
RC24139 (W0612-060) December 13, 2006
Computer Science

IBM Research Report

Shared Waypoints and Social Tagging to Support
Collaboration in Software Development

Margaret-Anne Storey*, Li-Te Cheng, Ian Bull*, Peter Rigby*
IBM Research Division

One Rogers Street
Cambridge, MA 02142

*University of Victoria
British Columbia, Canada

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Shared Waypoints and Social Tagging to Support
Collaboration in Software Development

Margaret-Anne Storey
University of Victoria,

BC, Canada

mstorey@uvic.ca

Li-Te Cheng
Collaborative User Experience Group

IBM Research, Cambridge

li-te_cheng@us.ibm.com

Ian Bull, Peter Rigby
University of Victoria,

BC, Canada

{irbull, pcr}@uvic.ca

ABSTRACT
This paper presents the conceptual design of tagSEA, a
collaborative tool to support asynchronous software development.
Our design is inspired by combining “waypoints” from
geographical navigation with “social tagging” from social
bookmarking software to support coordination and
communication among software developers. We describe the
motivation behind this work, walk through the design and
implementation, and report early feedback on how this
lightweight tool supports collaborative software engineering
activities. Finally we suggest a number of new research
directions that this topic exposes.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Programming environments. .

General Terms
Documentation and Human Factors.

Keywords
Waypoints, social tagging, software, navigation, documentation.

1. INTRODUCTION
Software development is a collaborative activity that requires
teams of developers to communicate with each other extensively.
As the number of geographically distributed development teams
increase, the demand for asynchronous distributed communication
mechanisms continues to grow. Collaborations are facilitated
through annotation, navigation, and coordination activities.
Developers annotate code for themselves and others through
inline comments and structured markup. Several browsing and
navigation tools exist to allow developers to navigate familiar and
unfamiliar code created by others for understanding and
diagnosis. Finally, developers coordinate with one another to
solve common problems and minimize overlapping efforts.
Asynchronous collaboration in software development is supported
through a variety of mechanisms, which we classify as follows:

• Formal Development Tools: Tools such as version control

systems (e.g. CVS) and bug tracking systems (e.g. Bugzilla)
are used by developers in their everyday work, and allow users
to leave and share comments. Version control systems allow
developers to attach comments and specify tags when
submitting updated files to a shared repository. Bug tracking
systems allow developers to append comments to a bug report.
Various studies report how distributed teams of developers
leverage this for group awareness and coordination, e.g.
Gutwin, Penner, and Schneider [1].

• Pure Groupware Tools: Traditional standalone asynchronous
groupware such as email, newsgroups, and wikis are used by
developers to discuss issues and share snippets of code.
Studies like [1] document this usage of groupware tools in
addition to formal development tools within software projects.

• Inline Comments in Source Code: Collaboration can occur
amongst developers by writing comments directly into the
source code. Programming languages often support formatting
conventions in comments to generate online documentation
from source code, such as Java’s “Javadoc” set of keywords
[8]. Also various programming environments recognize special
keywords such as “TODO” which are then highlighted in the
editor and aggregated in secondary views. Ying, Wright, and
Abrams describe these informal commenting conventions in a
project and how this can be leveraged to infer knowledge and
coordinate development activities [7].

Formal development tools and groupware tools, such as the ones
described above, often focus on higher level concerns around the
individual pieces of source code, such as maintaining a consistent
set of files in the version control system, enumerating problems in
a bug tracking database, and discussing and coordinating work on
a mailing list. For the individual developer, these tools help
support the central task of creating and maintaining source code.
We are interested in supporting collaborative annotation,
navigation, and coordination activities through inline comments.
User-created annotations written as comments embedded in the
code result in very explicit landmarks for readers to support
navigation and coordination. Embedded comments are also
portable across different formal development and groupware
tools, since the user can simply share the source code as text. In
contrast, formal development tools and pure groupware tools,
while effective for various collaborative tasks, require developers
to copy-paste snippets or make external references to the code
being discussed. Jazz, which blends aspects from formal
development tools and pure groupware tools into the
programming environment, allows users to annotate source code
with discussion [2], but it does not support explicit landmarks or
the notion of waypoints in the source code for coordination.

