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1 Statement of the problem

Numerical continuation in one dimension produces a sequence of points
(ui, λi) i ∈ [0, N), along a set of arcs that are connected at their endpoints.
Each point is the solution of an equation

F (ui, λi) = 0 F : IRn × IR → IRn (1)

A regular point is a solution F (u0, λ0) = 0 where the Jacobian Fu(u0, λ0)
is non-singular. In a small neighborhood of a regular point there is a unique
curve (u(s), λ(s)) of regular points in some small neighborhood |s| < ε. This
is the Implicit Function Theorem (IFT). By extending this small piece of the
solution curve, detecting singular points and switching branches at singular
points, the continuation method produces an approximation of the connected
component Γ(u0,λ0) of solutions of F (u, λ) = 0 containing (u0, λ0). (Fig. 1,
(left).)

Most physical problems depend on more than one parameter. While it can
be useful to study how the solution depends on each parameter separately,
what is really wanted is an understanding of the behavior over some finite
piece of the parameter space. This is the higher dimensional continuation
problem. Instead of solution curves, we wish to find solution manifolds of

F (u, λ) = 0 F : IRn × IRk → IRn (2)

Using the IFT again, at a regular point in there is a unique manifold of regular
solutions F (u(s), λ(s)) = 0, which exists in some small neigborhood |s| < ε,
s ∈ IRk. The connected component Γ(u0,λ0) is as defined above, but it is a
branched manifold (the solution manifold), rather than a branched curve.
(Fig. 1 (right).) Singular points on the manifold where the Jacobian is rank
deficient by one form the boundary of each branch. These singular manifolds
are generically k − 1 dimensional sub–manifolds.
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Fig. 1. (left) A connected component Γ(u0,λ0) consisting of a set of smooth arcs,
which meet at the endpoints of the arcs, which are singular points. F (u, λ) = 0
may consist of more than one connected component. The blue branched curve is
part of Γ(u0,λ0) and the magenta branched curve is a part of a different connected
component. (right) A branched manifold consists of a set of smooth manifolds with
boundaries, which meet along shared boundary manifolds.

Numerical continuation methods use a local analysis, usually a compu-
tational version of the IFT, which approximates the solution manifold in a
neighborhood of a regular point Ni(ui), and aggregate n of these neighbor-
hoods into a global approximation of the solution manifold M , Mn. The geo-
metric problem of maintaining the aggregate of neighborhoods, and merging
a new neighborhood into the aggregate, is roughly equivalent to advancing
front mesh generation on a surface. This is not an easy problem, especially for
higher dimensions n and manifolds of dimension k more than three. In Sec-
tion 2 we give a brief survey of the methods used to represent and manipulate
complexes, which are the generalization of meshes, and are used to represent
the branched manifold which approximates M . In Section 3 we describe five
algorithms which are in the literature, and try to classify them by which of
the representations discussed in section 2 are used. And finally in section 4
we show the results of the five algorithms applied to a sphere.

2 Background

In computational and pure mathematics it is necessary to chose a represen-
tation or notation for the object being computed or manipulated. The paral-
lel between notation and computational representation is quite close, though
the computer can deal with expressions far too complicated to deal with by
hand. A good notation makes manipulations easier and reduces errors, and
a good computational representation makes operations easier to implement,
and reduces coding errors. The choice of representation is not often not made
explicitly, especially when the objects are simple.

The choice of representation also serves to distinguish between algortihms,
since often once the choice of a representation is made there are fewer choices
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of how to proceed. We use this approach in Section 3 to analyze five algorithms
for higher dimensional continuation in the literature.

For one dimensional continuation many issues simply do not arise: curves
are easily represented as lists of points. Surfaces and manifolds are more chal-
lenging. In section 2.1 we discuss simplicial and cell complexes, which are
general meshes that are commonly used in algebraic topology. Then we define
manifolds and manifolds with boundary, which are the analogues of curves
and arcs in one dimension.

Section 2.2 describes two fundemental geometric abstractions, the Voronoi
and Delaunay tesselations, and a particular generalization of the Voronoi
which represents the boundary of a union of spherical balls. In section 2.3
we discuss how these topological and geometrical ideas have been used to rep-
resent manifolds, and finally two to construct the neighborhood of a regular
point.

2.1 Cell and Simplicial Complexes, and Manifolds

There are only a few ways to deal with general surfaces, and most are varia-
tions on meshes In this section we discuss representations of cell and simplicial
complexes, which are general meshes in higher dimensions. The Voronoi dia-
gram and Delaunay triangulation are two instances of complexes with special
properties. The Voronoi tessellation contains information about points that
are near each other, and there is a variant, the Laguerre–Voronoi diagram,
which provides an efficient means of determining the boundary of a union of
spherical balls. The Delaunay triangulation is related to the Voronoi diagram,
and is frequently used to generate meshes in two and three dimensions.

This subject can be presented in a very opaque, but abstract way. The
author would recommend the book [14] and the paper [16] for reasonable
clear exposition of complexes, and hopes that the descriptions which follow
are as clear.

A cell complex of dimension k is a set of cells of dimension 0 to k. The 0–
cells (vertices) may (or may not) be identified with points in an n dimensional
embedding space. If they are not embedded the complex represents purely
topological information. For our purposes the vertices will be points on or
near the solution manifold. Each p–cell (except the 0-cells) has a set of faces,
which are (p − 1)–cells in the complex. Cells must be compatible with each
other; the intersection of two cells is either empty, or a cell in the complex
that both cells have as a common face. This compatiblilty condition turns
out to be a major difficulty for some of the algorithms described in Section 3
below. Figure 2 shows some cells that are not compatible.

