
RC24129 (W0612-004) December 1, 2006
Computer Science

IBM Research Report

Robust Reductions from Ranking to Classification

Maria-Florina Balcan
Carnegie Melon University

Pittsburgh, PA 15213

Alina Beygelzimer
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

John Langford
Yahoo Research

New York, NY 10011

Gregory B. Sorkin
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Robust Reductions from Ranking to Classification

Maria-Florina Balcan1, Alina Beygelzimer2, John Langford3, and Gregory B. Sorkin4

1 Carnegie Melon University, Pittsburgh, PA 15213
ninamf@cs.cmu.edu

2 IBM Thomas J. Watson Research Center, Hawthorne, NY 10532
beygel@us.ibm.com

3 Yahoo Research, New York, NY 10011
jl@yahoo-inc.com

4 IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
sorkin@us.ibm.com

Abstract. We reduce ranking, as measured by the Area Under the Receiver Operating
Characteristic Curve (AUC), to binary classification. The core theorem shows that a
binary classification regret of r on the induced binary problem implies an AUC regret of
at most 4r. (The binary problem is to predict, given a random pair of elements in the
test set, whether the first element should be ordered before the second.) This is a large
improvement over naive approaches such as ordering according to regressed scores, which
have a regret transform of r → nr where n is the number of elements.

1 Introduction

We study the problem of learning to rank a set of instances, robustly. In the most basic version,
we are given a set of unlabeled instances belonging to two classes (0 and 1), and the goal is to
rank all instances from class 0 before any instance from class 1. A common measure of success
for a ranking algorithm is the area under the ROC curve (AUC). When all 0s are ranked before
all 1s, the AUC is exactly 1. The loss, 1 − AUC, is greater for mistakes at the beginning and
the end of an ordering, which satisfies the intuition that an unwanted item placed at the top
of a recommendation list should have a higher associated loss than when placed in the middle.
A handy shorthand for understanding this loss is that it is the normalized bubble-sort distance
between the predicted ordering and the true ordering (i.e., the number of pairs in the predicted
ordering when a 1 comes before a 0, normalized by the number of 1s times the number of 0s).

The classification problem is simply predicting whether a label is 0 or 1 with success measured
according to the error rate, i.e., the probability of a misprediction.

These two problems appear quite different: The classification loss function is defined on a
per-example basis while the AUC loss is defined for sets of examples. A natural question is
whether they are truly different. This paper shows that, in some precise sense, they are not. We
prove that the problem of optimizing the AUC can be reduced to classification in such a way that
a small number of mis-classifications cannot induce a large AUC loss. The classification problem
is to predict, given a random pair of instances in the test set, whether the first instance should
be ordered before the second. Thus there is a robust mechanism for translating any classifier
learning algorithm into a ranking algorithm.

Several observations help understand the problem and the result better.

Relation to Regression and Classification A common way to generate a ranking is to order ex-
amples according to some regressed score or estimated conditional class probability. The problem
with this approach is that it is not necessarily robust. The fundamental difficulty is exhibited by
highly unbalanced test sets. If we have one 1 and many 0s, a point-wise (i.e., regression or clas-
sification) loss on the 1 with perfect prediction for the 0s can greatly harm the AUC while only
slightly affecting the point-wise loss with respect to the induced distribution. This observation
implies that such schemes transform point-wise loss l to AUC loss nl, where n is the number of
elements we want to rank.

A similar observation holds for regrets in place of losses: point-wise regret r translates into
AUC regret nr. Regret is the difference between the incurred loss and the loss of the best
predictor on the same problem. The motivation behind regret analysis is that it separates errors
from unremovable noise in the problem, thus the bounds apply nontrivially even on problems
with large conditional noise.

