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ABSTRACT 

 
Emerging multi-core processors are able to accelerate medical 
imaging applications by exploiting the parallelism available in 
their algorithms. We have implemented a mutual-information-
based 3D linear registration algorithm on the Cell Broadband 
Engine™ (CBE) processor, which has nine processor cores on a 
chip and has a 4-way SIMD unit for each core. By exploiting the 
highly parallel architecture and its high memory bandwidth, our 
implementation with two CBE processors can compute mutual 
information for about 33 million pixel pairs in a second. As a result, 
it can register a pair of 256x256x30 3D images in less than one 
second by using a multi-resolution method. This implementation is 
significantly faster than a conventional one on a traditional 
microprocessor or even faster than a previously reported custom-
hardware implementation. This paper describes our 
implementation with a focus on localized sampling and speculative 
packing techniques, which reduce the amount of the memory 
traffic by 82%. 

 

Keywords: Image registration, Biomedical image processing, 
and Parallel processing 
 

1. INTRODUCTION 
 
Image registration is a process to align two sets of images, 
typically obtained at different times or by using different imaging 
devices, and plays an increasingly important role in clinical 
applications [1]. While mutual-information-based image 
registration is known to be effective, it is computationally 
expensive. Thus, to accelerate the registration process, custom 
hardware approaches [2][3] and supercomputer-based approaches 
[4][5] have been proposed. 

We have implemented a mutual-information-based linear 
registration algorithm on the Cell Broadband Engine (CBE) 
processor [6]. This is an asymmetric multi-core processor with a 
high peak performance; it combines eight synergistic processing 
elements (SPEs) and a Power Processing Element (PPE), which is 
a general-purpose IBM® PowerPC® core. Two of these processors 
can be connected via a high speed bus (e.g. IBM BladeCenter® 

QS20) as shown in Figure 1, where 16 SPEs can run in parallel. 
Each SPE, furthermore, has a SIMD unit, which can perform a 
floating or integer operation on four data elements at every clock. 

To accelerate the image registration on this processor, one has 
to optimize the program to exploit the parallelism at both task and 
instruction levels and to use the memory bandwidth efficiently. 
First, at a task level, one needs to partition the program into 
multiple tasks that fits in the local store on each SPE. Unlike 
conventional microprocessors, each SPE does not have a hardware 
cache memory to manage a small on-chip local store. Thus, one 
can view this architecture as a distributed memory multiprocessor 
with a very small local memory attached to a large shared memory. 

At an instruction level, moreover, one typically needs to 
restructure frequently executed sections of the task by using 
intrinsics, which allow the programmer to state SIMD instructions 
explicitly in C/C++ programs. Such restructuring is called SIMD-
ization. 

Finally, for utilizing the memory bandwidth efficiently, one 
has to partition the data in such a way that each task can transfer it 
in a large block, such as one or multiple cache lines (128B per 
cache line), by using a DMA engine. Pixel-wise memory accesses, 
for example, result in a very poor usage of the memory bandwidth. 
 

2. MUTUAL-INFORMATION BASED LINEAR 
REGISTRATION ALGORITHM 

 

Figure 1: The high-level structure of a dual CBE system. Each 
synergistic processing element (SPE) has a SIMD engine, a 
high-speed local store, and a DMA engine. 



We used a Mattes’s mutual-information-based multi-resolution 
algorithm [7] implemented in ITK [8] as a base. This algorithm 
solves the registration problem as an optimization problem to find 
the spatial transformation that aligns one image (the moving 
image) to another image (the fixed image); it traverses the 
parameter space of the spatial transformation to find the position 
that maximizes the mutual information between the two images. 
To limit the parameter space to be traversed, it uses a multi-
resolution method. That is, it starts from registering lower-
resolution images to estimate the transformation parameter. Then, 
it uses the estimate as the initial position in the parameter space for 
registering higher-resolution images. To reduce the computation 
time, furthermore, this algorithm computes the mutual information 
only for a small subset of sample pixels from the fixed image. It 
repeats using the same set of samples at each resolution. 

