
RC24138 (W0612-055) December 13, 2006
Computer Science

IBM Research Report

Real-Time Mutual-Information-Based Linear Registration on
the Cell Broadband Engine Processor

Moriyoshi Ohara1, Hangu Yeo2, Frank Savino2, Giridharan Iyengar3,
Leiguang Gong3, Hiroshi Inoue1, Hideaki Komatsu1, Vadim Sheinin2,

Shahrokh Daijavad4, Bradley Erickson5

1IBM Tokyo Research Laboratory
Yamato, Kanagawa 242-8502

Japan
2IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
3IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
4IBM Systems & Technology Group

Hawthorne, NY 10532
5Mayo Clinic and Foundation

Rochester, MN 55905

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

REAL-TIME MUTUAL-INFORMATION-BASED LINEAR REGISTRATION ON THE CELL
BROADBAND ENGINE PROCESSOR

Moriyoshi Ohara1, Hangu Yeo2, Frank Savino2, Giridharan Iyengar3, Leiguang Gong3, Hiroshi Inoue1,

Hideaki Komatsu1, Vadim Sheinin2, Shahrokh Daijavad4, and Bradley Erickson5

1IBM Tokyo Research Laboratory, Yamato, Kanagawa 242-8502 Japan
2IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 USA
3IBM T.J. Watson Research Center, Hawthorne, NY 10532-1596 USA

4IBM Systems & Technology Group, Hawthorne, NY 10532-1596 USA
5Mayo Clinic and Foundation, Rochester, Minnesota 55905 USA

ABSTRACT

Emerging multi-core processors are able to accelerate medical
imaging applications by exploiting the parallelism available in
their algorithms. We have implemented a mutual-information-
based 3D linear registration algorithm on the Cell Broadband
Engine™ (CBE) processor, which has nine processor cores on a
chip and has a 4-way SIMD unit for each core. By exploiting the
highly parallel architecture and its high memory bandwidth, our
implementation with two CBE processors can compute mutual
information for about 33 million pixel pairs in a second. As a result,
it can register a pair of 256x256x30 3D images in less than one
second by using a multi-resolution method. This implementation is
significantly faster than a conventional one on a traditional
microprocessor or even faster than a previously reported custom-
hardware implementation. This paper describes our
implementation with a focus on localized sampling and speculative
packing techniques, which reduce the amount of the memory
traffic by 82%.

Keywords: Image registration, Biomedical image processing,
and Parallel processing

1. INTRODUCTION

Image registration is a process to align two sets of images,
typically obtained at different times or by using different imaging
devices, and plays an increasingly important role in clinical
applications [1]. While mutual-information-based image
registration is known to be effective, it is computationally
expensive. Thus, to accelerate the registration process, custom
hardware approaches [2][3] and supercomputer-based approaches
[4][5] have been proposed.

We have implemented a mutual-information-based linear
registration algorithm on the Cell Broadband Engine (CBE)
processor [6]. This is an asymmetric multi-core processor with a
high peak performance; it combines eight synergistic processing
elements (SPEs) and a Power Processing Element (PPE), which is
a general-purpose IBM® PowerPC® core. Two of these processors
can be connected via a high speed bus (e.g. IBM BladeCenter®

QS20) as shown in Figure 1, where 16 SPEs can run in parallel.
Each SPE, furthermore, has a SIMD unit, which can perform a
floating or integer operation on four data elements at every clock.

To accelerate the image registration on this processor, one has
to optimize the program to exploit the parallelism at both task and
instruction levels and to use the memory bandwidth efficiently.
First, at a task level, one needs to partition the program into
multiple tasks that fits in the local store on each SPE. Unlike
conventional microprocessors, each SPE does not have a hardware
cache memory to manage a small on-chip local store. Thus, one
can view this architecture as a distributed memory multiprocessor
with a very small local memory attached to a large shared memory.

At an instruction level, moreover, one typically needs to
restructure frequently executed sections of the task by using
intrinsics, which allow the programmer to state SIMD instructions
explicitly in C/C++ programs. Such restructuring is called SIMD-
ization.