Our results apply to both losses and regrets, but will be stated in terms of regrets. We
show that a pairwise classifier with a regret of r on pairs implies an AUC regret of at most 4r,
for arbitrary distributions over instances. The constant 4 has been subsequently improved to
2 [BCS06], which is the best possible (see Section 4). The theorem is a large improvement over the
approaches discussed above, which have a dependence on nr. For comparison, the relationship
of ranking to classification is functionally tighter than has been proven for regression to binary
classification (r →

√
r) [LZ05].

Tournaments and Relation to the Feedback Arc Set Problem Consider a tournament where n
players each play each other. What is the best way to rank the players from weakest to strongest?
A natural desire is to find an ordering which agrees with the tournament on as many player
pairs as possible, i.e., minimizes the number of inconsistent pairs where a higher ranked player
actually lost to a lower ranked player. This optimization problem is called the minimum feedback
arc set problem and it has finally been proved NP-hard in tournaments (see [A06]).

Returning to the AUC problem, consider running a tournament on the set of instances U we
want to rank. The outcome of each play is determined by a classifier c trained to predict which
of the two given instances should be ordered first. The tournament induced by c on U is not
necessarily consistent with a linear ordering while a ranking algorithm must predict an ordering
(or equivalently, a transitive tournament).

It is best to think of c as an adversary trying to induce a large AUC regret without paying
much in classification regret: The adversary c specifies a tournament on U . There is some realized
bipartition of U into a set of 0s and 1s (drawn from the underlying conditional distribution of
label sequences given U). The bipartition is known to the adversary but unknown to the ranking
algorithm. The adversary starts with a tournament of its choice where every 1 beats every 0, and
it can invert (and is charged for) the outcomes of some games between a 0 and a 1. Again, the
adversary can choose any subtournaments on the 1s and on the 0s for free. Given c’s tournament,
a ranking algorithm orders the elements of U , possibly introducing additional mistakes, i.e., pairs
where a 0 beats a 1. A ranking algorithm is robust if c cannot cause the algorithm to make many
mistakes without making many mistakes itself.

One way to predict an ordering is to solve the feedback arc set problem. A basic guarantee
holds for a solution to this problem: If c makes at most k mistakes, then the ordering minimizing
the number of inconsistent pairs will make at most 2k mistakes; furthermore, no solution can
do better.

Another natural way to break cycles is to rank instances according to the number of wins in
the tournament. (The way ties are broken is inessential; but for definiteness, assume they are
broken randomly.) Coppersmith, Fleischer, and Rudra [CFR06] proved that this algorithm pro-
vides a factor of 5-approximation for the feedback arc set problem. An approximation, however,
does not generally imply any finite regret transform for the AUC problem. For example, c may
make no mistakes on the 0-1 pairs while inducing a non-transitive tournament on the 0s or the
1s, so an approximation that does not know the labeling can incur a non-zero number of 0-1
mistakes.

We show, however, that the algorithm that orders the elements by their number of wins
in the tournament, transforms classification regret k into AUC regret of at most 4k. Bansal,
Coppersmith, and Sorkin subsequently improved the constant to 2 [BCS06], which is the best
possible (see a lower bound in Section 4).

This shows that there is an alternative to solving the NP-hard problem with the same
optimality guarantee: Ordering by the number of wins has exactly the same regret and loss
transform as an optimal solution to the feedback arc set problem.

Relation to generalization bounds A number of papers analyze generalization properties of
ranking algorithms (see, e.g., [FIS+03,SHD05,SN05,RCM+05]). These results analyze ranking
directly by estimating the rate of convergence of empirical estimates of the ranking loss to its
expectation. The bounds typically involve some complexity parameter of the class of functions
searched by the algorithms (which serves as a regularizer), and some additional quantities con-
sidered relevant for the analysis. The examples are assumed to be drawn independently from
some fixed distribution and the labels are often assumed to be deterministic.

The type of results in this paper is different. We bound the realized AUC performance in
terms of the realized classification performance. Since the analysis is relative, it does not have to
rely on any assumptions about the way the world produces data. In particular, the bounds apply
when there are arbitrary high-order dependencies between examples. This seems important in
a number of real-world applications where ranking is of interest.