Our algorithm uses four different resolutions (original, 1/4, 
1/16, and 1/64). It computes the mutual information 100 times 
using sample pixels for each resolution except for the original one 
(200 times for the original resolution). The number of sample 
pixels is the same as the 1% of the pixels at the original resolution. 

This algorithm is implemented in two components: 
preprocessor and registrator. The preprocessor includes a pyramid 
filter to compute lower-resolution images to be used for the multi-
resolution registration method. It also randomly samples fixed 
image pixels for each resolution of the image, which the registrator 
uses for computing the mutual-information. The registrator tries to 
find the spatial transformation between the two images that 
maximizes the mutual-information value by iteratively changing 
the transformation parameters. We parallelized both of the 
preprocessor and registrator to exploit the 16 SPEs. We also 
SIMD-ized frequently executed sections of the code, such as the 
sections for affine transformations, linear interpolations, and 
Gaussian filters. 
 
3. OPTIMIZED DATA PARITIONING: LOCALIZED 

SAMPLING AND SPECULATIVE PACKING 
 
To exploit the CBE processor, it is critical to partition the data to 
utilize the memory bandwidth efficiently. Since the original 
algorithm randomly samples pixels, a naive implementation 
accesses the memory at scattered locations, which can result in 
very poor bus utilization.  

Jianchun, et al. proposed a “brick” caching scheme to 
improve the efficiency in the memory bandwidth usage for FPGA-
based 3D image processor [3]. This scheme partitions the fixed 
image into a set of cuboids. To compute the mutual information for 
a cuboid, it maps the cuboid to the moving image space and 
computes the bounding box of the mapped cuboid. One needs to 
fetch the pixels in the two cuboids – one for the fixed image and 
the other for the bounding box – to compute the mutual 
information for the fixed image cuboid. One can fetch the 
bounding box from the memory much more efficiently than 
individual moving image pixels that correspond to each fixed 
image pixel. 

This scheme is, however, limited in the following two ways 
when pixels for computing mutual information are randomly 
sampled. First, since the sample pixels are packed in a contiguous 
memory space at each resolution level during the preprocessing, 
during the main computation, one cannot directly address them by 
using the physical position of the cuboid. Second, since this 
scheme fetches all pixels in a cuboid, it wastes the memory 

bandwidth when the sampling ratio (the number of samples per 
pixel) is small. It can be for instance 1% of the fixed image pixels 
in our algorithm. Since we typically uses eight moving image 
pixels per fixed image pixel for interpolation, at least 92% of the 
fetched moving image pixels can be wasted when the moving and 
fixed images have the same resolution. 

We designed and implemented two strategies to access fixed 
and moving image pixels: (1) localized sampling scheme and (2) 
speculative packing scheme. The registration system dynamically 
selects one strategy depending on the sampling ratio. When the 
sampling ratio is high, the localized sampling scheme is selected 
which partitions the fixed image into a set of stripes (i.e. 
rectangles) as shown Figure 2. This scheme samples pixels for 
each stripe and packs them in a contiguous memory space. We 
chose to sample pixels per stripe instead of cuboid because of the 
following reason. It is known that we can utilize the memory 
bandwidth most efficiently by maximizing the volume size of the 
bounding box [3]. Since the size of the bounding box is a function 
of the spatial transformation parameter and the size of the fixed 
image cuboid, however, we cannot determine the size of the fixed 
image cuboid to avoid overflowing the bounding box from the 
local store until we obtain the spatial transformation parameter. 
The localized sampling scheme allows us to adjust the height of 
the fixed image cuboid (i.e. the number of stripes) dynamically 
every time when the spatial transformation parameter changes 
because samples of each stripe are packed separately. 

