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Abstract. The full format data structures of Dense Linear Algebra hurt
the performance of its factorization algorithms. Full format rectangular
matrices are the input and output of level the 3 BLAS. It follows that
the LAPACK and Level 3 BLAS approach has a basic performance flaw.
We describe a new result that shows that representing a matrix A as a
collection of square blocks will reduce the amount of data reformating
required by dense linear algebra factorization algorithms from O(n3) to
O(n2). On an IBM Power3 processor our implementation of Cholesky
factorization achieves 92% of peak performance whereas conventional
full format LAPACK DPOTRF achieves 77% of peak performance. All pro-
gramming for our new data structures may be accomplished in standard
Fortran, through the use of higher dimensional full format arrays. Thus,
new compiler support may not be necessary. We also discuss the role of
concatenating submatrices to facilitate hardware streaming. Finally, we
discuss a new concept which we call the L1 / L0 cache interface.

1 Introduction

The current most commonly used Dense Linear Algebra (DLA) algorithms for
serial and SMP processors have a performance inefficiency and hence they give
sub-optimal performance. We indicate that Fortran and C two dimensional ar-
rays are the main reason for the inefficiency. We show how to correct these
performance inefficiencies by using New Data Structures (NDS) along with so-
called kernel routines. These NDS generalize the current storage layouts for both
the Fortran and C programming languages. One of these formats is packed for-
mat and we do not discuss it as a new result [18, 13, 19] about Rectangular Full
Packed (RFP) format shows that packed format can be represented by RFP
format. RFP format is full format and it and packed both use exactly the same
amount of storage. However, SBP (Square Block Packed) format also replaces
packed format and it is a main subject of this paper. Like RFP format it is a full
format data structure and it uses only slightly more storage than RFP format.

The BLAS [22, 9, 10] (Basic Linear Algebra Subroutines) were introduced to
make the algorithms of DLA performance-portable. Starting with LINPACK,
[7] and progressing to LAPACK [4] the Level 1, 2, 3 BLAS were introduced.
The suffix i in Level i refers to the number of nested “do loops” required to do
the computation of a given BLAS. Almost all of the floating-point operations of
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DLA algorithms are performed through the use of BLAS calls. If performance
were directly proportional to operation count then performance would be truly
portable. However, with today’s deep memory hierarchies and other new ar-
chitecural features, this is no longer the case. To understand the performance
inefficiency of LAPACK algorithms, it suffices to discuss the Level 3 BLAS,
DGEMM (Double precision GEneral Matrix Matrix). A relationship exists between
the Level 3 BLAS and their usage in most of level 3 factorization routines. This
relationship introduces a performance inefficiency in block based factorization
algorithms and we will now discuss the Level 3 BLAS, DGEMM (Double precision
GEneral Matrix Matrix) to illustrate this fact.

In [1, 5, 25, 14] design principles for producing a high performance Level 3
DGEMM BLAS are given. A key design principle for DGEMM is to partition its matrix
operands into submatrices and then call a DGEMM L1 kernel routine multiple times
on its submatrix operands. Another key design principle is to change the data
format of the submatrix operands so that each call to the L1 kernel can operate
at or near the peak Million FLoating point OPerations per Second (MFlops)
rate. This format change and subsequent change back to standard data format
is a cause of a performance inefficiency in DGEMM. The DGEMM API requires that
its matrix operands be stored as standard Fortran or C two-dimensional arrays.

Any DLA Factorization Algorithm (DLAFA) of a matrix A calls DGEMM mul-
tiple times with all its operands being submatrices of A. For each call data copy
will be done; therefore this unit cost gets multiplied by this number of calls.
However, this overall cost can be eliminated by using the NDS to create a sub-
stitute for DGEMM; e.g. its analogous L1 kernel routine, which does not require the
aforementioned data copy. So, as in [15, 17], for triangular matrices, we suggest
that SBP format be used in concert with kernel routines.

