
that the former personality layer is part of the resulting
stack.

It should be clear that it is possible for a stack to have
more than two personality layers. This happens, for in-
stance, when an upgrade is deployed on a logical vol-
ume that has more than one personality layer. As a con-
sequence of this multitude of personality layers, depen-
dency rules should apply to them. For example, in fig-
ure 5,Personality 2depends onPersonality 1.

Base OS

Personality 2

RO

RO

RO

RW

RO

Web Server 2.0.54

Web Server 3.1.1

Personality 1

RO

RWPersonality 1

Base OS RO

Web Server 2.0.54

Figure 5: Role Web Server is upgraded from version
2.0.54 to 3.1.1.

4 Stackable Storage Implementation

In evaluating our stackable storage abstraction, we iden-
tified three dimensions in the design space. One dimen-
sion isstack granularity, i.e., the granularity at which the
disk image layers are created and stacked. The possible
options here are to manage layers either at the file system
level or at the block level.

Another important aspect to consider isstack location.
Although our approach to disk image manipulation relies
on data stored on a centralized server or storage appli-
ance, the code that implements the stacks can run either
on the server or on the clients.

Finally, data transport protocolis yet another facet
of stackable storage, the options being to employ a file
transport protocol (e.g., NFS) or a block transport pro-
tocol (e.g., iSCSI). To appreciate the importance of data
transport protocol as a component of the design space,
one should realize thatstack granularitydoes not neces-
sarily dictate a particular type of protocol. Clients may
access data by means of a block transport protocol even
if the layers are managed at the file system level; the con-
verse is also true.

In this section, we discuss all possible combinations
in the design space, grouping them bystack granularity.
We first delve into stacking at the file system level and,
in the sequel, describe block-level stacking.

4.1 File system stacking

File systems that support the notion of namespace unifi-
cation, such as UnionFS [38], can be used to implement
stackable storage. In this work we leverage UnionFS not
only due to its widespread use, but also because the level
of abstraction it offers is well suitable for our conception
of stackable storage.

UnionFS was designed for Linux kernel series 2.4 and
2.6. It is actually a piece of software lying between the

Linux VFS (Virtual File System) and the lower-level file
systems (e.g., ext2, ext3, ReiserFS, etc.) that captures
calls made to VFS and modifies the behavior of the cor-
responding operations in order to implement the func-
tionality of namespace unification.

The main idea behind namespace unification is to
merge different directory subtrees (possibly belonging to
different file systems) into a single unified view. This
can be done recursively for subdirectories (deep unifi-
cation) or just for a one level of directories. The latter
is more efficient but it does not provide for our needs.
UnionFS does deep directory unification. In UnionFS
terminology, each merged subtree is called abranch, and
the resulting merged file system is called aunion. We
treat each merged branch as a layer, and the resulting
union as a stack. In our stackable storage server, the base
operating system layer, the role-specific layers, and the
personality layers are separate branches. When building
a stack, the storage server merges the appropriate lay-
ers using UnionFS in such a way that each layer has
higher precedence than the one located under it. This
is of paramount importance to ensure that the top-most
personality layer — the only one that gets modified —
is always the most influential in the logical volume con-
tents perceived by the client. Hence, if a file gets deleted,
a whiteout (a “negative file”) is created on the personal-
ity layer indicating that the corresponding file should not
appear on the logical volume; if a file gets modified, the
version of the file stored on the personality layer is the
one accessible from the logical volume; if a new file is
created, it will be present only on the top-most person-
ality layer and, therefore, will naturally show up on the
logical volume.

In the realm of stackable storage based on file sys-
tem stacking, there are three design options: server-side
stacking with file transport protocol; client-side stack-
ing with file transport protocol; and client-side stacking
with block transport protocol. The fourth combination,
server-side stacking with block transport protocol, is un-
feasible. In the next paragraphs we describe each combi-
nation.