 2

The general facility of creating an inline comment is a simple
matter of adding some text to the code, but as it is an informal
capability, it has some drawbacks. In particular, the unstructured
mechanism for adding comments can result in a myriad of
conventions and ad hoc meta data being used [7]. Moreover,
these annotations can become unwieldy and outdated over time.
This lack of structure to inline comments also means that more
complex information, such as “sequence” or structural
information cannot be captured. We begin to address these issues
by presenting a lightweight tool that enhances annotations
embedded in source code to enable navigation, coordination, and
capture of knowledge relevant to the development team.

2. DESIGN AND IMPLEMENTATION
In order to build lightweight tool support for capturing and using
collaborative annotations, we have combined two existing
concepts. The first, waypoints, comes from the discipline of
wayfinding in physical spaces. The second, social tagging,
comes from the world of social bookmarking software.

2.1 Waypoints and Routes
Waypoints are used by geographical positioning systems to save
locations of interest [4] that may include checkpoints on a route or
a significant ground feature to be avoided. They can be specified
by manually entering latitude and longitude coordinates or they
can be saved as the user passes close by a point of interest.
Waypoints can be referenced according to distance and bearing to
a previously saved waypoint, and they are designed to be shared
across users and applications.
Landmarks are features (e.g. tall
buildings) that serve as reference
points to guide navigation [10]. In
comparison with waypoints,
landmarks are typically not the goal
of the navigation task. Waypoints
are often gathered within routes
(see Fig.1). A route provides a
path from one point to another
together with intermediate
destinations (a sequence of
waypoints).

2.2 Social Tagging
Social tagging, also known as social bookmarking, enables users
to create shared bookmarks to online resources with additional
metadata beyond the site location. Social tagging websites such
as flickr.com and del.icio.us are used to “tag” images and share
bookmarks respectively by a large user community. A tag is a
one-word term to describe the image or bookmark. The user is not
restricted by any preconceived vocabulary, taxonomy or
ontology. This bottom-up approach results in semi-structured
information spaces that are often referred to as “social
classifications” [3]. Tagging is not a new concept to software
engineering. Tags have been used for decades for annotating
check-in and branching events in software version control
systems. This use of tags is for identifying version control
transactions rather than for tagging within the source code and
documentation.

2.3 The tagSEA Tool
We have combined the concepts of waypoints and social tagging
to create “tagSEA” (Tags for Software Engineering Activities), a
tool to support collaborative annotations in software development.
It has been implemented as a plug-in for the Eclipse Java
development environment (www.eclipse.org).
In software, the waypoint analogy corresponds to locations of
code model elements (e.g. class, method, package, file), or a
location that corresponds to a file name and line number for any
type of file. Waypoints are indexed through a set of tags supplied
by the programmers. Metadata is also captured or explicitly
entered with the waypoint and may include the version of the
software file, creation date, author, related bugs etc. Routes are
sequences of code or file locations.
Fig. 2 shows a view of tagSEA. tagSEA allows users to associate
tags with parts of the source code by using a Javadoc-style
keyword.. A tag is created by writing “@tag” in a comment
block, followed by the actual tag and some descriptive text (see
Fig. 2 A). Individual tags are delimited by spaces, or they may
consist of multiple words by placing the string in quotes. This
Javadoc-style syntax allows for easier adoption of tagSEA with
the Java developer community, who is already familiar with
similar conventions such as “@author” and ”@version”.
tagSEA extends Eclipse’s enhanced code editor to ease usage of
waypoints and routes in source code even further. “@tag”
comments are highlighted in the source so that they stand out as

clear landmarks or points of interest to the developer.
Simply typing “@” inside a comment block will list
“@tag” alongside the list of other Javadoc-style
annotations. The resulting waypoints (i.e. locations
in the code) are automatically associated with the
closest enclosing Java model element (e.g. a class).
We also support annotation at a coarser level of
granularity than lines of code. Waypoints can be
scoped to entire files via a context menu in the file
navigator. Such waypoints and associated tags are
not explicitly added to the code, and hence can be
seen as private as they are only in the creator’s
workspace. The reward for encouraging the use of
tagSEA’s annotations in code is to provide annotated
waypoints for coordination and navigation. This is

supported by the Waypoints Viewer (see Fig. 2 B). Selecting
one or more tags listed on the left reveals the union of the
software model elements, their locations, and annotations that
have been waypointed in the right side of the viewer. Clicking on
the waypoint entries on the right side of the viewer opens the
associated file editor, positions the editor at the appropriate
location, and highlights the waypointed software model element.
Thus, programmers can use the Waypoints Viewer to easily
navigate to places of interest.
Tag spaces are often criticized for producing flat structures [3].
However, there are reports of users using their own conventions
to encode hierarchical relationships across tags. We believe that
programmers may be more comfortable adopting a hierarchical
syntax given their experience with formal languages and
abstractions. The user can specify the hierarchical tags as
follows: “@tag bug(performance)”. This indicates that there is a
“bug” tag, with bug subtypes specified by the parameter in