This paper also describes a new concept which we call the L1 cache / L0 cache
interface. We define a L0 cache as the register file of its floating point unit. Today,
many architectures possess special hardware to support the streaming of data
into the L1 cache from higher levels of memory [24, 21]. In fact with a large
enough floating point register file it may be possible to do, say, a L2 or L3 cache
blocking for a DGEMM kernel; ie, completely bypass the L1 cache. This is the case
in [6] where a 6 by 6 register block for the C matrix can be used as this processor
has 64 (32 dual SIMD) floating point registers. To do L0 register blocking we
can concatenate tiny submatrices to faciltate streaming by reducing the number
of streams. In effect, at the L0 level we have a concatenation of tiny submatrices
behaving like a single long stride one vector that passes through L1 and into L0
in an optimal way. Sections 2, 2.1 and 2.2 give details about this technique. Using
this extra level of blocking does not negate the benefits of using Square Blocks
(SB). It is still essential that NB2 elements of a SB be contiguous. However, the
SBs are now no longer two dimensional Fortran or C arrays. We define a SB as
simple when it is a two dimensional Fortran or C array. Using non-simple SBs as
described here and in Section 2 allows us to claim that data copy for DLAFAs
using SBs can be O(N2) instead of O(N3) which occurs when using Fortran or
C two dimensional arrays.
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Section 3 describes SB format for symmetric and triangular arrays. In this
case one gets SBP format. Section 3.1 explains that SBP format is just as easy to
use and to code for as is using standard full format for the same two purposes.
Section 3.2 demonstrates a typical performance improvement one gets using
simple SBP format over using standard full format. Similar performance results
are attainable for non-simple SB, see [6]. Section 4 contains our main result about
the reduction from O(N3) to O(N2) of data copy that is possible by using NDS;
ie, either SB or SBP data format. The background material for this result is
developed in Sections 2 and 3.

2 The Need to Reorder a Contiguous Square Block

NDS represent a matrix A as a collection of SB’s of order NB. Each SB is con-
tiguous in memory. In [23] it is shown that a contiguous block of memory maps
best into L1 cache as it minimizes L1 and L2 cache misses as well as TLB misses
for matrix multipy and other common row and column matrix operations. When
using standard full format on a DLAFA one does an O((N/NB)2) amount of
data copy in calling DGEMM in an outer do loop: j=0,N-1,NB. Over the entire
DLAFA this becomes O((N/NB)3).

On some processors there are floating point multiple load and store instruc-
tions associated with the multiple floating point operations; see [1, 6]. A multiple
load / store operation requires that its multiple operands be contiguous in mem-
ory. The multiple floating point operations require their register operands to be
contiguous; eg, see [6]. So, data that enters L1 may also have to be properly
ordered to be able to enter L0 in an optimal way. Unfortunately, layout of a SB
in standard row / column major order may no longer lead to an optimal way. In
some cases it is sufficient to reorder a SB into submatrices which we call register
blocks. Doing this produces a new data layout that will still be contiguous in
L1 but can also be loaded into L0 from L1 in an optimal manner. Of course,
the order and size in which the submatrices (register blocks) are chosen will be
platform dependent.

2.1 A DGEMM kernel based on Square Block Format Partitioned into
Register Blocks

In this contribution register blocks can be shown to be submatrices of a SB.
This fact is important as it means that one can address these blocks in Fortran
and C. To see this let A, B and C be three SB’s and suppose we want to apply
DGEMM to A, B and C. We partition A, B and C into conformable submatrices
that are also register blocks. Let the sizes of the register blocks (submatrices)
be kb× mb, kb× nb and mb× nb. Thus AT , B and C are partitioned matrices of
sizes k1 × m1, k1 × n1 and m1 × n1 respectively.