Our analysis does not say anything about the number of samples needed to achieve a certain
level of performance. Instead it says that achieved performance can be robustly transferred from
classification to ranking.

2 Preliminaries

A binary classification problem is defined by a distribution P over X × {0, 1}, where X is
some feature space and {0, 1} is the binary prediction space. The goal is to find a classifier
c : X → {0, 1} minimizing the classification loss,

e(c, P) = Pr(x,y)∼P [c(x) 6= y].

Let π : X×X → {0, 1} be a preference function that, given as input any two instances in X,
outputs 1 if it agrees with the ordering of its arguments, and 0 otherwise. We say that π is an
ordering of a set S if it is transitive on S, i.e., its pairwise preferences are consistent with some
linear ordering of elements in S. The AUC loss of an ordering π on a set S ∈ (X × {0, 1})n is
defined as

lauc(π, S) =

∑
i 6=j 1(yi > yj)π(xi, xj)∑

i<j 1(yi 6= yj)
.

Algorithm 1 Auc-Train (labeled set S, binary learning algorithm A)
1. Let S′ = {〈(x1, x2),1(y1 > y2)〉 : (x1, y1), (x2, y2) ∈ S and y1 6= y2}
2. return c = A(S′).

Algorithm 2 Degree (unlabeled set U , pairwise classifier c)
1. For x ∈ U , let deg(x) = |{x′ : c(x, x′) = 1, x′ ∈ U}|.
2. Sort U in the descending order of deg(x), breaking ties randomly.

(Indices i and j in the summations range from 1 to n, and 1(·) is the indicator function which
is 1 if its argument is true, and 0 otherwise.)

An AUC problem is defined by a distribution D over (X × {0, 1})∗. The goal is to find a
total ordering π : X ×X → {0, 1} minimizing the expected AUC loss on D,

l(π,D) = ES∼Dl(π, S).

Note that D may encode arbitrary dependencies between examples.
The classification regret of classifier c on distribution P on binary examples is defined as

r(c, P) = e(c, P)−min
c∗

e(c∗, P).

Similarly, the AUC regret of preference function π on distribution D over (X ×{0, 1})∗ is given
by

rauc(π,D) = l(π,D)−min
π∗

l(π∗, D).

Our goal is to design a ranking algorithm (that uses a preference function as an oracle) such
that a small classification regret of the oracle cannot imply a large AUC regret.

Finally, a pair (x1, y1), (x2, y2) will be called mixed if y1 6= y2.

3 Ordering by the Number of Wins: Regret Transform

The reduction consists of two components. The training part, Auc-Train (Algorithm 1), trans-
forms mixed pairs of labeled examples into binary data.

For any process D generating datasets S ∈ (X × {0, 1})∗, we can define an induced distri-
bution on binary examples in (X ×X) × {0, 1} by first drawing S from D, and then applying
Auc-Train to S. We denote this induced distribution by Auc-Train(D).

The test portion, Degree (Algorithm 2), uses the pairwise classifier (i.e., a preference func-
tion) c learned in Algorithm 1 to run a tournament on the test set, and then creates an ordering
according to the number of wins in the tournament, breaking ties randomly.

There are several important practical points that follow from the fact that the analysis is
independent of how the oracle is learned. Most importantly, the complexity of the test portion
does not have to be quadratic in n. If, for example, π(xi, xj) = 1(f(xi) > f(xj)) for some
learned score function f : X → [0, 1], the complexity is linear.

The remainder of this section proves the following theorem.

Theorem 1. For all joint distributions D and all pairwise classifiers c,

rauc(Degree(·, c), D) ≤ 4r(c,Auc-Train(D)).

Note the quantification in the above theorem: it applies to all settings where Algorithms 1 and 2
are used; in particular, D may encode arbitrary dependences between examples.