Finally, for utilizing the memory bandwidth efficiently, one
has to partition the data in such a way that each task can transfer it
in a large block, such as one or multiple cache lines (128B per
cache line), by using a DMA engine. Pixel-wise memory accesses,
for example, result in a very poor usage of the memory bandwidth.

2. MUTUAL-INFORMATION BASED LINEAR
REGISTRATION ALGORITHM

Figure 1: The high-level structure of a dual CBE system. Each
synergistic processing element (SPE) has a SIMD engine, a
high-speed local store, and a DMA engine.

We used a Mattes’s mutual-information-based multi-resolution
algorithm [7] implemented in ITK [8] as a base. This algorithm
solves the registration problem as an optimization problem to find
the spatial transformation that aligns one image (the moving
image) to another image (the fixed image); it traverses the
parameter space of the spatial transformation to find the position
that maximizes the mutual information between the two images.
To limit the parameter space to be traversed, it uses a multi-
resolution method. That is, it starts from registering lower-
resolution images to estimate the transformation parameter. Then,
it uses the estimate as the initial position in the parameter space for
registering higher-resolution images. To reduce the computation
time, furthermore, this algorithm computes the mutual information
only for a small subset of sample pixels from the fixed image. It
repeats using the same set of samples at each resolution.

Our algorithm uses four different resolutions (original, 1/4,
1/16, and 1/64). It computes the mutual information 100 times
using sample pixels for each resolution except for the original one
(200 times for the original resolution). The number of sample
pixels is the same as the 1% of the pixels at the original resolution.

This algorithm is implemented in two components:
preprocessor and registrator. The preprocessor includes a pyramid
filter to compute lower-resolution images to be used for the multi-
resolution registration method. It also randomly samples fixed
image pixels for each resolution of the image, which the registrator
uses for computing the mutual-information. The registrator tries to
find the spatial transformation between the two images that
maximizes the mutual-information value by iteratively changing
the transformation parameters. We parallelized both of the
preprocessor and registrator to exploit the 16 SPEs. We also
SIMD-ized frequently executed sections of the code, such as the
sections for affine transformations, linear interpolations, and
Gaussian filters.

3. OPTIMIZED DATA PARITIONING: LOCALIZED

SAMPLING AND SPECULATIVE PACKING

To exploit the CBE processor, it is critical to partition the data to
utilize the memory bandwidth efficiently. Since the original
algorithm randomly samples pixels, a naive implementation
accesses the memory at scattered locations, which can result in
very poor bus utilization.

Jianchun, et al. proposed a “brick” caching scheme to
improve the efficiency in the memory bandwidth usage for FPGA-
based 3D image processor [3]. This scheme partitions the fixed
image into a set of cuboids. To compute the mutual information for
a cuboid, it maps the cuboid to the moving image space and
computes the bounding box of the mapped cuboid. One needs to
fetch the pixels in the two cuboids – one for the fixed image and
the other for the bounding box – to compute the mutual
information for the fixed image cuboid. One can fetch the
bounding box from the memory much more efficiently than
individual moving image pixels that correspond to each fixed
image pixel.

This scheme is, however, limited in the following two ways
when pixels for computing mutual information are randomly
sampled. First, since the sample pixels are packed in a contiguous
memory space at each resolution level during the preprocessing,
during the main computation, one cannot directly address them by
using the physical position of the cuboid. Second, since this
scheme fetches all pixels in a cuboid, it wastes the memory

bandwidth when the sampling ratio (the number of samples per
pixel) is small. It can be for instance 1% of the fixed image pixels
in our algorithm. Since we typically uses eight moving image
pixels per fixed image pixel for interpolation, at least 92% of the
fetched moving image pixels can be wasted when the moving and
fixed images have the same resolution.