Sever-side stacking and file transport protocol.In this
configuration, the storage server effectively merges the
layers and exports the stacks to the clients. Our proto-
type uses UnionFS for namespace unification, as already
mentioned, and NFS is the file transport protocol we ex-
plored, due to its popularity. To make a given stack avail-
able to a particular client, the storage server builds it,
mounts it on the local file system, and exports its mount
point through NFS to the appropriate client.

Client-side stacking and file transport protocol. This
approach differs from the previous one in that the storage
server does not export the stacks to the clients; instead,

it exports the layers and the clients build their stacks by
running UnionFS locally. It is up to the clients to mount
through NFS all layers required to build their stacks.

Client-side stacking enables two policies for managing
the private personality layers. A client can either access
its personality layer via NFS or keep it locally. The latter
has the potential to increase performance by providing
some level of caching.

Client-side stacking and block transport protocol. In
our prototype we used iSCSI as the block transport pro-
tocol. Like NFS, iSCSI enables the access to storage
servers by means of IP-based networks. Differently,
however, while an NFS server exports directories to
clients, an iSCSI server makes a portion (or all) of its
local disk(s) available to clients, which, in turn, operate
on the remote disk(s) in exactly the same way as they
would use a local disk. In particular, a Linux iSCSI
server exports block devices to clients, where a block
device might be a disk partition — e.g.,/dev/sda5,
/dev/sda6, etc.

Block transport protocol and file system stacking can
coexist, provided that the stacking is done at the client
side and the block devices exported by the storage server
are not shared for writing. To satisfy the latter require-
ment, the server maintains one block device containing
all shared layers (base operating system layer and all
role-specific layers) and exports it to the clients. Since
these layers represent the read-only portion of all stacks,
the clients can safely import the block device and access
it through iSCSI.

Regarding the personality layers, there are two options
for managing them. Either the storage server provides
one block device per personality layer, or the clients keep
their personality layers locally. Local personality layers
can potentially lead to overall better performance since
they would provide some level of caching.

4.2 Block stacking

An alternative to stacking directory subtrees by means of
namespace unification is to build the stacks at the level of
disk blocks. This variation of stackable storage is imple-
mented at a lower level of abstraction, with no file system
involvement.

In Linux, the target platform of our prototype, block-
level stacking can be accomplished by treating block de-
vices (e.g.,/dev/sda5) as layers of the stacks. In this
case, since two or more block devices are part of a stack,
stacks are treated as logical block devices which, in turn,
represent the logical volumes exported to the clients.
This idea introduces the concept ofstackable block de-
vices.

Linux LVM (Logical Volume Manager) [18] and
EVMS (Enterprise Volume Management System) [11]

could potentially be used to implementstackable block
devices, as they support a copy-on-write mechanism for
taking snapshots of logical volumes. They were con-
ceived as a backup mechanism that freezes the file sys-
tem for a short period of time backing up the blocks as
they are modified. To implement stackable storage, we
only need to write to the right level of the stack and
update the metadata, which is much more efficient than
waiting for a copy to complete the write. Additionaly,
the metadata used for block addressing is not appropriate
for situations where a huge number of blocks are modi-
fied. We measured the performance of writing to a LVM
snapshot using bonnie++ locally and found that the per-
formance degradation compared to the performance of a
non stacked block device was of an order of magnitude.

For the reasons stated above, we implemented our own
block stacking driver for Linux kernel 2.6 to realize the
idea ofstackable block devices. Our driver is used by
the device-mapper [8], a component of the Linux kernel
that creates logical block devices by means of published
drivers calledtargetsin the device-mapper terminology.
Each logical block device created by the device-mapper
by means of ourtargetis actually a stack of block devices
that the storage server exports as a logical volume to a
certain client.