When the sampling ratio is low, on the other hand, the 
speculative packing scheme is used. For the first computation of 
the mutual information at each resolution, we compute the mutual 
information by fetching scattered moving image pixels. Then, we 
pack them in a contiguous memory space. While this is a time 
consuming process, we can amortize the cost since we do this only 
once for each resolution. When we compute the mutual 
information for the second time, we can efficiently fetch moving 
image pixels with DMA operations because they are densely 
packed in a contiguous memory space. Since the transformation 
parameter between the fixed and moving image spaces changes as 
the registration proceeds, however, the packed moving image 
pixels do not necessarily represent the set of pixels we need to 
access. More specifically, as shown in Figure 3, if a fixed image is 
mapped within the same 2x2x2 pixel cube in the moving image 

fixed image spacemoving image space

mapped cuboid
bounding box of the mapped cuboid

fixed image cuboid
fixed image stripe

fixed image spacemoving image space

mapped cuboid
bounding box of the mapped cuboid

fixed image cuboid
fixed image stripe

Figure 2: The localized sampling scheme. We sample pixels for 
each stripe. This allows us to adjust the number of stripes in the 
fixed image cuboid to make the bounding box fit in the local 
store. 



space as the previously mapped cube (called hit), we use the 
previously packed pixels to interpolate the pixel value at the 
mapped position, in the same way that the original algorithm does. 
If a fixed image is mapped outside the 2x2x2 pixel cube but close 
enough (called near miss), we use the previously used cube and 
extrapolate the pixel value. If the fixed image is mapped far from 
the 2x2x2 pixel cube (called far miss), however, we simply fetch 
the correct cube from the system memory. Thus, when a near miss 
occurs, this scheme can save the extra memory accesses but can 
also affect the result. We define the near-miss threshold as the 
maximum discrepancy of the pixel position in each dimension that 
we allow a pixel to be classified as a near-miss. We will discuss 
the tradeoff between the performance gain and the accuracy in the 
next section. In our experiments, we used the localized sampling 
when the sampling ratio is 64% and used the speculative packing 
when the ratio is lower than that. 
 

4. EXPERIMENTAL RESULTS 
 
We ran our program on an IBM BladeCenter QS20, which 
employs two CBE processors at 3.2GHz with 1GB memory. We 
used SDK 1.1 compilers (xlc for SPE) and libraries. We also ran a 
sequential version of our program on one core of Intel Xeon™ 5160 
processor at 3.0GHz (Woodcrest) with 4GB memory. We used 
Intel® compiler (ICC 9.1) with “-fast” option, which automatically 
utilizes the SIMD unit (SSE3) on Woodcrest. Note that this code is 
not tuned for the SIMD unit or the memory hierarchy of Intel Xeon. 
We compare the performance of our program on the two platforms 
only to show the performance gain we can achieve by optimizing a 
naive implementation for the CBE architecture. 

In our experiments, we used a series of 98 image sets, which 
are clinical MRI images collected at Mayo Clinic after IRB 
approval, consisting of T1, T2, and Fluid-attenuated inversion 
recovery (FLAIR) images of the brain, with a matrix size of 
256x256 pixels in plane and between 30 and 48 slices in the Z-
dimension. Exams consisted of at least 3 contrast types, and at 
least two examinations separated by 2 months were included. All 
registration pairs were from a single individual. 
 

4.1. Computation Time 
 
Figure 4 shows the computation time per fixed image pixel for four 
sets of experiments. We gathered the total computation time to 
perform a linear registration for all the 98 pairs and divide it by the 
total of the number of input fixed image pixels. 

The left most bar (SEQ) corresponds to Woodcrest, which 
performs the registration sequentially by using one processor core. 
The right three bars show the registration time with 2 CBE 
processors. The third from the right (PAR) corresponds to a 
parallelized version for 16 SPEs. The second from the right 
(SIMD) corresponds to a SIMD-ized version in addition to the 
parallelization. The right most bar (OPT) corresponds to a version 
with optimized data partitioning in addition to the SIMD-ization 
and the parallelization. A function to compute the mutual-
information dominates the computation time. 

Note that this graph does not include the file IO time since we 
did not focus on it in this study. In our experimental environment 
on QS20, the averaged IO time per input fixed image pixel was 
0.17 micro seconds. Since it is about the same as the computation 
time for the most optimized case (OPT), we should be able to hide 
the bulk of the IO time by overlapping IO operations with the 
computation when we process multiple data sets in a back-to-back 
fashion. 

