
RC24125 (W0611-194) November 29, 2006
Computer Science

IBM Research Report

Impact-Sensitive Framework for Dynamic
Change-Management

Tudor Dumitras*, Daniela Rosu, Asit Dan, Priya Narasimhan*
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

*Carnegie Mellon University

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Impact-Sensitive Framework for Dynamic Change-Management 
 

Tudor Dumitraş Daniela Roşu Asit Dan Priya Narasimhan 
Carnegie Mellon University IBM Research IBM Research Carnegie Mellon University 

tudor@cmu.edu drosu@us.ibm.com asit@us.ibm.com priya@cs.cmu.edu  
 

Abstract  

This paper presents a distributed change management 
framework that enables the assessment and minimization 
of service-delivery disruptions. The framework handles 
both external change requests, like software upgrades, and 
changes to mitigate internal events, such as faults. 
Objective-specific modules assess the impact of change 
operations on service delivery through their impact on the 
business values of the corresponding performance or 
dependability objectives. A centralized component then 
schedules the changes in order to maximize the business 
value across all service objectives over a long time-
horizon. We evaluate this framework using a realistic 
change-management scenario. 

1. Introduction 

Enterprises demand highly available online systems and 
satisfactory service levels (e.g., average response time) in 
the face of faults and upgrades. Current change-
management strategies, for the most part, tend to execute a 
change request as soon as possible (e.g., as soon as a fault 
is detected or an upgrade is requested). The downtime (or 
the perceived lack of responsiveness) due to change 
management can disrupt the performance expectations of 
services and have an adverse effect on business. Gartner 
Group reports that 80% of application-service downtime is 
directly caused by people or process failures, the most 
common cause of which is change. Industry analysts 
indicate that "unmanaged change is one of the leading 
causes of downtime or missed service-level agreements 
(SLAs)." [1] Thus, we submit that it is more appropriate to 
seek the most opportune time to execute the change 
operations in a distributed infrastructure, based on the 
change’s impact on the service-level objectives (e.g. 
response time, availability, and recovery time). Such an 
impact-sensitive change-management strategy aims to 
respect the overall performance and dependability 
guarantees of the running services, yet allowing the system 
to incorporate changes of various kinds.  

Figure 1 illustrates the main elements of the change 
planning problem. In typical IT infrastructures, there are 
multiple kinds of change operations, originating from 
various sources. Some changes are planned in advance – 
e.g., deploying new applications, upgrading obsolete 
software, increasing the system capacity –, and are derived 
from an external request for change (RFC). In other cases, 

changes are due to “firefighting” (mitigating the negative 
effects of unplanned situations) and are triggered by 
internal system-management events – e.g., faults and 
workload surges. Change requests are characterized by a 
set of (partially) ordered change operations and by change 
objectives, such as the deadline for implementing the 
change. The change-operation planner must produce a 
timed schedule for executing the changes and must 
consider the impact on all the relevant quality of service 
requirements, as expressed by service-level objectives 
(SLOs), along with the objectives of the change operation. 
Each objective has a specific business value metric (e.g., 
the penalties associated with a missed change deadline or 
with degraded performance) for gauging the utility of 
meeting the objective based on the level of service 
parameters, called Key Performance Indicators (KPIs). 
The change schedule must maximize the aggregated 
business value, associated with all the enterprise 
objectives. This optimization must be done over a long 
time-horizon, to account for both transient effects, 
occurring during the change execution, and permanent 
effects, settling in after the change has been finalized.  

The planner must evaluate the impact of the change on 
service objectives by considering the inter-dependencies 
among various system components, the available 
knowledge of workload fluctuations or anticipated load 
surges during prime-time, as well as the degree of resource 
sharing across heterogeneous, off-the-shelf components 
that sometimes span independent administrative domains. 
In these environments, the high-level service objectives 
translate into component-level objectives that can be 
managed by component-specific configuration managers. 
For example, a workload manager prioritizes and routes 
the service requests, monitoring the response-time 
objectives, and a dependability manager primes backup 

Generate 
List of 

Change 
Operations 

Generate 
Change 

Schedule

External: Requests for 
HW & SW Upgrade

Internal: System Management 
Events (e.g. faults, expected 

workload changes)

Timed Change 
Schedule

Enterprise SLAs

Orchestrator

(e.g., response time, 
availability, 
recovery time)

Generate 
List of 

Change 
Operations 

Generate 
Change 

Schedule

External: Requests for 
HW & SW Upgrade

Internal: System Management 
Events (e.g. faults, expected 

workload changes)

Timed Change 
Schedule

Enterprise SLAs

Orchestrator

(e.g., response time, 
availability, 
recovery time)

 
Figure 1.  Dynamic change management problem. 



nodes in anticipation of failures and performs recovery, 
monitoring the availability objectives. These managers use 
extensive, and sometimes proprietary, domain knowledge 
(e.g., workload characteristics, resource utilization models) 
and can perform sophisticated request classification, 
prioritization, monitoring and request routing [2]. 