We designed and implemented two strategies to access fixed
and moving image pixels: (1) localized sampling scheme and (2)
speculative packing scheme. The registration system dynamically
selects one strategy depending on the sampling ratio. When the
sampling ratio is high, the localized sampling scheme is selected
which partitions the fixed image into a set of stripes (i.e.
rectangles) as shown Figure 2. This scheme samples pixels for
each stripe and packs them in a contiguous memory space. We
chose to sample pixels per stripe instead of cuboid because of the
following reason. It is known that we can utilize the memory
bandwidth most efficiently by maximizing the volume size of the
bounding box [3]. Since the size of the bounding box is a function
of the spatial transformation parameter and the size of the fixed
image cuboid, however, we cannot determine the size of the fixed
image cuboid to avoid overflowing the bounding box from the
local store until we obtain the spatial transformation parameter.
The localized sampling scheme allows us to adjust the height of
the fixed image cuboid (i.e. the number of stripes) dynamically
every time when the spatial transformation parameter changes
because samples of each stripe are packed separately.

When the sampling ratio is low, on the other hand, the
speculative packing scheme is used. For the first computation of
the mutual information at each resolution, we compute the mutual
information by fetching scattered moving image pixels. Then, we
pack them in a contiguous memory space. While this is a time
consuming process, we can amortize the cost since we do this only
once for each resolution. When we compute the mutual
information for the second time, we can efficiently fetch moving
image pixels with DMA operations because they are densely
packed in a contiguous memory space. Since the transformation
parameter between the fixed and moving image spaces changes as
the registration proceeds, however, the packed moving image
pixels do not necessarily represent the set of pixels we need to
access. More specifically, as shown in Figure 3, if a fixed image is
mapped within the same 2x2x2 pixel cube in the moving image

fixed image spacemoving image space

mapped cuboid
bounding box of the mapped cuboid

fixed image cuboid
fixed image stripe

fixed image spacemoving image space

mapped cuboid
bounding box of the mapped cuboid

fixed image cuboid
fixed image stripe

Figure 2: The localized sampling scheme. We sample pixels for
each stripe. This allows us to adjust the number of stripes in the
fixed image cuboid to make the bounding box fit in the local
store.

space as the previously mapped cube (called hit), we use the
previously packed pixels to interpolate the pixel value at the
mapped position, in the same way that the original algorithm does.
If a fixed image is mapped outside the 2x2x2 pixel cube but close
enough (called near miss), we use the previously used cube and
extrapolate the pixel value. If the fixed image is mapped far from
the 2x2x2 pixel cube (called far miss), however, we simply fetch
the correct cube from the system memory. Thus, when a near miss
occurs, this scheme can save the extra memory accesses but can
also affect the result. We define the near-miss threshold as the
maximum discrepancy of the pixel position in each dimension that
we allow a pixel to be classified as a near-miss. We will discuss
the tradeoff between the performance gain and the accuracy in the
next section. In our experiments, we used the localized sampling
when the sampling ratio is 64% and used the speculative packing
when the ratio is lower than that.

4. EXPERIMENTAL RESULTS

We ran our program on an IBM BladeCenter QS20, which
employs two CBE processors at 3.2GHz with 1GB memory. We
used SDK 1.1 compilers (xlc for SPE) and libraries. We also ran a
sequential version of our program on one core of Intel Xeon™ 5160
processor at 3.0GHz (Woodcrest) with 4GB memory. We used
Intel® compiler (ICC 9.1) with “-fast” option, which automatically
utilizes the SIMD unit (SSE3) on Woodcrest. Note that this code is
not tuned for the SIMD unit or the memory hierarchy of Intel Xeon.
We compare the performance of our program on the two platforms
only to show the performance gain we can achieve by optimizing a
naive implementation for the CBE architecture.

In our experiments, we used a series of 98 image sets, which
are clinical MRI images collected at Mayo Clinic after IRB
approval, consisting of T1, T2, and Fluid-attenuated inversion
recovery (FLAIR) images of the brain, with a matrix size of
256x256 pixels in plane and between 30 and 48 slices in the Z-
dimension. Exams consisted of at least 3 contrast types, and at
least two examinations separated by 2 months were included. All
registration pairs were from a single individual.