As shown in Figure 4, by parallelizing the code, we can 
accelerate the computation time only by 1.6X with 16 SPEs over a 
sequential version (Woodcrest). By SIMD-izing the code, we 
improved the performance additionally by 4.5X. We obtained this 
performance gain by optimizing the code with SIMD intrinsics in 
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Figure 4: The computation time per input fixed image pixel in 
micro second (the lower is the better). The registrator dominates 
the total computation time. With parallelization, SIMD-ization 
and optimized data partitioning, we have reduced the 
computation time to 0.17 micro seconds per input fixed image 
pixel. 

Figure 3: The speculative packing technique when the near-
miss threshold is one, illustrated in a 2D space for simplicity. 
Black pixels in the moving image were packed previously. If a 
fixed image pixel is mapped to a position within the near-miss 
threshold from the packed pixels, we use them to interpolate or 
extrapolate the pixel value at the mapped position. If a fixed 
image pixel is outside the near-miss area, we fetch correct 
pixels from the memory and replace the previously packed 
pixels with them. 



various ways. For example, we converted some conditional branch 
operations to conditional move operations to eliminate the branch 
overhead. By optimizing the data partitioning, further more, we 
improved the performance by 1.5X. In total, our registration 
program on two CBE processors at 3.2GHz runs about 11X faster 
than a sequential version on Woodcrest at 3.0GHz. 
 
4.2. Memory Traffic 
 
Figure 5 shows the memory traffic reduction due to our localized 
sampling and speculative packing techniques. The amount of the 
memory traffic is shown as the number of cache lines transferred 
between the system memory and the local stores for the entire 
execution of the program and is normalized with the base case. As 
we increase the threshold for speculative packing, the amount of 
the memory traffic decreases since the number of far misses 
decreases. When the threshold is one, the amount of the traffic is 
reduced by 82%. When we increase the threshold beyond one, 
however, the amount of the memory traffic does not decrease 
significantly. This indicates that most of the fixed image pixels are 
mapped to a position within a one pixel pitch for all dimensions 
from the initial position given by the initial transformation 
parameter for the resolution level. 

We compared the consistency distance between two 
registration results: those with and without our localized sampling 
and speculative packing techniques. The consistency distance 
indicates the consistency between the transformation parameters 
obtained from a forward resignation and ones obtained from a 
backward registration. We computed the consistency distance by 
applying the forward and backward transformations to the eight 
corners of the fixed image space and by averaging the distance 
between the original and transformed positions for the eight 
corners. While not shown here due to the space limitation, our 
experimental result indicates that our optimization techniques for 
the memory bandwidth do not affect the statistical characteristics 
of the consistency distance significantly. 

 
5. FUTURE WORK 

 
A more thorough study is necessary to compare the performance 
characteristics of different processor architectures. We would also 
like to explore the applicability of the CBE architecture to non-
rigid registration algorithms. 
 

6. CONCLUSION 
 
We have shown that the CBE processor can accelerate the image 
registration algorithm significantly by exploiting its multiple 
processing cores. To achieve the high performance, it is critical to 
restructure the program to utilize the SIMD unit and the memory 
bandwidth efficiently. We obtained 4.5X performance gain by 
restructuring the program for utilizing the SIMD unit. Our 
localized sampling and speculative packing techniques furthermore 
reduced the amount of the memory traffic by 82%. As a result, our 
optimized code on two CBE processors at 3.2GHz is about 11X 
faster than a naive sequential code on Woodcrest at 3.0GHz. 
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Figure 5: The memory traffic reduction with localized 
sampling and speculative packing techniques. The left most bar 
(base case) shows the memory traffic without them, and the 
three right bars show the memory traffic with them for three 
different near-miss thresholds. When the near-miss threshold is 
one, our techniques reduce the amount of the traffic by 82% 
from the base case. 
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