Proof. Given an unlabeled test set xn ∈ Xn, the joint distribution D induces a conditional
distribution D(Y1, . . . , Yn | xn) over the set of label sequences {0, 1}n. We prove the theorem for
any fixed xn, and then take the expectation over the draw of xn at the end. In the remainder
of the proof Q(yn) = D(yn|xn) is the conditional distribution over yn given xn. Similarly, we
replace xi with i where it is unambiguous.

The first step is to rewrite the regrets in terms of a sum over pairwise regrets. A pairwise
loss is defined by

lQ(i, j) = Eyn∼Q(Y n)
1(yi > yj)∑
i<j 1(yi 6= yj)

.

If lQ(i, j) < lQ(j, i), the regret rQ(i, j) of ordering i before j is 0; otherwise, rQ(i, j) =
lQ(i, j)− lQ(j, i).

We can assume without loss of generality that the ordering minimizing the AUC loss (thus
having zero AUC regret) is x1x2 . . . xn. All regret-zero pairwise predictions must be consistent
with the ordering; i.e., rQ(i, j) = 0 for all i < j.

Lemma 2 establishes a basic property of pairwise regrets: For any pair i < j, the regret
rQ(j, i) can be decomposed as

rQ(j, i) =
j−1∑
k=i

rQ(k + 1, k).

The AUC regret of π on Q can thus be decomposed as a sum of pairwise regrets:

rauc(π,Q) = l(π,Q)−min
π∗

l(π∗, Q) = Eyn∼Ql(π, S)−min
π∗

Eyn∼Ql(π∗, S)

= Eyn∼Q

∑
i,j 1(yi > yj)π(i, j)∑

i<j 1(yi 6= yj)
−min

π∗
Eyn∼Q

∑
i,j 1(yi > yj)π∗(i, j)∑

i<j 1(yi 6= yj)

= max
π∗

Eyn∼Q

∑
i,j 1(yi > yj)π(i, j)− 1(yi > yj)π∗(i, j)∑

i<j 1(yi 6= yj)

=
∑

i<j:π(j,i)=1

rQ(j, i) =
n−1∑
k=1

|{i ≤ k < j : π(j, i) = 1}| · rQ(k + 1, k).

The last equality follows from the repeated use of Lemma 2.

The classification regret can also be written in terms of pairwise regrets:

r(c,Auc-Train(Q)) = e(c,Auc-Train(Q))−min
c∗

e(c∗,Auc-Train(Q))

= max
c∗

Eyn∼Q

[∑
i,j 1(yi > yj)c(i, j)− 1(yi > yj)c∗(i, j)∑

i<j 1(yi 6= yj)

]

=
∑

i<j:c(j,i)=1

rQ(j, i) =
n−1∑
k=1

|{i ≤ k < j : c(j, i) = 1}| · rQ(k + 1, k).

Let ok and ck be the coefficients with which rQ(k+1, k) appears in the above decompositions
of rauc(π,Q) and r(c,Auc-Train(Q)) respectively. The proof is done if we can show that
ok/ck ≤ 4 for each k.

Fix k and consider a bipartition of n nodes 1, . . . , n into a nonempty set W of k “winners” and
a nonempty set L of n− k “losers”. Let T0 be a tournament on these nodes, with the property
that W dominates L: every node j ∈ W beats every node i ∈ L. Let Tc be the tournament
corresponding to our classifier c. Both tournaments are on the same set of nodes.

The coefficient ok is the number of pairs (j, i) such that j ≤ k < i but i is ordered before j
in π:

ok =
∑
i∈L

∑
j∈W

[
1 (degc(i) > degc(j)) + 1

2 · 1 (degc(i) = degc(j))
]

≤
∑
i∈L

∑
j∈W

1 (degc(i) ≥ degc(j)) ,

where degc(i) is the number of wins in Tc.
Also, given the two tournaments T0 and Tc, let ρ(i, j) = 0 if T0 and Tc agree on the direction

of (i, j), and 1 otherwise. The classifier’s cost function is then

ck =
∑
i∈L

∑
j∈W

ρ(i, j).