Associated with each stack is a bitmap that indicates
on which layer each block resides. For instance, the
bitmap may indicate that block 10 is on the personal-
ity layer and block 90 is on the base operating system
layer. A newly created logical volume has its personality
layer empty; as the contents of blocks change, they are
written to the personality layer and the bitmap is updated
accordingly. This provides with a one to one block static
mapping which wastes space. There is a compromise be-
tween incurring in the cost associated with sparse alloca-
tion and wasting space. We have left the sparse alloca-
tion out of the picture on purpose to isolate the variables
of the study.

Stackable storage at the granularity of blocks lends it-
self to two combinations ofstack locationanddata trans-
port protocol, as described in the next few paragraphs.

Server-side stacking and block transport protocol.In
this configuration, the storage server stacks the block de-
vices and exports the resulting logical volumes to the
clients. Our prototype, as mentioned before, adopts
iSCSI as the block transport protocol. Therefore, the
logical block devices created by the storage server are
exported through iSCSI to the clients.

Client-side stacking and block transport protocol. In
this variation of block stacking, the storage server ex-
ports through iSCSI the block devices to be stacked (the
layers). The clients then import the block devices they
need and build their stacks.

Stacking on the client side allows each client to keep
the block device representing its personality layer lo-
cally, as opposed to having the server export it. This
might improve the overall data access performance
thanks to caching.

5 Evaluation

This section evaluates the different flavors of stackable
storage we previously described. In particular, we com-
pare them with respect to performance and scalability.

5.1 Experimental setup

We conducted our experiments on nine blade machines.
Each machine is equipped with:

• two dual-core 2.4 GHz AMD Opteron processors,
with 1024 KB of L2 cache per core;

• 4 GB of memory in 4 DIMMS of 1GB DDR
RDIMM memory PC3200R;

• a Broadcom NetXtreme BCM5704S Gigabit Ether-
net card.

We used one of the blades as the storage server, and
the remaining eight as clients. The server has:

• two 73 GB ST973401LC SCSI disks operating at
10,000 RPM and average seek time of 4.1ms, with
an ultra320 SCSI interface;

• an LSI53C1010R Ultra160 SCSI controller.

The server blade runs the Linux Ubuntu Dapper distri-
bution with the latest updates applied and kernel 2.6.17.
All client blades are diskless and boot from a separate
server that provides them with NFS-roots based on the
Red Hat Enterprise Linux distribution version 4 and ker-
nel 2.6.17. All 9 blades and the NFS-root server are con-
nected to the same Gigabit Ethernet switch.

All experiments using NFS as the file transport pro-
tocol rely on NFSv3 mounted asynchronously. Regard-
ing iSCSI, the storage server runs iSCSI Enterprise Tar-
get version 0.4.13 and the clients use Open-iSCSI ver-
sion 1.0-485 as the iSCSI initiators. TCP is the trans-
port protocol used for both NFS and iSCSI. For imple-
menting the stackable file system, we use the CVS snap-
shot “20060616-1848” of UnionFS version 1.2.Ext2
is the file system adopted to form the layers of our
UnionFS-based stacks and to format the block devices
used with iSCSI. One of the disks of the storage server
is dedicated to our experiments, while the other is used
only by the operating system.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5 6 7 8

E
la

ps
ed

 ti
m

e
(s

)

Number of nodes

Postmark

NFS − UnionFs (client stacking)
NFS − Ext2

iSCSI − UnionFS
iSCSI − dm−cow (client stacking)

iSCSI − Ext2

Figure 6:Postmark results for client-side stacking.

In terms of stack composition, our evaluation takes
place on a three-layer configuration comprising the base
operating system image, a role-specific layer (Apache
Web Server image), and the personality layer. All disk
read operations are satisfied with data residing on the per-
sonality layer so that we can isolate and properly com-
pare the overhead of layer lookup of both file system and
block stacking. Therefore, our numbers do not account
for the time it takes to copy a file from a read-only layer
to the personality; this is done by the file system stacking
approach whenever a file not present in the personality
layer is modified.