The DGEMM kernel we want to compute is C = C−AT B where matrix multiply
is stride one across the rows and columns of A and B respectively. (AT will be
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stride one along rows as A is stride one along its columns.) Next, consider a
fundamental building block of this DGEMM kernel; see Figure 1 It consists of

l

l

u1

umb

v1 vnb

T1,1

Tmb,1

T1,nb

Tmb,nb

Fig. 1. Fundamental GEMM Kernel Building Block.

multiplying k1 register blocks of AT by k1 register blocks of B and summing
them to form the update of a register block of C. The entire kernel will consist
of executing m1 ×n1 fundamental building blocks in succession to obtain a near
optimal kernel for DGEMM.

2.2 A Fundamental DGEMM Kernel Building Block and Hardware
Streaming

If we use simple SB format we would need mb rows of AT and nb columns of B
and C to execute any fundamental building block. This would require mb + 2nb

stride one streams of matrix data to be present and working during the execution
of a single building block. Many architectures do not possess special hardware to
support this number of streams. Now the minimum number of streams is three;
one each for matrix operands A, B and C. Is three possible? An answer emerges
if one is willing to change the data structure away from simple SB order.
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In Figure 1 we describe a data layout of a fundamental register block compu-
tation 1. Initially, a register block of C is placed in mb×nb floating point registers
T(0 : mb−1, 0 : nb−1). An inner do loop on l=0:K-1,kb consists of performing
K/kb sets of mb × nb independent dot products on T. For a given single value
of l, vectors u, v of lengths mb, nb from A and B respectively are used to update
T = T− uvT . This update is a DAXPY outer product update consisting of mb×nb
independent Floating Multiply-Adds (FMAs). However, and this is important,
since the T’s are in registers there are no loads and stores of the T’s. The entire
update is T = T− AT(0 : K−1, i : i+mb−1) × B(0 : K−1, j : j+nb−1). If A and
B were simple SB’s we would need to access vectors u, v with stride NB and also
there would be mb+nb streams. Luckily, if we transpose K×mb AT and K×nb B
we will simultaneously access u, v stride one, just get two streams, and still be
able to address A, B in the standard way. These two transpositions accomplish
a matrix data rearrangement that allows for an excellent L1 / L0 interface of
matrix data for the DGEMM kernel fundamental building block computation. We
have just demonstrated that two streams are possible for A, B. By storing C as
m1 × n1 register blocks (submatrices) contiguously in a contiguous SB in the
order they are accessed by the DGEMM kernel we will get a single stream for C.

3 SB Packed Formats Generalize Standard Full and
Packed Formats

Square Block Packed (SBP) formats are a generalization of packed format for
triangular arrays. They are also a generalization of full format for triangular
arrays. A major benefit of the SBP formats is that they allow for level 3 per-
formance while using about half the storage of the full array cases. For simple
SBP formats of a triangular matrix A there are two parameters TRANS and NB,
where usually n ≥ NB. For these formats, we first choose a block size, NB, and
then we lay out the matrix elements in submatrices of order NB. Each SB can be
in column-major order (TRANS = ‘N’) or row-major order (TRANS = ‘T’). These
formats support both uplo = ‘L’ or ‘U’; we only cover the case uplo = ‘L’. For
uplo = ‘L’, the first vertical stripe is n by NB and it consists of n1 SBs where
n1 = dn/NBe. It holds the first trapezoidal n by NB part of L. Here we rename
matrix A matrix L to remind the reader that our format is lower triangular.
The next stripe has n1 − 1 SBs and it holds the next trapezoidal n - NB by NB

part of L, and so on, until the last stripe consisting of the last leftover triangle
is reached. The total number of SBs, nt1, is n1(n1 + 1)/2 and the total storage
of SBP format is nt1 ∗ NB2. In [3] we introduced Lower Hybrid SBP format
in which the diagonal blocks were stored in packed format. Thus, no additional
storage was required. We also provided a fast means to transform to this format
using a buffer of size n*NB. Now we turn to full format storage. To get SBP for-
mat one simply sets NB = n; ie, SBP format gives a single block triangle which
happens to be full format.