Fig. 1: A route of GPS waypoints

 3

brackets. The hierarchy of tags is displayed using a tree at the left
of the Waypoint Viewer (Fig. 2 C).

Figure 2: tagSEA Plug-in for Eclipse

One of the challenges in social tagging is using a consistent set of
tags over time [3]. tagSEA provides an automatic tag
completion feature to suggest existing tags based on a partially
typed tag. We have also added support for refactoring of tags so
that they can be easily renamed, reorganized or deleted. For
example, renaming a tag in the Tag viewer will result in all
instances of that tag in the source code (i.e. the waypoints with
that tag) to be updated accordingly. Hierarchical tags can be
reorganized by dragging them to other parts of the tag tree.
Automatic tag completion and refactoring helps achieve a
consensus over tag naming and structure over time.
Managing a growing sea of tags is also a concern for social
tagging systems [3]. This may be a greater issue for large
software development projects. To address this concern, tagSEA
provides some initial support for dynamic filtering and searching
of waypoints. Every keystroke in the filtering text box
immediately updates the list of tags that partially match the
entered query, allowing a user to condense and explore tag spaces
through partial text entry. The user can also sort waypoints
according to metadata captured such as author or date.
The waypoint metaphor strongly supports the notion of a
sequence or route. Personalized guided tours have also been
suggested for website navigation [6]. Such a mechanism can be
used to document a series of steps in a software development
workflow, for example, a software inspection code review, or as a

step-by-step guide for newcomers to a software library or
framework. Since the waypoints and tags are shared, the user
need not follow a single path prescribed by one authority.
Instead, the user can build a personalized route by combining
paths from different experts based on the tag metadata. In
tagSEA, the user can create a named Route in an optional panel
(see Fig. 2 E). Waypoints may be added through drag and drop
on a selected route. Routes are stored externally to the code in the
user’s metadata, but they can be shared through an export facility
and may be checked into CVS. Routes may themselves also be
tagged and may be filtered using the tag pane.

3. PRELIMINARY EVALUATION
We have already begun to evaluate tagSEA with a small group of
programmers at two sites. Preliminary feedback is encouraging
and patterns of usage are already starting to emerge. One
developer, Bob1, reported tagging as he was integrating two
unfamiliar systems. The lightweight mechanism allowed him to
temporarily tag areas of the code he was changing as he was
experimenting with the unfamiliar code. He and another
developer, Alice, also reported using tagging to indicate areas that
she updated to fix bugs that were in another project “belonging”
to Bob. The tagging feature was a useful mechanism to document

1 Names used are fictitious.

 4

these changes for future navigation and to support communication
between Bob and Alice. The alternative solution would have
been to submit the code to a version control system, run a
difference tool to list the results, and then navigate to each
difference, one at a time by searching through the workspace.
Bob also reported using a set of tags created by Alice as he had to
do a similar task. The “route” feature was not available when this
user used tagSEA but nevertheless the waypoints as they were
entered fulfilled this role, although they lacked the sequence
information. Bob described tags as being useful for documenting
“common maintenance patterns”. Finally, tags were also seen as
useful for navigating an unfamiliar code base. Tags were applied
on unfamiliar pieces of code for later inspection while the
programmers’ comprehension of the system evolved.

4. FUTURE WORK
One of the exciting aspects of this research is that it has opened
the door to many possible extensions for further investigation. We
propose some interesting research questions here.