To complete the proof we need to show that ok/ck ≤ 4. Theorem 2 proves precisely that.

We will need the following lemma, due to Landau [Lan53].

Lemma 1. There exists a tournament with outdegree sequence deg(1) ≤ deg(2) ≤ · · · ≤ deg(n)
if and only if, for all 1 ≤ i ≤ n,

∑i
j=1 deg(j) ≥

∑i
j=1(j − 1), with equality for i = n.

We can now prove the remaining theorem relating the coefficients ok and ck.

Theorem 2. For every n, every bipartition of {1, . . . , n} into nonempty sets W and L, every
tournament T0 in which every j ∈ W dominates every i ∈ L, and every tournament Tc, with
k = |W |,

ok

ck
≤

∑
i∈L

∑
j∈W 1 (degc(i) ≥ degc(j))∑

i∈L

∑
j∈W ρ(i, j)

≤ 4. (1)

The bound has subsequently been improved to ok/ck ≤ 2 [BCS06], which is the best possible
(see Section 4).

The proof of Theorem 2 comprises the remainder of this section.
We think of maximizing the ratio (1) over the space described by the theorem, and showing

that the maximum is at most 4. The numerator of (1) depends only on Tc. If we simply transform
T0 into Tc by flipping the edges that disagree, the denominator is the number of edge reversals
between L and W . Note that the denominator is unchanged if we replace T0 with the tournament
T0

′ which agrees with Tc on L × L and on W ×W , and (like T0) has W dominating L. Thus,
we may equivalently perform the maximization only over tournaments T0 and Tc which agree
on L × L and W × W . For such a pair of tournaments, each edge reversal ρ(i, j) contributing
1 to the denominator has the effect of increasing the degree of i ∈ L by 1, and decreasing the
degree of j ∈ W by 1.

Thus, we may rewrite the ratio in (1) as∑
i∈L

∑
j∈W 1 (degc(i) ≥ degc(j))

1
2

[∑
i∈L(degc(i)− deg0(i)) +

∑
j∈W (deg0(j)− degc(j))

] . (2)

Instead of maximizing the ratio only over degree sequences corresponding to tournaments sat-
isfying the conditions of Theorem 2, we will maximize it over the broader class of sequences
satisfying the following two conditions:

1. The sequence deg0 satisfies Landau’s condition (Lemma 1); i.e., it is the degree sequence of
some tournament T0.

2. For all i ∈ L, degc(i) ≥ deg0(i), and for all j ∈ W , degc(j) ≤ deg0(j).

Note that both conditions are satisfied by tournaments obeying the theorem’s conditions. This
maximization is thus a relaxation of the original maximization problem; we will show that its
maximum is at most 4, thus establishing the theorem.5

For convenience, let `1, . . . , `|L| be the nodes of L ordered so that deg0(`i) ≥ deg0(`i+1), so
for example `1 is the best of the losers (or tied for that status). Similarly, let w1, . . . , w|W | be
the nodes of W ordered so that deg0(wj) ≤ deg0(wj+1), so w1 is the worst of the winners.

Without loss of generality we may assume that degc(`i) is a nonincreasing sequence (like
deg0(`i)) and degc(wj) is a nondecreasing sequence (like deg0(wj)). This follows because we
may replace any sequences degc(`i) and degc(wj) with their sorted equivalents. Clearly such a
replacement does not affect the value of the denominator of (2). Also, if the original sequences
satisfied condition (B), so do their sorted equivalents.

This simple fact has a nice “structural” consequence for the set of points (i, j) contributing
to the numerator, call it S = {(i, j) : 1 (degc(`i) ≥ degc(wj))}. First, if (i, j) ∈ S, then for all
i′ ≤ i and j′ ≤ j, (i′, j′) ∈ S as well.