1 Compilers require that scalars be used to designate register usage. Also, we are using
origin 1 in Fig. 1 and origin 0 in the text of Section 2.2
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3.1 Benefits of SB and SB Packed Formats

We believe a main use of SB formats is for symmetric and triangular arrays.
We call these formats SB Packed (SBP). An innovation here is that one can
translate, verbatim, standard packed or full factorization algorithms into a cor-
responding SBP format algorithm by replacing each reference to an i, j element
of A by a reference to its corresponding SB submatrix. Because of this storage
layout, the beginning of each SB is easily located. Another key feature of using
SB’s is that SBP format supports Level 3 BLAS. Hence, old, packed and full
codes are easily converted into SBP format level 3 code. Therefore, one keeps
“standard packed or full” addressing so the library writer/user can handle his
own addressing in a Fortran/C environment. Figure 2 describes a RLA for block
Cholesky factorization and illustrates what we have just said. For clarity, we
assume that n is a multiple of nb. Lines 2, 4, 7 and 9 of Figure 2 are calls to
kernel routines.

do j = 0, n-nb, nb

factor a(j:j+nb-1,j:j+nb-1) ! kernel routine for potrf

do i = j + nb, n-nb, nb

a(i:i+nb-1,j:j+nb-1) =

a(i:i+nb-1,j:j+nb-1)*aT(j:j+nb-1,j:j+nb-1) ! kernel trsm

end do

do i = j +nb, n-nb, nb ! THE UPDATE PHASE

a(i:i+nb-1,i:i+nb-1) = a(i:i+nb-1,i:i+nb-1) -

a(i:i+nb-1,j:j+nb-1)*aT(i:i+nb-1,j:j+nb-1) ! kernel syrk

do k = i + nb, n-nb, nb ! The Schur Complement update phase

a(k:k+nb-1,i:i+nb-1) = a(k:k+nb-1,i:i+nb-1) -

a(k:k+nb-1,j:j+nb-1)*aT(i:i+nb-1,j:j+nb-1) ! kernel gemm

end do

end do

end do

Fig. 2. Block Version of Right Looking Algorithm for Cholesky Factorization

3.2 Performance for SBP Cholesky

Performance results of SBP format for Cholesky factorization were taken from [17].
We only include one of the two graphical plots. To be fair we show the curves for
Block Hybrid Cholesky which includes the cost of doing a data transformation
from packed format to SBP format. For small N this cost is large, so we re-
duced this cost to zero by writing a Cholesky factor kernel for packed format; to
distinguish this fact we call the resulting code with change over to SBP format
BHC code. In Figure 3 the graphs plot MFlops versus matrix order N . Note
that the x-axis is log scale; we let N range from 10 to 2000. In the comparison
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for BHC versus LAPACK we give four graphs: BHC, BHC + data transforma-
tion, DPOTRF and DPPTRF; we name these curves 1, 2, 3, 4. Data for the graphs
were obtained on a 200 MHz IBM Power 3 with a peak performance of 800
MFlops. The performance of the BHC Cholesky algorithm of Figure 3 shows
the data transformation does cost something. The actual crossover between the
packed kernel and SBP format plus data transformation occurred at N = 230.
For N ≤ 230 curves 1 and 2 are identical. For N ≥ 230 it pays to do the data
transformation and the curves 1 and 2 separate. Curve 2 is faster than curve 3
for small N (up to four times faster) and more than 10 % faster for large N .
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Fig. 3. Four Performance curves: diamond, circle, square, +