4.1. Computation Time

Figure 4 shows the computation time per fixed image pixel for four
sets of experiments. We gathered the total computation time to
perform a linear registration for all the 98 pairs and divide it by the
total of the number of input fixed image pixels.

The left most bar (SEQ) corresponds to Woodcrest, which
performs the registration sequentially by using one processor core.
The right three bars show the registration time with 2 CBE
processors. The third from the right (PAR) corresponds to a
parallelized version for 16 SPEs. The second from the right
(SIMD) corresponds to a SIMD-ized version in addition to the
parallelization. The right most bar (OPT) corresponds to a version
with optimized data partitioning in addition to the SIMD-ization
and the parallelization. A function to compute the mutual-
information dominates the computation time.

Note that this graph does not include the file IO time since we
did not focus on it in this study. In our experimental environment
on QS20, the averaged IO time per input fixed image pixel was
0.17 micro seconds. Since it is about the same as the computation
time for the most optimized case (OPT), we should be able to hide
the bulk of the IO time by overlapping IO operations with the
computation when we process multiple data sets in a back-to-back
fashion.

As shown in Figure 4, by parallelizing the code, we can
accelerate the computation time only by 1.6X with 16 SPEs over a
sequential version (Woodcrest). By SIMD-izing the code, we
improved the performance additionally by 4.5X. We obtained this
performance gain by optimizing the code with SIMD intrinsics in

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

SEQ PAR SIMD OPTco
m

pu
ta

tio
n

tim
e

pe
r i

np
ut

 fi
xe

d
im

ag
e

pi
xe

l (
m

ic
ro

 s
ec

on
d)

Label Processor Restructured/Optimized Level
SEQ Woodcrest 3.0GHz Sequential (single thread)
PAR CBEx2 3.2GHz Parallelized
SIMD CBEx2 3.2GHz Parallelized and SIMD-ized
OPT CBEx2 3.2GHz Parallelized, SIMD-ized and Optimized

Data Portioning (Localized Sampling
and Speculative Packing)

Figure 4: The computation time per input fixed image pixel in
micro second (the lower is the better). The registrator dominates
the total computation time. With parallelization, SIMD-ization
and optimized data partitioning, we have reduced the
computation time to 0.17 micro seconds per input fixed image
pixel.

Figure 3: The speculative packing technique when the near-
miss threshold is one, illustrated in a 2D space for simplicity.
Black pixels in the moving image were packed previously. If a
fixed image pixel is mapped to a position within the near-miss
threshold from the packed pixels, we use them to interpolate or
extrapolate the pixel value at the mapped position. If a fixed
image pixel is outside the near-miss area, we fetch correct
pixels from the memory and replace the previously packed
pixels with them.

various ways. For example, we converted some conditional branch
operations to conditional move operations to eliminate the branch
overhead. By optimizing the data partitioning, further more, we
improved the performance by 1.5X. In total, our registration
program on two CBE processors at 3.2GHz runs about 11X faster
than a sequential version on Woodcrest at 3.0GHz.

4.2. Memory Traffic

Figure 5 shows the memory traffic reduction due to our localized
sampling and speculative packing techniques. The amount of the
memory traffic is shown as the number of cache lines transferred
between the system memory and the local stores for the entire
execution of the program and is normalized with the base case. As
we increase the threshold for speculative packing, the amount of
the memory traffic decreases since the number of far misses
decreases. When the threshold is one, the amount of the traffic is
reduced by 82%. When we increase the threshold beyond one,
however, the amount of the memory traffic does not decrease
significantly. This indicates that most of the fixed image pixels are
mapped to a position within a one pixel pitch for all dimensions
from the initial position given by the initial transformation
parameter for the resolution level.

We compared the consistency distance between two
registration results: those with and without our localized sampling
and speculative packing techniques. The consistency distance
indicates the consistency between the transformation parameters
obtained from a forward resignation and ones obtained from a
backward registration. We computed the consistency distance by
applying the forward and backward transformations to the eight
corners of the fixed image space and by averaging the distance
between the original and transformed positions for the eight
corners. While not shown here due to the space limitation, our
experimental result indicates that our optimization techniques for
the memory bandwidth do not affect the statistical characteristics
of the consistency distance significantly.