It may be helpful to imagine S as an area drawn in the positive quadrant of a sheet of graph
paper: the cell [i − 1, i] × [j − 1, j] is filled iff (i, j) ∈ S. The condition just established asserts
that in this representation of S there are no “holes”: the region is a solid one running from some

5 An easy construction shows that in this relaxation the ratio can be equal to 4, asymptotically. Thus
a proof that the ratio is at most 2, has to rely on stronger properties of the pair of tournaments
(see [BCS06]).

point on the j axis down in some sort of staircase pattern to some point on the i axis. (See
Figures 1 and 2.)

Define L(i, j) = {(i′, j′), i, j ≥ 0: i′ = i and j′ ≤ j, or j′ = j and i′ ≤ i}, i.e., the point (i, j)
together with all points directly left of it and all points below it. Note that if (i, j) ∈ S then
L(i, j) ⊂ S.

Claim. For any “staircase” region S there exists a (not necessarily perfect) matching M of rows
i to columns j such that S =

⋃
(i,j)∈M L(i, j).

That is, there is a set of Ls which form a cover of S (it is permissible for them to overlap), and
whose defining “corners” all lie in distinct rows and columns.

j1

j2

i1

Fig. 1. Tall and skinny protrusion

j1

j2

i1

F HG

Fig. 2. Short and wide protrusion

Proof. We write (i, j) to denote a point in N2, and [i, j] = {i, i + 1, . . . , j} to denote an interval
in N. The proof is by induction on the cardinality of S. Consider the topmost protrusion of S,
just down to the level of the next “step” to the right. (See Figures 1 and 2.) That is, say it
extends from i = 0 to i1, and from j = 0 to j2, with j1 defining the height of the next-highest
bit off to the right. Start covering from the protrusion’s top-right corner (i1, j2) with nested Ls,
working down and left to a point to be specified.

If the protrusion is taller than it is wide (if j2 − j1 > i1; see Figure 1), go until you bump
into the left edge (the j axis). This covers the entire leftmost tower (from (0, 0) to (i1, j2)) with
Ls whose supporting columns are precisely the range [0, j1] and whose supporting rows are the
range [j2− j1, j2]. What’s left uncovered is an area right of i1 and below j1. By induction it can
be covered with Ls with supporting columns right of i1 and rows below j1. This second set of Ls
can thus be safely unioned with the first set, without any duplication of supporting columns or
rows. All the area is covered. (The area [0, i1]× [0, j1] is doubly covered, which is allowed.)

If the protrusion is wider than it is tall (Figure 2), go until you bump into the horizontal
line j = j1. This covers the top protrusion, uses up all the rows [j1, j2], and also uses up columns
[i1−(j2−j1), i1]. The remaining area is thus all below j1, and consists of the rectangle “F” from

(0, 0) to (i1−(j2−j1), j1); a “gap G” (of covered area and forbidden rows) from (i1−(j2−j1), 0) to
(i1, j1); and then some more complex structure “H” to the right of j1. “Glue” the first rectangle
F to the area H at the right (deleting the gap). Inductively cover this shape FH with Ls. Then
pull the shape apart again (any L anchored in H now extends across the gap G). The new Ls
use rows below j1 (thus not conflicting with the first set, which were above j1), and use columns
in either F or in H (thus not conflicting with the first set, which were in G). The top rectangle
and G are covered by the first set of Ls; F and H are covered by the second set; and thus the
whole area is covered.

Corollary 1. If M is a matching covering S (in the sense of Claim 3) then the numerator of
(2) is ≤

∑
(i,j)∈M (i + j − 1).

Proof. S is the union of the Ls, and L(i, j) has cardinality i + j − 1.

Now we establish a simple condition on the degree sequence deg0. As W dominates L, it is
immediate that deg0(wj) ≥ |L| and deg0(`i) ≤ |L| − 1.

Claim. For all i and j, deg0(wj) ≥ |L|+ (j − 1)/2 and deg0(`i) ≤ |L| − (i + 1)/2.