As a result, we submit that the complexity and the 
distributed nature of objective management in real-world 
systems warrant a decentralized framework for dynamic 
change management. Building on this principle, this paper 
proposes a change management framework that separates 
the impact assessment from the change-operation 
scheduling.  An orchestrator, responsible for building the 
schedule, consults multiple objective advisors (e.g., 
performance and dependability advisors) for assessing the 
schedule’s impact on the service objectives. The advisors 
are software components that incorporate the domain 
knowledge to answer "what if" questions about service 
KPIs (such as performance and availability forecasts), 
given a description of the change operations and the timing 
of their execution. The orchestrator uses the returned 
predictions to compute the aggregated business value and 
to converge towards the optimal schedule through an 
iterative refinement process. The objective advisors 
themselves can be composite, third-party services.  

The novel characteristics of this distributed framework 
for orchestrating change operations are: 
• Accounting for both internal (e.g., faults, workload 

changes) and external (e.g., RFC) changes; 
• Evaluating the long-term impact on performance and 

dependability objectives, both during and after the 
change execution; 

• Optimizing the overall business value, which reflects 
the impact on the enterprise SLOs and on the change-
request deadline. 

Section 2 describes our distributed framework for dynamic 
change orchestration. Section 3 presents a case study of 
change management that we use to validate our 
architecture. Section 4 discusses the applicability of our 
approach for realistic systems and outlines directions for 
future work. Section 5 presents the relevant related work, 
and the conclusion summarizes our main ideas. 

2. Dynamic change-management framework 
The main design goal for a change-management framework 
that targets distributed, service-oriented infrastructures, is 
to make minimal assumptions about the kinds of knobs that 
the various software components are prepared to expose to 
the change-management system. The key to achieving this 
goal is the separation of scheduling and impact analysis. In 
our framework, these tasks are performed by different 
components, which may come from different providers. 

We assume that the objective advisors are able to 
predict future incoming loads, either because the workloads 
have a strong periodicity, or because fluctuations are 
preceded by recognizable patterns of warnings and 

notifications [3]. Furthermore, we assume that the 
execution times of all the change events submitted to the 
orchestrator can be estimated with a certain precision and 
that the services do not have hard real-time constraints 
(typical in enterprise systems). 

2.1. Framework components and protocols 
Figure 2 illustrates the main components and interactions 
in our framework. The ChangeManager receives high-
level RFCs, decomposes them into finer-grained change 
operations and related dependencies and forwards them to 
a centralized component, called orchestrator. The 
orchestrator receives the list of change operations and their 
execution constraints and generates a change plan through 
an iterative process. Distributed components called 
objective advisors analyze the impact of change plans; the 
orchestrator identifies the relevant advisors by querying the 
System Configuration Database. The objective advisors 
represent the service managers in the infrastructure and can 
use manager-specific knowledge to estimate the impact of 
a plan on the service KPIs. The orchestrator consumes 
these estimations and schedules the change operations with 
the objective of maximizing the overall business value. 
The interaction between the orchestrator and advisors is 
based on the Web Services standard, which guarantees 
compatibility in a complex system with components built 
by different providers. The orchestrator sends the final 
schedule to the ScheduleExecutor, which triggers the 
change operations at the indicated times. The 
ChangeManager is analogous to the Task Graph Builder 
from [7], and the ScheduleExecutor is similar to the 
TIO Provisioning Manager [6]. In this paper, we focus on 
the orchestrator and the objective advisors, which are 
novel to our approach. 