In order to evaluate the performance and scalability of
our different stackable storage configurations, we chose
two widely used benchmarks: Postmark and Bonnie++.
Since the former is metadata-intensive and the latter is
data-intensive, our evaluation covers these two funda-
mentally different cases. In the sequel, we present the
results of our experimental evaluation.

5.2 Postmark results

The Postmark benchmark first creates an initial pool of
files of varying sizes. After creating the pool, it enters
the so-called transaction phase, during which it randomly
chooses one of two types of file operations to perform:
(1) create or delete a file; (2) read a file or append data to
a file. In our Postmark runs, we configured it to gener-
ate a pool of 20,000 files, whose sizes range from 500 to
1,024 bytes, and to perform a total of 200,000 operations.
The two types (and subtypes) of file operations were con-
figured to be selected with equal probability. This work-
load mimics the use of multiple small short-lived files,
which is common in applications such as online web-
based e-commerce, electronic mail, news, etc.

Figure 6 shows the runtime of Postmark for three
stackable storage configurations: block stacking with

block transport protocol (iSCSI-dm-cow), file system
stacking with block transport protocol (iSCSI-UnionFS),
and file system stacking with file transport protocol
(NFS-UnionFS). In all cases, the stack is built at the
client side. The graph also shows the baseline for iSCSI
(iSCSI-Ext2) and NFS (NFS-Ext2). The plotted data
points represent runs with 1, 2, 4, and 8 client machines.

Comparing the baseline results for the two different
transports, we see that iSCSI performs roughly an or-
der of magnitude better than NFS for meta-data intensive
workloads such as Postmark. This is the result of NFS
sending all meta-data operations over the network to be
resolved by the file system executing on the server. As a
result, the server disk is already operating at 75 percent
of its maximum number of transfers per second, even in
the single client case. By contrast, in the iSCSI case, file
system operations are resolved locally – primarily within
the system’s cache. Since iSCSI volumes are implicitly
exclusive, no coherence traffic is required allowing for
very aggressive cacheing of both meta-data and file con-
tents.

When UnionFS is used to combine two NFS mounts it
increases the number of meta-data operations performed
due to additional lookups in the multiple layers. These
additional operations are enough to exceed the maximum
transactions per second the disk is capable of and result
in the doubling of the Postmark run-time.

When UnionFS is used to combine two iSCSI mounts,
it does much better for one or two clients – approximat-
ing the performance of the iSCSI base case. However,
starting around 4 clients the additional meta-data opera-
tions from UnionFS start to disrupt the iSCSI cache re-
sulting in a dramatic increase in overhead. This problem
becomes much worse in the 8-node case, exceeding the
overhead of UnionFS on NFS.

By contrast, when block stacking is used to combine
two iSCSI volumes there is no noticeable overhead for
all runs — the curves labeled iSCSI-Ext2 and iSCSI-
dm-cow coincide. This is primarily due to the relatively
small footprint of Postmark allowing the entire bitmap
for the block stack to be cached in memory. This re-
sults in a very low latency for resolving the layer to load
blocks from. This combined with iSCSI’s aggressive
cacheing of meta-data and content yield excellent results
for meta-data intensive benchmarks.

Figure 7 is similar to figure 6, except that it presents
the results for server-side stacking. iSCSI-UnionFS is
not present on the graph because server-side stacking is
not applicable. Following the same trend as in client-side
stacking, iSCSI-dm-cow does not suffer from any visible
overhead for the same reasons stated before.

The behavior of the configuration NFS-UnionFS is not
noticably affected by stack location when up to 8 clients
are used, as can be seen by comparing figures 6 and 7.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5 6 7 8

E
la

ps
ed

 ti
m

e
(s

)

Number of nodes

Postmark

NFS − UnionFs (server stacking)
NFS − Ext2

iSCSI − dm−cow (server stacking)
iSCSI − Ext2

Figure 7:Postmark results for server-side stacking.