Proof. Restricting T0 to W gives a tournament T0
W whose outdegrees are deg′0(wj) = deg0(wj)−

|L|. By Lemma 1, for any j,
(

j
2

)
≤

∑j
k=1 deg′0(wk), which by the nondecreasing nature of W ’s

degree sequence is ≤ j · deg′0(wj). This gives (j − 1)/2 ≤ deg′0(wj) = deg0(wj) − |L|, yielding
the claim’s first inequality.

Similarly, restricting T0 to L gives a tournament T0
L with the same outdegrees, deg′0(`i) =

deg0(`i). Consider the indegrees within T0
L, and note that ind′(`i) + deg′0(`i) = |L| − 1. Just as

above, by Landau’s theorem, for any i, (i − 1)/2 ≤ ind′(`i) = |L| − 1 − deg0(`i), yielding the
claim’s second inequality.

Corollary 2. If M is a matching covering S (in the sense of Claim 3) then the denominator
of (2) is ≥ 1

4

∑
(i,j)∈M (i + j).

Proof. By definition, (i, j) ∈ M implies (i, j) ∈ S, meaning that

degc(`i) ≥ degc(wj)
deg0(`i) + x(i) ≥ deg0(wj)− y(j)

and, by Claim 3,

x(i) + y(j) ≥ deg0(wj)− deg0(`i) ≥
i + j

2
. (3)

In our new notation, the denominator of (2) is simply

1
2

 |L|∑
i=1

x(i) +
|W |∑
j=1

y(j)

 ≥ 1
2

∑
(i,j)∈M

[x(i) + y(j)] ,

because M is a matching and the x(i) and y(j) are all nonnegative. From (3), this is

≥ 1
2

∑
(i,j)∈M

i + j

2
.

The theorem is immediate from Corollary 1 and Corollary 2.

Auxiliary Lemma We finally prove the lemma used in the proof of Theorem 1.

Lemma 2. For any i, j, and k in xn,

rQ(i, j) + rQ(j, k) = rQ(i, k).

Proof. Let dijk be a short-hand for the restriction of D(Y1, . . . , Yn | xn) to {Yi, Yj , Yk}. A simple
algebraic manipulation verifies the claim.

rQ(i, j) + rQ(j, k)
= dijk(100) + dijk(101)− dijk(010)− dijk(011)

+ dijk(010) + dijk(110)− dijk(001)− dijk(101)
= dijk(100) + dijk(110)− dijk(001)− dijk(011)
= rQ(i, k),

Notice that all label assignments above have exactly two mixed pairs, so the factor of 1/2 is
cancelled.

4 A Lower Bound

The following example gives a simple lower bound of 2− 4
n+2 on the regret transform, both for

the algorithm that orders by the number of wins and an optimal solution to the feedback arcset
problem.

Example. Assume for simplicity that n is divisible by 4. Consider a bipartition of {1, . . . , n}
into a set U = {1, . . . , n/2} of 0s and a set V = {n/2 + 1, . . . , n} of 1s. Consider a tournament
where every node in U beats n/4 other nodes in U and n

4 − 1 nodes in V ; and every node in
V beats n/4 nodes in U and n/4 nodes in V . Thus the tournament assigns n/2 wins to every
element in V and (n− 2)/2 wins to every element in U .

In this example, ordering minimizing the number of inconsistent pairs corresponds to ordering
by the number of wins. Both algorithms order all n/2 1s before any of the n/2 0s, and therefore
pay (n/2)2 in inversions. The total number of wins in U is n−2

2 · n
2 , but

(
n/2
2

)
of them have to

be spent internally on edges from U to U . Thus the number of cross-component edges that the
adversary can direct correctly is at most n−2

2 · n
2 −

(
n/2
2

)
= n(n

2−1)

4 , giving the desired bound of
n2

n2−n(n
2−1) = n2

n2
2 +n

= 2− 4
n+2 on the ratio.