Objective advisors. The objective advisors (e.g., 
performance and dependability advisors) exploit the 
functionality provided by the component-specific 
configuration managers. The advisors can be hierarchical 
and may span multiple administrative domains in order to 
manage end-to-end KPIs. The advisors estimate the impact 

Orchestrator
Maximize Overall Business Value

P
red

icted
 K

P
Is

R
eso

u
rce A

rb
itratio

n
 

R
eq

u
ests

T
en

ta
ti

ve
 S

ch
ed

u
le

C
h

an
g

e O
p

eartio
n

s

A
d

viso
rs

Change
Manager

Schedule Executor

Final
Schedule

R
es

o
u

rc
es

Dependability 
Advisor

Performance 
Advisor

<schedule>
<time/>
<action/>

</schedule>

<change>
<action/>

</change>

<deadline/>

System 

Configuration

RFC

Initiate Resource 
Actions

Analyze Impact 
on KPIs

Objective Advisors

SLAs
System 
Management 
Events

P
ro

active A
ctio

n
s

Orchestrator
Maximize Overall Business Value

P
red

icted
 K

P
Is

R
eso

u
rce A

rb
itratio

n
 

R
eq

u
ests

T
en

ta
ti

ve
 S

ch
ed

u
le

C
h

an
g

e O
p

eartio
n

s

A
d

viso
rs

Change
Manager

Schedule Executor

Final
Schedule

R
es

o
u

rc
es

Dependability 
Advisor

Performance 
Advisor

<schedule>
<time/>
<action/>

</schedule>

<change>
<action/>

</change>

<deadline/>

System 

Configuration

RFC

Initiate Resource 
Actions

Analyze Impact 
on KPIs

Objective Advisors

SLAs
System 
Management 
Events

P
ro

active A
ctio

n
s

 
Figure 2. Distributed architecture for change management. 



of observed, predicted or scheduled events on the service 
KPIs. They do not depend on the actual enterprise business 
value models, which are handled by the orchestrator.  

Orchestrator. The orchestrator is a resource broker and a 
planner of change operations. The orchestrator is invoked 
in one of three situations (see Table 1): (i) when a change 
sequence has been initiated, following a RFC; (ii) when a 
predicted or observed infrastructure event (e.g., a fault, a 
workload change) mandates a resource reassignment; and 
(iii) when an SLA has changed, indicating a potential 
change in the overall business-value calculations. During 
the scheduling process, the orchestrator communicates with 
the objective advisors, asking “what if” questions in order 
to assess the impact of tentative change-operation 
schedules on the future service KPI values. Based on the 
predicted KPIs, the orchestrator computes the overall 
business value (which represents the utility of the schedule) 
using models defined by the SLAs. Using this metric to 
compare different schedules, the orchestrator converges, 
through an iterative process, to the best feasible schedule.  

Interaction Protocol. The interaction protocol is at the 
heart of our approach. As shown in Figure 2, a change 
sequence is initiated by the ChangeManager with the 
InitiateChange() function, or by an advisor with 
InitiateResourceBrokering(). The orchestrator calls 
the GetCurrentKPIs() and GetImpactKPIs() 
functions of each of the advisors (see Table 1), creating 
and refining a schedule through an incremental process.  

To minimize the communication costs, the interaction 
protocol might locally cache business value information for 
partial schedules. Each schedule receives a unique 
identifier, known to the orchestrator and advisors, and its 
related KPI predictions are saved. The predictions are 
retrieved whenever the partial schedule is modified, thus 
avoiding the repetition of most of the computations. 

2.2. Business-value model 
The SLO business values (BV) are functions that associate 
a dollar value with various levels of service provided by 
the system. They reflect the utility of a certain state of the 
system and provide a way of comparing the effects of 
changes affecting different KPIs. At time t, a KPI value is 
KPI(t) and the business value is: ))(( tKPIBVSLO

. A KPI 

value is assumed to hold for a period of time, until some 
event causes the KPI to take another value. This means that 
KPI(t) is a step function. For each KPI that changes at 

times t0, t1,… tn, the business value for the time interval  
[t0, tn] is computed using a weighted average: 

( )
( )( )

0

1

0
1

0

)(
],[

tt

tttKPIBV
ttBV

n

n

i
iiiSLO

nSLO −

−
=
∑

−

=
+

 

The business value functions of different SLOs are 
designed to be additive. They are used for reasoning about 
the multiple impacts of various change operations and for 
selecting the best trade-offs. We add the business values of 
all the SLOs to compute the overall business value, which 
reflects the utility of the proposed schedule of operations: 

( ) ( )],[],[ 0
 All

0 n
SLO

SLOnAll ttBVttBV
k

k∑=  

2.3. Change-operation scheduling 
The orchestrator computes schedules for change-operation 
groups, which correspond to a request for change (RFC) or 
to a request for resource brokering. A schedule indicates 
when each individual operation from the group will start 
executing. The goal of the scheduler is to maximize, for a 
certain time-horizon, the overall business value.  