We were a bit surprised by this result as we had thought
the extra processor and memory overhead of UnionFS
would bottleneck a server-side stack. To investigate fur-
ther, we conducted Postmark runs with 16 and 32 clients.
Since we had only 8 blades acting as clients, we ran 2 and
4 instances of Postmark per machine to mimic 16 and 32
clients, respectively. The results of these experiments are
shown in figure 8. Matching our intuition, offloading the
file system stacking code to the clients is beneficial when
multiple clients are supported under metadata-intensive
workloads – but will come at the cost of processor power
and memory on each client.

We were not able to run the large-scale experiments
with iSCSI as they would require 16 and 32 different
block devices for the personality layers, i.e., 16 and 32
partitions. Unfortunately, Linux does not support more
than 15 partitions per SCSI disk, and we did not have
room in our server blade for more than a single SCSI
disk (we did not want to use the root disk of the blade as
we felt it would complicate analysis). Having multiple
instances of Postmark running on the same node share a
mount point for the personality layer is not an option ei-
ther, since local caching effects would render the results
uncomparable to the previous ones.

5.3 Bonnie++ results

The Bonnie++ benchmark creates a file of a speci-
fied size and performs a number of character-based and
block-based operations on it. It is meant to mimic
database workloads. In our experiments, we explored
the block-based operations. Bonnie++ has three distinct
phases: (1) file creation by means of a sequential write;
(2) file rewrite, during which each block is read, dirt-
ied, and rewritten, requiring a seek operation; and (3) file
read, when the whole file is sequentially read. In order
for the results to be valid, the size of the file is recom-

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 10 15 20 25 30

E
la

ps
ed

 ti
m

e
(s

)

Number of nodes

Postmark

NFS − UnionFs (server stacking)
NFS − UnionFs (client stacking)

NFS − Ext2

Figure 8:Benefit of client-side stacking.

mended to be twice the size of the memory.
Figures 9, 10, and 11 show the throughput in

Kblocks/s for each of the Bonnie++ phases: write,
rewrite, and read, respectively. In the x-axis of each
graph we grouped the results by the number of clients
used during the experiment.

The main limiting factor for the performance obtained
with Bonnie++ is the seek time of the disk when mul-
tiple clients are used. The sub-linear behavior shown in
the bar charts as the number of clients increases is mainly
due to this effect: the locality is perturbated by multiple
running instances of Bonnie++. This effect accentuates
the cost of fetching the metadata blocks between contigu-
ous requests the first time they are used, because some
contiguous blocks are not sent together to the disk due
to the extra seeks being generated by the breakdown of
locality.

Bonnie++ evaluation makes a more interesting case
for analyzing block storage. Local block stacking writes
have much worse Bonnie++ throughput for one and two
clients. The bitmap blocks are not yet in the cache, so
they have to be fetched. The latency of the network plus
the fetching of the bitmap blocks is enough to break up
some requests and to generate extra seeks. Both effects
combined explain the bad write behavior. In the rewrite
and the read test, some of the bitmap blocks have already
been exercised. This means they are in the cache. The
bitmap blocks from the shared device on the server are
prefetched by other clients. This explains the different
behaviors for one and two clients. As the number of
clients grows, the locality diminishes and almost every
request costs the same, because it generates a new seek.
The consequence of this is that metadata fetches do not
matter anymore because they do not add any extra seek
and all the curves converge to roughly the same point.

For the file system stacking case, note that client-side
stacking performs better for rewrites and reads. A read

Figure 9:Bonnie++ write phase.

Figure 10:Bonnie++ rewrite phase.

followed by a write over NFS generates extra metadata
fetching, and this situation is aggravates a server-side
UnionFS stack. In the case of reads, the extra seeks
due to fetching metadata causes a similar problem, also
aggravated with UnionFS extra lookups sent over NFS.
For client-side stacking this multiplicitive effect of ex-
tra lookups due to UnionFS plus NFS does not happen.
Since each layer is NFS-mounted on the client, extra
metadata operations generated because of NFS are not
accentuated by the extra lookups performed by UnionFS.