5. FUTURE WORK

A more thorough study is necessary to compare the performance
characteristics of different processor architectures. We would also
like to explore the applicability of the CBE architecture to non-
rigid registration algorithms.

6. CONCLUSION

We have shown that the CBE processor can accelerate the image
registration algorithm significantly by exploiting its multiple
processing cores. To achieve the high performance, it is critical to
restructure the program to utilize the SIMD unit and the memory
bandwidth efficiently. We obtained 4.5X performance gain by
restructuring the program for utilizing the SIMD unit. Our
localized sampling and speculative packing techniques furthermore
reduced the amount of the memory traffic by 82%. As a result, our
optimized code on two CBE processors at 3.2GHz is about 11X
faster than a naive sequential code on Woodcrest at 3.0GHz.

8. REFERENCES

[1] B.J. Erickson, J.W. Patriarche, C.P. Wood, N.G. Campeau,
E.P. Lindell, V. Savcenko, N. Arslanlar, L. Wang, “Image
Registration Improves Confidence and Accuracy of Image
Interpretation,” Accepted in Cancer Informatics.
[2] C.R. Castro-Pareja, J.M. Jagadeesh, and R. Shekhar, “FAIR:
A Hardware Architecture for Real-Time 3-D Image Registration,”
IEEE Transactions on Information Technology in Biomedicine,
vol.7, no.4, pp. 426-434, Dec. 2003.
[3] L. Jianchun, R. Shekhar, and C. Papachristou, “A “brick”
caching scheme for 3D medical imaging,” 2004 IEEE
International Symposium on Biomedical Imaging: Macro to Nano,
vol. 1, pp. 563-566, Apr. 2004.
[4] T. Rohlfing, C.R. Maurer, “Nonrigid image registration in
shared-memory multiprocessor environments with application to
brains, breasts, and bees,” IEEE Transactions on Information
Technology in Biomedicine, vol.7, no.1, pp. 16- 25, Mar. 2003.
[5] S. K.Warfield, F. Jolesz, and R. Kikinis, “A high performance
approach to the registration of medical imaging data,” Parallel
Computing, vol. 24, no. 9–10, pp. 1345–1368, 1998.
[6] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R.
Maeurer, and D. Shippy, “Introduction to the Cell Multiprocessor,”
IBM Journal of Research & Development, vol. 49, no. 4/5, 2005,
pp. 589–604.
[7] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W.
Eubank, “PET-CT image registration in the chest using free-form
deformations,” IEEE Transactions on Medical Imaging, vol. 22,
no. 1, pp. 120-128, Jan. 2003.
[8] L. Ibanez, W. Schroeder, L. Ng, J. Cates, The ITK Software
Guide Second Edition, Kitware Inc., New York, 2005.

BladeCenter, IBM, PowerPC are the trademarks of IBM
Corporation. Intel Xeon is a trademark of Intel Corporation in the
United States, other countries, or both. Intel is a trademark of Intel
Corporation in the United States, other countries, or both. Cell
Broadband Engine is a trademark of Sony Computer Entertainment
Inc. in the United States, other countries, or both. Other company,
product, or service names may be trademarks or service marks of
others.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

base
case

0 1 2

th
e

am
ou

nt
 o

f t
he

 m
em

or
y

tr
af

fic
 (n

or
m

al
iz

ed
 to

 th
e

ba
se

 c
as

e)

near-miss threshold
(w/ localized sampling and

speculative packing)

Figure 5: The memory traffic reduction with localized
sampling and speculative packing techniques. The left most bar
(base case) shows the memory traffic without them, and the
three right bars show the memory traffic with them for three
different near-miss thresholds. When the near-miss threshold is
one, our techniques reduce the amount of the traffic by 82%
from the base case.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