A change operation is defined by a name, a scope and 
a set of properties. The name is an enterprise-specific 
descriptor recognized by all of the related objective 
advisors and service managers (e.g., "Upgrade database 
software to version 10.0"). The scope identifies the 
resource(s) involved by the operation (e.g., "database node 
DB1"). The properties are a list of <name, value> pairs that 
describe operation characteristics such as the duration of 
executing the operation, the additional load imposed, etc. 
Change operations can be mandatory, such the operations 
derived from an RFC, or optional, such as the resource 
brokering operations. The scheduler can discard optional 
operations if they do not improve the business value.  

 Each change group defines a partial order between 
the operations, indicating their precedence dependencies. 
A group may also specify a deadline for completing the 
execution of all operations and a business-value expression 
reflecting the penalty of late completion, which will be 
factored into the overall business value of the system to be 
maximized by the orchestrator. If the deadline is missing, 
then the aggregated business value of the SLOs is the only 
criterion for selecting a schedule. A change-operation 
group can be preempted by the arrival of a group with 
higher priority (e.g., if a previous change has damaged the 
system and needs to be rolled back). 

Table 1. APIs of the components. 
Orchestrator Objective Advisors 

InitiateChange(): request for scheduling a group of change 
operations derived from an RFC.  

InitiateResourceBrokering(): request for reallocation of 
resources (e.g. nodes) to mitigate the impact of an event detected by 
the system management infrastructure (e.g. a hardware fault).  

ChangeSLA(): request for integration of SLA updates.  

GetCurrentKPIs(): request for current KPI predictions for a 
given time interval, assuming that only infrastructure events (e.g., 
workload variation, node failures) will occur. 

GetImpactKPIs(): request for KPI predictions over a given time 
interval for a schedule of change operations.a  

aThe reply can suggest a set of proactive actions expected to improve the KPIs in conjunction with the change operations (e.g., “checkpoint database”). 
Proactive actions are included in the final schedule only if they improve the overall business value. 



The orchestrator associates start times t1, t2 … tn with 
operations e1, e2 … en, which have the respective durations 
d1, d2 … dn. The schedule must comply with the partial 
ordering among operations and the group deadline D (if 
defined). During scheduling, the orchestrator queries the 
objective advisors for predictions of the impact on KPIs 
during the relevant time-horizon and uses these predictions 
to compute the overall business value and to refine the 
schedule. This process should generate a schedule 
providing the best possible business value. 

Scheduling algorithms. Since the orchestrator does not 
know the closed form of the overall business value function 
(the KPI forecasts are done by the advisors), the scheduling 
problem has an unknown objective function. In the current 
stage of implementation, the scheduler makes a few 
simplifying assumptions about the change-operation 
groups: (i) all operations in a change group are mandatory; 
(ii) all the change-operation groups have explicit deadlines, 
like in the case of an external RFC; (iii) the operations in a 
change group are totally ordered (i.e. an operation must 
complete before the next one can begin). While these 
assumptions are somewhat constraining, we believe that in 
practice there are many change management situations that 
satisfy these constraints (we give an example in Section 3). 

The algorithms we have implemented are based on the 
following pattern. For each operation ek, we compute the 
feasible scheduling interval: ∑∑ =

−

=
−≤≤ n

ki ik

k

i i dDtd
1

1
. Using 

these bounds, we try to schedule each operation at its 
earliest time, its latest time and at all the m prediction 
points (time instants indicating the future variation of the 
KPIs) that fall within this feasible interval.  

The baseline scheduler is a backtracking algorithm that 
generates and evaluates all the possible placements for the 
change operations in a group. This algorithm generates the 
optimal schedule and has the worst-case complexity O(mn). 