6 Future Work

Most of the performance penalties we see while using
NFS are due to extra meta-data traffic being transmitted
in order to give NFS loose consistency. This results in
giving iSCSI a distinct advantage in that it makes no at-
tempt to maintain any sort of consistency. It would be
interesting to repeat the evaluation with NFS configured
to aggressively cache meta-data and content. Studying
the use of client disk caches for both NFS and iSCSI to

Figure 11:Bonnie++ read phase.

further hide any stacking overhead would also be inter-
esting. Comparing stacking on NFSv3 with NFSv4 and
other file system protocols such as AFS, CIFS, or various
cluster file systems would further broaden the coverage
of this study. Similarly, we’d like to compare stacking
on iSCSI with stacking on ATA over Ethernet, Network
Block Devices, or other SAN transports.

The performance analysis we conducted only ac-
counted for two layer stacks. The overhead of multi-
layer UnionFS stacks has been measured before [38],
but no similar analysis has been done for block-stacking.
Additionally, while we measured performance, we did
not compare the storage efficiency of the two method-
ologies.

Two shortcomings in our evaluation methodology
were the use of only a single target disk and the lack
of a benchmark which operated on more than just the
write-layer of the stacks. While both of these choices
were made in supported our primary target application, a
broader study covering the use of multiple disks, perhaps
in a RAID configuration – and the use of a benchmark
which stressed accesses to multiple layers of the stack
would provide a more complete picture.

One problem of filesystem stacking which did not
manifest itself due to the nature of our benchmarks is
the relatively large penalty for copy on write with large
files. In file system stacking such as UnionFS and mapfs,
even a single character change results in a copy of the en-
tire file. This type of penalty is likely unacceptable for
systems, such as database servers, where large files are
predominant. Use of a benchmark which better demon-
strated the effect of this overhead may have painted a
different picture for the stackable file system configura-
tions.

While Bonnie++ and Postmark are broadly used
benchmarks, it would have been nice to see the impact
of stacking on large-scale, real-world applications over

an extended period of time. We are in the process of
deploying stackable storage within our data center and
installing instrumentation which will allow us to collect
this information.

7 Conclusions

The results clearly seem to favor block-stacking and
iSCSI. It has a similar throughput to file-stacking for the
Bonnie++ benchmark, but shows clear advantages for
Postmark. As reported in the evaluation section this is
primarily due to block-stacking’s low overhead for meta-
data operations and iSCSI’s more aggressive use of the
cache.

The interpretation of both the results for Bonnie++ and
Postmark also suggest a case for performing the stacking
operation on the clients. In the Bonnie++ case, the nega-
tive performance introduced by local stacking is negligi-
ble for four clients or more because requests are already
being broken and seeks generated by the interleaving of
different clients. By using local stacking, we can offload
a good deal of cpu and memory usage from the server
at a very low performance penalty. This will ultimately
lead to better performance at even larger scales.

A real advantage to filesystem based stacks is that their
duplication of meta-data gives them a higher degree of
reliability. Failure of lower levels of a block-stack breaks
all the levels above it. Filesystem stacking technologies
do not have this problem – although most do not allow
modification of lower layers once a new top layer is in
place. While reliability problems may be mitigated by
backups, RAID, and mirroring of disks, it remains a con-
cern with block-stacking based approaches.

Some authors [24] have made a case for the manage-
ability of filesystem based stacking due to their easy nav-
igation and manipulation with normal file tools. In block
stacking technologies, each layer of the stack is depen-
dent on the layers beneath it and cannot be mounted in-
dependently. However, our experiences with Plan 9’s
Venti [27] have shown us that with appropriate tool-
ing and minimal meta-data, dealing with multiple block-
based stacks can be as simple as dealing with file-based
stacks. Exploring the potential of hybrid stacking tech-
nologies which leverage the performance of block-based
stacking with the flexibility of file-system based stacking
remain an exciting area of future research.