4.1 Leverage a social bookmarking service
In GPS applications, waypoints are not tied to any one application
and are shared across users and applications. Similarly we
assume the same benefits could be realized for waypoints in
software spaces when the semantics of the referenced locations
are likewise shared across applications. Moreover, by using
tagging to specify waypoints, we can also investigate how social
tagging is used to share and exploit tagging vocabularies and
taxonomies, while also increasing awareness of development
activities beyond the confines of the IDE. Also, we can begin to
infer social networks amongst developers and create filters based
on groups using authorship information associated with tags,
waypoints and routes. To facilitate this research, we plan to
integrate tagSEA with dogear, an enterprise social bookmarking
service [6].

4.2 Semi-automate tagging
Creating and maintaining a usable set of tags relies on collective
effort. Internet-scale tagging systems such as del.icio.us can draw
upon the general Internet population to contribute tagged
information. For tagSEA, the pool of contributors can vary from a
large open source project to a small in-house development team.
This can be especially onerous for small teams maintaining large
pieces of legacy software. We are considering semi-automated
tagging techniques to ease the burden on smaller groups, such as
searching for a keyword in comments and adding a tag based on
that search, and automated creation and deletion of tags based on
other IDE activities, such as closing or opening of bugs,
breakpoint insertion and deletion etc.

4.3 Visualize waypoints and tags
The tagSEA prototype provides a list and tree based interface to
manage tag and waypoint information. We are planning to
experiment with visualizations such as the “tag clouds”
popularized by social tagging sites such as flickr and del.icio.us to
provide alternative user interfaces. We also intend to explore how
waypoints and routes could be visualized within dependency and
architectural views of a software system.

4.4 Evaluate with more users
We plan to provide a broader deployment of an instrumented
version of tagSEA to study how tags are created, used and shared
over time. Although tagSEA lacks explicit collaborative features,
we have been able to determine from our initial users that it is
being used to support collaboration through conventions and
simple file exchange over a central version control repository.
Consequently, it is interesting to observe how collaborative
conventions will emerge and how these conventions will be
negotiated despite the tool’s limited features. Understanding
these usage patterns will inform the design of future collaborative
tools for software development.

5. CONCLUSION
This paper presents the tagSEA tool for creating shared waypoints
and routes through a software space. In addition to the
locomotional support they provide, waypoints by way of their
tags also provide a lightweight mechanism to share
documentation that captures important knowledge about the code
while also facilitating the coordination of collaborative activities.
Muller et al. also discuss how shared landmarks (but not
waypoints) can become coordination artifacts [7]. Although our
evaluation is preliminary, the feedback we have thus far received
indicates that the implicitly captured meta-data combined with the
lightweight nature of tagging results in a very promising
technique for supporting distributed software development.

6. REFERENCES
[1] Gutwin, C., Penner, R., and Schneider, K. Group awareness in

distributed software development. Proc. CSCW 2004, ACM Press,
New York, NY, 2004, 72-81.

[2] Hupfer, S., L.-T. Cheng, S. Ross and J. Ross, “Introducing
collaboration into an application development environment”, Proc.
CSCW 2004, ACM Press, New York, NY, 2004, 21-24.

[3] Hammond, T., T. Hannay, B. Lund, and J. Scott, “Social
Bookmarking Tools: A General Review”, D-Lib Magazine, Volume
11 Number 4, April 2005.

[4] Larkin, F.J., Basic Coastal Navigation: An Introduction to Piloting,
1999. ISBN 1-57409-052-6

[5] Millen, D., J. Feinberg, and B. Kerr, “Social Bookmarking in the
Enterprise”, ACM Queue, vol 3, no. 9, November 2005.

[6] Moody, P., WebPath: Sharable Personalized Guided Web Tours,
IBM Research (Cambridge), Technical Report 98-09 (1998).

[7] Muller, M.J. et al., “Shared landmarks in complex coordination
environments”, in CHI '05 extended abstracts on Human factors in
computing systems (Portland, Oregon), pp. 1681—1684, 2005.

[8] Sun Microsystems, Javadoc Tool Home Page,
http://java.sun.com/j2se/javadoc

[9] Ying, A., Wright, J., and Abrams, S. “Source code that talks: an
exploration of Eclipse task comments and their implication to
repository mining”, In the Intl. Workshop on Mining Software
Repositories (MSR ’05), St. Louis, 2005, pp. 1-5.

[10] Vinson, N., “Design Guidelines for Landmarks to Support
Navigation in Virtual Environments”, Proceedings of CHI ‘99,
Pittsburgh, 1999.