A more realistic scheduler uses a polynomial best-
effort algorithm that is not guaranteed to provide an 
optimal solution. We achieve this with a greedy algorithm: 
we place each operation at each possible position and we 
compute the resulting business value (Figure 3). Then, we 
can select either the operation and the placement that yield 
the best possible business value (algorithm Greedy1), or 
the operation that displays the largest overall business-
value variation depending on the scheduling time, in order 
to avoid giving priority to the short operations that have a 
small negative impact (algorithm Greedy2). This 
placement splits the timeline and the change-operation 
group in two, and the same algorithm is applied to the two 
segments of the problem. These two algorithms have the 
complexity O(n2m) because, for scheduling each of the n 
operations, they evaluate nm placement options.  

3. Case study 

We consider a two-tiered system, where the physical hosts 
are organized in independently-managed node-groups. The 
first tier is a node group of application servers managed by 
application server middleware and the second tier is a node 
group of database servers, managed by database cluster 
infrastructure. The two node-group managers perform 
various middleware-specific management tasks (e.g., load 
balancing, request routing, fault recovery).  

This infrastructure provides two services, each 
mapped onto corresponding application-server and 
database services. The two services processing Web 
transactions are load-balanced across three application-
servers, W1 to W3. These front-end services query two 
database services that connect to separate database 
partitions. The database group comprises three nodes: 
• DB1 acts as primary server for Service1 and as backup 

for Service2; 
• DB2 is part of the logical primary server for Service2, 

which is distributed on two database nodes; 
• DB3 is also part of the logical primary for Service2 

and it is a backup for Service1 as well.  
Each of the two enterprise services has response time, 
recovery time and availability objectives. The business 
value associated with these SLOs depends on the related 
KPIs, such as ‘total number of transactions’, ‘number of 
transactions with response time below target’, etc.  

A performance advisor evaluates the impact of change 
operations on the end-to-end response time for each 
service by exploiting the knowledge provided by the node-
group managers (e.g., expected workload variations, 
service overheads). Similarly, a dependability advisor 
evaluates the impact on the recovery time and the 
availability SLOs.  

3.1. Qualitative evaluation 
For evaluating the proposed change management 
framework in this context, we have constructed a few 
realistic change management scenarios for this case study 
[3]. For lack of space, we present only one of them, 
involving a crash of node DB1, and we discuss how our 
framework handles this scenario. We complement this 
analysis with measurements illustrating the trade-off 
between the cost and the loss of optimality of different 
scheduling algorithms (Section 3.2). 

When the dependability advisor detects the crash of 
DB1, the corresponding node-group manager takes 
immediate recovery measures. The database recovery 
manager handles the failover of Service1 to its backup 
node, DB3. As a result, DB3 handles queries for both 
services, while DB2 continues to handle only queries for 
Service2. However, since the database group now has 
fewer nodes, and an accompanying higher risk of failing 
the availability objectives, the change-management system 
must decide whether removing one node from the 

time

Pp1 Pp2 Ppm

D

≈

ek

dk{e1,…ek-1} {ek+1,…en}
tk

time

Pp1 Pp2 Ppm

D

≈

ek

dk{e1,…ek-1} {ek+1,…en}
tk

 
 

Figure 3. Greedy scheduling algorithm. 



application server group and adding it to the database 
group would improve the overall business value and when 
these operations should be scheduled. 

Figure 4 shows the impact of these change operations. 
After the crash of DB1, the lack of a backup leads to a 
sharp decrease of the predicted availability of Service1 and 
a drop in the corresponding business value – indicated by 
point (a) in the figure. However, since the load of Service2 
is high at this point, transferring a node from the 
application-server group to the database group would fail 
to meet the response time objective. Therefore, the 
orchestrator delays the change operations until the load of 
Service2 decreases, at point (b). During the node transfer, 
the response time decreases for both services, but after the 
hand-off – point (c) – the response times, as well as the 
availability of Service1, may return to normal. However, 
since Service2 has been continuously sending queries to the 
database, its log kept growing, leading to an increase of the 
recovery time. To solve this problem, the dependability 
advisor requests a proactive action in the form of a 
database checkpoint (synchronizing the modified data 
blocks in memory with the disk and shortening the log 
processed during recovery). After the checkpoint, indicated 
by point (d), the response time and the recovery time for 
Service2 decrease to normal operating levels. 

Another scenario, involving an upgrade of the 
database, also shows that delaying the change operations 
may sometimes improve the overall business value [3]. 
These scenarios are typical of change management in an 
enterprise infrastructure; similar operations occur at a much 
larger scale in many real-life deployments. This illustrates 
the complexity of predicting the impact of change due to 
the strong dependencies on the actual implementations of 
objective managers. Our framework addresses these issues 

by delegating the impact assessment to objective-specific 
advisors encapsulating all the relevant domain knowledge.  