Image-based deployment and maintenance of servers
seems to be an increasing trend in the industry. As low-
cost servers and blades drive the popularity of scale-out
systems, efficient and centralized management will be-
come more and more critical. The multiplicitive effect of
server virtualization on the number of system images will
further intensify its importance. We believe development
of efficient, flexible, and scalable storage technology is

the key to this centralized management. Stackable stor-
age techniques improve the efficiency and effectiveness
of image deployment and maintenance. They also enable
rapid sandboxing, cloning, redeployment, and rollback
of systems to meet the demands of today and tomorrow’s
service oriented architectures.

References

[1] Bladefusion technolgoies. http://www.bladefusion.com.

[2] Corente. http://www.corente.com.

[3] Levanta intrepid m. http://www.levanta.com/, 2005.

[4] BELLARD , F. Qemu, a fast and portable dynamic transla-
tor. InProceedings of the 2005 USENIX Annual Technical
Conference(2005).

[5] BOLOSKY, W. J., CORBIN, S., GOEBEL, D., AND

DOUCEUR, J. R. Single instance storage in windows
2000.4th USENIX Windows Systems Symposium(2000).

[6] CHANDRA , R., ZELDOVICH, N., SAPUNTZAKIS, C.,
AND LAM , M. S. The collective: A cache-based system
management architecture. InProceedings of the Second
Symposium on Networked Systems Design and Implemen-
tation (NSDI ’05)(May 2005).

[7] DAVE HITZ , E. A . File system design for an nfs file server
appliance. InProceedings of the USENIX Winter Confer-
ence(January 1994).

[8] Linux device-mapper. http://sourceware.org/dm/.

[9] DOUGLAS S. SANTY, E. A . Deciding when to forget in
the elephant file system. InProceedings of the seven-
teenth ACM symposium on Operating Systems principals
(1999).

[10] DRAGOVIC, B., FRASER, K., HAND , S., HARRIS, T.,
HO, A., PRATT, I., WARFIELD, A., BARHAM , P.,AND

NEUGEBAUER, R. Xen and the art of virtualization. In
Proceedings of the ACM Symposium on Operating Sys-
tems Principles(October 2003).

[11] Enterprise volume management system.
http://evms.sourceforge.net/.

[12] GRAY, J. Why do Computers Stop and What Can Be
Done About It? InProceedings of 5th Symposium on
Reliability in Distributed Software and Database Systems
(Jan. 1986).

[13] GREG PRUETT, E. A . Bladecenter systems management
software. IBM Journal of Research and Development
(November 2005).

[14] GULABANI , S. Aix performance with nfs, iscsi and fcp
using an oracle database on netapp storage. TR-3408,
2006.

[15] HALCROW, M. A. ecryptfs: An enterprise-class en-
crypted filesystem for linux.Proceedings of the Ottawa
Linux Symposium(1996).

[16] IBM. Ibm directory remote deployment manager.
http://www.ibm.com, 2006.

[17] III, C. B. M., AND GRUNWALD , D. Peabody: The time
travelling disk.mss 00(2003), 241.

[18] Logical volume manager.
http://sources.redhat.com/lvm2/.

[19] MUNISWAMY-REDDY, K.-K. VERSIONFS: A versitile
and user-oriented versioning file system. Master’s thesis,
December 2003.

[20] NAGARAJA, K., OLIVEIRA , F., BIANCHINI , R., MAR-
TIN , R. P., AND NGUYEN, T. D. Understanding and
Dealing with Operator Mistakes in Internet Services. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’04)(Dec.
2004).

[21] OPPENHEIMER, D., GANAPATHI , A., AND PATTER-
SON, D. Why do Internet Services Fail, and What Can
Be Done About It. InProceedings of the USENIX Sym-
posium on Internet Technologies and Systems (USITS’03)
(Mar. 2003).