4 DLAFA’s using SB Format require O(n2) Data Copy

We show this result by demonstrating it for a symmetric factorization as our fo-
cus is on Cholesky factorization and what we say about these factorizations ap-
plies to many other DLAFA’s [8, 15, 12, 11]. There are many Cholesky DLAFA’s.
We only mention left and right looking as well as hybrid and recursive [7, 4, 15,
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16, 2, 3] ones. A (left, right) looking algorithm does the (least, most) amount of
computation in the outer do loop of stage j, respectively; see Figure 2 where
we use a right looking algorithm. A recursive algorithm uses the divide-and-
conquer paradigm. A hybrid algorithm is a combination of left and right looking
algorithms. The current version of LAPACK [4] uses a hybrid algorithm. The
paper [3] examines some of these algorithm types using a variant of SBP format,
packed recursive and standard full and packed formats. Performance studies on
six platforms, Alpha, IBM P4, Intel x86, Itanium, SGI and SUN were made.
Overall, the hybrid algorithm, using a variant of SB format, was best. However,
it was not a clear winner. In [3], we did not call BLAS kernel routines. Instead,
we either called the vendor or Atlas BLAS [25]. So, these BLAS probably did
O(N3) data copy during Cholesky factorization.

4.1 Data Copy of a DLAFA can be O(N2)

The result we now give holds generally for Right Looking Algorithms (RLAs) for
DLAFAs. And similar results hold for Left Looking Algorithms (LLAs). Here we
shall be content with demonstrating that the Cholesky RLA on SBP format can
be done by only using O(N2) data copies. The O(N3) part of the block Cholesky
RLA has to do with the Schur Complement Update (SCU); ie, the inner DGEMM
do loop over variable k; see Figure 2. We assume each call to DGEMM will do data
copy on each of its three operands A, B and C. Now the number of C SB’s that
get SCUed over the entire RLA is n1(n1 + 1)(n1 − 1)/6 where n1 = dN/NBe and
N is the order of A. It is therefore clear that O(N3) data copies will occur.

In the case of simple SBs our result is obvious as no data copy occurs during
execution of the RLA algorithm in Figure 2 because kernel routines of the BLAS
are being called. So, there is only an initial reformating cost of full format A to
SBP format of A, which is clearly O(N2). Also, as mentioned in Section 3 and
3.2 this initial reformating is optional. Now, consider non-simple SBs. In Sections
2.1 and 2.2 we indicated that it is now usually necessary to reformat each SB
every time DGEMM is called if non-simple SB’s are used. We now demonstrate that
we can reduce this data copy cost to O(N2). What we intend to do is to store the
C operands of DGEMM in the register block format that was indicated in Sections
2.1 and 2.2. Hence, the format of these C operands is then fixed throughout
this algorithm and no additional data copy occurs for them during the entire
execution of this RLA; see Figure 2. And clearly, an initial formatting cost, if
necessary, is only O(N2). Now we examine the A and B operands of the SCU
for the outer loop variable j. SB’s A(j : n1, j) whose total is n1 − j are needed
for the SCU as they constitute all the A, B operands of the SCU at iteration j.
Summing from j=1 to j = n1 − 1 we find just n1(n1 − 1)/2 SB’s in all that need
reformatting ( data copying ) over the course of this entire RLA; see Figure 2.
And since there are both A and B operands we may have to double this amount
to n1(n1 − 1) SB’s. However, in either case this amount of data copy is clearly
O(N2).
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5 Summary and Conclusions

This paper demonstrates that the standard data structures of DLA can hurt the
perfomance of its factorization algorithms. It indicates that by using NDS this
performance loss can be lessened. Specifically, it describes SB and SBP format
as a replacement of these standard data structures. SB and SBP data structures
are shown to be easy to use and to code for. These two features are strong
features of the standard data structures of DLA. SB and SBP formats have two
desirable features that the standard data structures lack. SBP format uses near
minimal storage for symmetric and triangular matrices whereas standard full
format storage uses nearly double the minimal storage. Secondly, SB and SBP
formats give DLAFAs better performance than standard full format does. Our
main result, that DLAFAs require only O(N2) data copy, indicates partly why
this is so. The use of standard full format requires O(N3) data copy by the level
3 BLAS being used by the DLAFA. We assumed these BLAS always did data
copy on their submatrix operands. We discussed a new concept called the L1
/ L0 cache interface. The existence of this interface showed one the necessity
of introducing non-simple SBs in order to maintain high performance of DGEMM
kernels on several new platforms. These non-simple SBs were able to fully exploit
hardware streaming which is a feature of several new platforms.
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