3.2. Quantitative evaluation 
Using a traditional scheduler, which does not optimize for 
long-term impact [6][7], in the scenario presented above 
would result in executing all of the change operations as 
soon as possible, instead of waiting for the most opportune 
time when the incoming load is low. Such impact-
insensitive scheduling results in a missed opportunity for 
optimizing the overall business value. Instead, the 
scheduling algorithms presented in Section 2.3 find the 
optimal schedule for the first scenario. In this case, the run-
times of all the algorithms –including the exponential 
backtracking scheduler – are comparable (less than 1s).  

We also test our scheduler using randomly-generated 
input sets and we explore the trade-off between complexity 
and the loss of optimality. The most appropriate 
complexity measure is the number of times the business 
value needs to be evaluated, since these evaluations require 
communication between the orchestrator and the advisors; 
we do not report the run-times because they depend 
heavily on the hardware resources used for simulation.  
The loss of optimality shows how close the BV of the 
resulting schedule was to the BV of the optimal schedule, 
as generated by the backtracking algorithm. Figure 5 
shows that, for small problems (e.g., 5 change operations 
and 10 KPI prediction points), the two (polynomial) 
greedy algorithms obtain near-optimal results and they 
need one or two orders of magnitude fewer BV evaluations 
than the exponential, optimal backtracking algorithm.  

For larger problems we cannot use the backtracking 
algorithm and therefore we cannot measure the loss of 
optimality of the greedy schedulers. For 100 change events 
and 100 prediction points, the greedy algorithms required 
up to 36673 business value evaluations and 67342 
comparisons, sometimes with significant differences 
between the two algorithms (between 3% and 68%). 
Greedy1 also exhibits a higher variance of the number of 
BV evaluations than Greedy2. While we could easily 
construct a scenario where Greedy2 performs better than 
Greedy1, the two algorithms produced identical schedules 
for all but one of the randomly generated scenarios.  

W1

W2

W3

DB1

DB2

DB3

Workload
(Service1)

Resp. Time
(Service1)

Resp. Time
(Service2)

Recov. Time
(Service 1)

Recov. Time
(Service2)

Availability
(Service1)

Availability
(Service2)

B
us

in
es

s 
V

al
ue

t

t

t

t

t

t

t

t

← App. Srv. group

Crash

→ DB Group

Workload
(Service2)

Checkpoint

H-off

H-off

(a)

(b)

(c)

(d)

W1

W2

W3

DB1

DB2

DB3

Workload
(Service1)

Resp. Time
(Service1)

Resp. Time
(Service2)

Recov. Time
(Service 1)

Recov. Time
(Service2)

Availability
(Service1)

Availability
(Service2)

B
us

in
es

s 
V

al
ue

t

t

t

t

t

t

t

t

← App. Srv. group

Crash

→ DB Group

Workload
(Service2)

Checkpoint

H-off

H-off

(a)

(b)

(c)

(d)

 
 

Figure 4. Node-fault management scenario. 

50 60 70 80 90 100
10

1

10
2

10
3

10
4

10
5

Optimality [%]

B
V

 E
va

lu
at

io
ns

Greedy1
Greedy2
Backtracking

 
Figure 5. Cost vs. loss of optimality trade-off. 

 



4. Discussion 
By focusing on the communication protocol for impact 
assessment rather than on building a monolithic change 
management system, the proposed distributed infrastructure 
for change management facilitates changes that may span 
multiple independent administrative domains and that may 
target uncooperative software infrastructures. The generic 
orchestrator can communicate with third-party advisors, 
built with specific, proprietary domain knowledge about a 
service/system/vendor, and construct schedules using only 
the information available from such advisors. This makes 
our approach widely applicable, although it may limit the 
optimization capabilities when the advisors cannot provide 
a comprehensive impact analysis (e.g., some services may 
not provide latency estimations required for end-to-end 
response- time management). Appropriate orchestrator 
implementations can generate change schedules even with 
imperfect information or predictions about the system; 
however, the quality of the schedules will inevitably 
improve with accurate impact analysis. If the advisors 
provide incorrect information, the orchestrator might take 
the system to a state with unacceptable service levels; in 
this case, a downgrade or the rollback of the changes can 
be scheduled using the same process described above. Our 
approach mirrors the philosophy of Service-Oriented 
Architectures, which is to focus on interaction protocols, 
rather than implementation bindings.  