[22] PATTERSON, D. A., BROWN, A., BROADWELL, P.,
CANDEA , G., CHEN, M., CUTLER, J., ENRIQUEZ, P.,
FOX, A., K ICIMAN , E., MERZBACHER, M., OPPEN-
HEIMER, D., SASTRY, N., TETZLAFF, W., TRAUPMAN,
J., AND TREUHAFT, N. Recovery-Oriented Comput-
ing (ROC): Motivation, Definition, Techniques, and Case
Studies. Technical Report UCB//CSD-02-1175, Univer-
sity of California, Berkeley, Mar. 2002.

[23] PETERSON, Z., AND BURNS, R. Ext3cow: a time-
shifting file system for regulatory compliance.Trans.
Storage 1, 2 (2005), 190–212.

[24] PFAFF, B., GARFINKEL , T., AND ROSENBLUM, M. Vir-
tualization aware file systems: Getting beyond the limita-
tions of virtual disks. InProceedings of the 2006 Network
Systems Design and Implementation conference(2006).

[25] PIKE , R., PRESOTTO, D., DORWARD, S., FLANDRENA ,
B., THOMPSON, K., TRICKEY, H., AND WINTERBOT-
TOM, P. Plan 9 from Bell Labs.Computing Systems 8, 3
(Summer 1995), 221–254.

[26] PUJA GUPTA HARIKESAVAN , E. A . Versatility and unix
semantics in a fan-out unification file system.

[27] QUINLAN , S., AND DORWARD, S. Venti: a new ap-
proach to archival storage. InFirst USENIX conference
on File and Storage Technologies(Monterey,CA, 2002).

[28] QUINLAN , S., MCK IE, J., AND COX, R. Fossil, an
archival file server.

[29] RADKOV, P., YIN , L., GOYAL , P., SARKAR , P., AND

SHENOY, P. A Performance Comparison of NFS and
iSCSI for IP-networked Storage. InProceedings of the
3rd USENIX Conference on File and Storage Technolo-
gies (FAST ’04)(Mar. 2004).

[30] Rembo technologies. http://www.rembo.com/.

[31] ROSENTHAL, D. Evolving the vnode interface.Pro-
ceedings of the Summer USENIX Technical Conference
(1990).

[32] SAPUNTZAKIS, C., BRUMLEY, D., CHANDRA , R.,
ZELDOVICH, N., CHOW, J., LAM , M. S.,AND ROSEN-
BLUM , M. Virtual appliances for deploying and maintain-
ing software. InProceedings of the Seventeenth Large In-
stallation Systems Administration Conference (LISA ’03)
(October 2003).

[33] SOULES, C., GOODSON, G., STRUNK, J., AND

GANGER, G. Metadata efficiency in versioning file sys-
tems, 2003.

[34] SYMANTEC. Put imaging to work for you.
http://sea.symantec.com/content/article.cfm?aid=99,
2004.

[35] TECHNOMAGES, I. Perforamnce compar-
ison of iscsi and nfs ip storage protocols.
http://www.technomagesinc.com.

[36] TIVOLI . Tivoli provisioning manager for os deployment.
http://www.rembo.com/index.html, 2006.

[37] VENKITACHALAM , G., AND L IM , B. Virtualizing i/o
devices on vmware workstation’s hosted virtual machine
monitor. In Proceedings of the 2001 USENIX Annual
Technical Conference(2001).

[38] WRIGHT, C. P., DAVE , J., GUPTA, P., KRISHNAN, H.,
QUIGLEY, D. P., ZADOK , E., AND ZUBAIR , M. N.
Versatility and unix semantics in namespace unification.
ACM Transactions on Storage (TOS) 1, 4 (November
2005).

[39] ZADOK , E. Fist: A system for stackable file system code
generation, 2001.