5 Relation to Other Related Work

Cortes and Mohri [CM04] tried to analyze the relationship between the AUC and the error rate
on the same classification problem, treating the two as different loss functions. They derived
expressions for the expected value and the standard deviation of the AUC over all classifications
with a fixed number of errors, under the assumption that all such classifications are equiprobable
(i.e., the classifier is as likely to err on any one example as on any other). These expressions are
of little relevance to the results presented here.

Cohen, Schapire, and Singer [CSS99], similarly, use a two-stage approach to ranking: They
first learn a preference function that takes a pair of instances and returns a score predicting how
certain it is that the first instance should be ranked before the second. The learned function
is then evaluated on all pairs of instances in the test set and an ordering approximating 6 the
largest l1 agreement possible with the predictions is created. They show that the agreement
achieved by an optimal ordering is at most twice the agreement obtained by their algorithm. To
translate this result into the language of losses, let Mfa be the AUC loss of a minimum feedback
arcset ordering and Approx be the AUC loss of the approximation. Then the result says that
1 − Approx ≥ 1

2 (1 − Mfa) or Approx ≤ 1
2 + Mfa/2. The settings are different making the

results given here difficult to compare. Applying the result in our setting requires specializations
and yields results that are weaker than ours.

References

[SHD05] S. Agarwal, S. Har-Peled, and D. Roth. A uniform convergence bound for the area under
the ROC curve, Proceedings of the 10th International Workshop on Artificial Intelligence
and Statistics, 2005.

[SN05] S. Agarwal, P. Niyogi. Stability and Generalization of Bipartite Ranking Algorithms, Pro-
ceedings of the Eighteenth Annual Conference on Computational Learning Theory (COLT),
2005.

[A06] N. Alon. Ranking tournaments, SIAM J. Discrete Math. 20: 137–142, 2006.
[BCS06] N. Bansal, D. Coppersmith, G. Sorkin. A Tournament Has at Most Twice as Many Order

Misrankings as Pair Misrankings, manuscript, 2006.
[CLV05] S. Clemencon, G. Lugosi and N. Vayatis. Ranking and Scoring Using Empirical Risk Min-

imization, Proceedings of the Eighteenth Annual Conference on Computational Learning
Theory (COLT), 2005.

[CSS99] W. Cohen, R. Schapire, and Y. Singer. Learning to order things, Journal of Artificial
Intelligence Research, 10: 243–270, 1999.

[CFR06] D. Coppersmith, L. Fleischer and A. Rudra. Ordering by Weighted Number of Wins Gives
a Good Ranking for Weighted Tournaments. Proceeding of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 776–782, 2006.

[CM04] C. Cortes and M. Mohri. AUC Optimization vs. Error Rate Minimization, Advances in
Neural Information Processing Systems (NIPS 2003), 2004.

[FIS+03] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient boosting algorithm for combining
preferences, Journal of Machine Learning Research, 4: 933–969, 2003.

[Lan53] H. G. Landau. On Dominance Relations and the Structure of Animal Societies, III. The
Condition for a Score Structure. Bull. Math. Biophys. 15, 143–148, 1953.

[LB05] J. Langford and A. Beygelzimer. Sensitive Error Correcting Output Codes, Proceedings of
the Eighteenth Annual Conference on Computational Learning Theory (COLT), 2005.

[LZ05] J. Langford and B. Zadrozny. Estimating Class Membership Probabilities Using Classifier
Learners, AI+STATS 2005.

[RCM+05] C. Rudin, C. Cortes, M. Mohri, and R. Schapire. Margin-based ranking meets Boosting in
the middle, Proceedings of the Eighteenth Annual Conference on Computational Learning
Theory (COLT), 2005.

[FS97] Y. Freund, R. Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997

6 The approximation algorithm they use orders by the weighted sum of wins minus the weighted sum
of loses, in the induced tournament obtained by eliminated instances that have already been ordered.

[ZLA03] B. Zadrozny, J. Langford, and N. Abe. Cost Sensitive Learning by Cost-Proportionate Ex-
ample Weighting, Proceedings of the 3rd IEEE International Conference on Data Mining
(ICDM), 435–442, 2003.