One open question is to determine the typical size of 
realistic change-operation groups, which is important for 
selecting a good scheduling algorithm. Another issue to 
explore is the best way to express the KPI variation in time. 
The step function representation used in this paper might 
be too constraining; e.g., it cannot describe a recovery time 
that increases linearly with the increase of the database log, 
as depicted in Figure 4. We also plan to study, in a realistic 
setup, the impact of faults and upgrades, as well as the type 
of predictions and impact analysis that can be perform for 
impact-sensitive change management planning. 

5. Related work 
Segal and Frieder’s seminal work [8] states that one of the 
general requirements for any dynamic updating system is 
supporting distributed programs that communicate across 
mutually distrustful administrative domains. Research, 
however, has mostly focused on mechanisms for 
implementing change at different levels of granularity (e.g., 
replacing components, objects, procedures), rather than on 
coordination of distributed changes and impact assessment.  

Kharchenko et al. [5] estimate the “confidence in 
correctness” of composite Web Services undergoing online 
upgrades by monitoring multiple versions of a service in 
parallel. Some existing change management products, such 
as the IBM TIO [6], perform resource arbitration between 
node groups by evaluating the immediate impact of 
resource changes. While allowing the orchestration of 
distributed, self-managing components [2], this approach 

ignores the long-term impact of change management (e.g. 
interaction with expected workload change). CHAMPS [7] 
focuses on scheduling operations to satisfy external RFC 
deadlines. It develops a complex dependency-tracking 
framework and it formulates the scheduling problem as the 
optimization of a generic cost function given a set of 
constraints (representing the immediate impact of the 
change), providing a centralized approach for both 
scheduling and impact analysis. Our work is based on the 
observation that centralized impact evaluation is not 
appropriate for complex enterprise environments.  

6. Conclusions 
This paper investigates the problem of performing dynamic 
change management while maximizing the aggregate 
business value across all SLOs of the enterprise. We 
propose a novel framework for the distributed 
implementation of change management that separates the 
impact assessment (performed by the goal advisors) and 
the scheduling and business value aggregation (performed 
by the orchestrator). The framework takes into account the 
impact of change management on the enterprise SLOs, the 
long-term KPI variation and heterogeneous types and 
sources of change operations (both internal and external). 
We validate this framework using realistic scenarios which 
emphasize that impact assessment is essential for 
maximizing the business value, and our simulations 
compare the trade-off between the cost and the loss of 
optimality of three scheduling strategies.   

Acknowledgments 
The authors would like to thank Biswaranjan Bhattacharjee 
and Joel Wolf of IBM Research, Florin Oprea of Carnegie 
Mellon University and Jean-Charles Fabre of LAAS CNRS 
for their input during the early stages of this research. 

References 
[1] BMC Software, “Enterprise leadership: aligning IT and business as 

the economy rebounds,” http://www.bmc.com/BMC/Common/ 
CDA/hou_Page_Detail/0,3464,9926222_33961815_33965114,00.html 

[2] D. Chess et al., "Experience with collaborating managers: node 
group manager and provisioning manager," Second International 
Conference on Autonomic Computing, 2005, pp. 39-50.  

[3] T. Dumitraş et al., “Dynamic Change Management for Minimal 
Impact on Dependability and Performance in Autonomic Service-
Oriented Architectures,” Tech. Rep. CMU-CyLab-06-003, 2006. 

[4] Global Grid Forum, “Web services agreement specification (WS-
Agreement).” Draft, version 11, 2004. 

[5] V. Kharchenko et al., “On Dependability of Composite Web 
Services with Components Upgraded Online,” Workshop on 
Architecting Dependable Systems, Florence, Italy, 2004  

[6] IBM Tivoli Intelligent Orchestrator. http://www-306.ibm.com/software/ 
tivoli/products/intell-orch. 

[7] A. Keller et al., “The CHAMPS system: change management with 
planning and scheduling”, Network Operations and Management 
Symposium, 2004 

[8] M. E. Segal and O. Frieder, ”On-the-Fly Program Modification: 
Systems for Dynamic Updating,” IEEE Software, 10(2), 1993 