A complex is a set of lists; of cells of each dimension, the faces of each
cell with orientations, and a list of cells of which the cells is a face. Some of
this information is redundant, and when storage is an issue it is necessary to
avoid storing redundant information. Of course, if information is not stored, it
must be computed from available information. Guibas and Stolfi [18] describe
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Fig. 2. Cells that are not compatible. (left) 1–cells embedded in IR2, (center) 2–cells
embeded in IR2, and (right) 2–cells embedded in IR3.

a minimal data structure for representing two dimensional cell complexes (in
general, not just polyhedral or simplical), and show that with operations which
are fairly simple in this representation, a Delaunay triangulation algorithm can
be built (see section 2.3). For three dimensional complexes there are similar
representations, e.g. the “winged edge” (see for example [13], [19]).

The basic geometrical object in higher dimensional continuation is a k–
dimensional branched manifold (recall that k is the number of parameters). A
branched manifold is a set of manifolds with boundaries (the branches), glued
together along common boundaries. The boundaries are sets of singular points,
which are generically (k − 1)–dimensional manifolds. Finding the branches
which meet at a singular surface is called branch switching.

Convex Polyhedral Cells

Complexes with convex polyhedral cells have a particularly nice structure. The
cells are formed by intersecting half spaces whose planar boundaries contain
the faces of the polyhedron and can be represented by the list of planes that
they lie on. So for example, the set of linear inequalities in three dimensions:

P =



( ê0,−1).(v, 1) ≤ 0
(−ê0, 1).(v, 1) ≤ 0
( ê1,−1).(v, 1) ≤ 0
(−ê1, 1).(v, 1) ≤ 0
( ê2,−1).(v, 1) ≤ 0
(−ê2, 1).(v, 1) ≤ 0

(3)

defines a polyhedron (a cube). The representation of a vertex, v0 = (0, 2, 4)
for example, means that the point v0 satifies the linear system:

( ê0,−1).(v0, 1) = 0
( ê1,−1).(v0, 1) = 0
( ê2,−1).(v0, 1) = 0

(4)
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The list of planes that contain each vertex is sufficient to define the rest
of the cells. In a k–dimensional polyhedron each vertex must lie on k or more
planes. Cells of dimension p > 0 must lie on exactly k − p faces, and so have
k− p indices. There is an edge between two vertices if the vertices have k− 1
indices in common. For example:

v0 ∩ v1 = (0, 2, 4) ∩ (0, 2, 5) = (0, 2)v3 ∩ v4 = (0, 3, 4) ∩ (1, 2, 4) = (4) (5)

So there is an edge with endpoints v0 and v1, but not v3 and v4. The same
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Fig. 3. A cube with the faces and vertices labeled (left). At the right is the dual of
the boundary of the cube, which is an octahedron.

holds true for cells of higher dimension. A p–cell exists containing a set of
vertices if and only if the intersection of the index sets of all the vertices
contains k− p indices. This works because each plane is one linear constraint,
and a set of indices is just a linear system. In IRk, k−1 linear equations defines
a line. For more on polyhedra see for example [17] or [12]. This notation (in
a different guise) is introduced in section 2.6 of [17].

Duality

We expressed the halfspaces in Eq. 4 in terms of an inner product of a point
in IRk+1 and a point in IRk × IR. The additional coordinate is a homogeneous
coordinate, so that (v, h) corresponds to v/h. This highlights the duality that
exists in cell complexes. A plane is represented by an IRk+1 vector, which is a
linear functional acting on points in the space in which the vertices are em-
bedded (in homogeneous coordinates). (Fig. 3.) So, for example, the dual of
the 0–cell (1) is the set of three linear functionals (points) (ê0,−1), (ê1,−1),
and (ê2, 1), or (0, 2, 5). This is one of the triangles in the octahedron shown
in Figure 3, which is the dual of the cube. The dual of a cell is the intersec-
tion of the index sets for the vertices in the cell, so the dual of 1–cell (4, 5)
is (1, 2, 4) ∩ (1, 2, 5) = (1, 2). This duality relates the Voronoi diagram and
Delaunay triangulation described below, and is called Poincaré duality.
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p cell dual p cell dual p cell dual

2 (0,1,2,3) (0) 1 (0,1) (0, 2) 0 (0) (0, 2, 4)

2 (4,5,6,7) (1) 1 (0,3) (0, 4) 0 (1) (0, 2, 5)

2 (0,1,5,4) (2) 1 (2,3) (0, 3) 0 (2) (0, 3, 5)

2 (3,2,6,7) (3) 1 (1,2) (0, 5) 0 (3) (0, 3, 4)

2 (1,2,6,5) (4) 1 (4,5) (1, 2) 0 (4) (1, 2, 4)

2 (0,3,7,4) (5) 1 (4,7) (1, 4) 0 (5) (1, 2, 5)

1 (5,6) (1, 5) 0 (6) (1, 3, 5)

1 (0,4) (2, 4) 0 (7) (1, 3, 4)

1 (1,5) (2, 5)

1 (3,7) (3, 4)

1 (2,6) (3, 5)

Table 1. The cells of a cube and their duals.

Subtracting a halfspace from a convex polyhedron

One operation on convex polyhedra requires mention, and that is intersecting
the polyhedron with a halfspace. This adds a plane to the polyhedron, and
the vertices that are the “wrong” side of the plane and any cell containing
those vertices must be removed. If the convex polyhedron is represented by
a list of inequalities and a list of vertices (the 0–cells and dual 0–cells), then
the algorithm described in [12] may be used.

The algorithm is simple. First the halfspace is added to the list of inequal-
ities, then the vertices are each tested for inclusion in the half space. Those
that are not in the halfspace are removed and a new vertex is added for each
edge containing the deleted vertex. The index of these new points is the index
of the edge, plus the index of the new inequality. The performance of the
algorithm can be improved by storing the edges.

Simplices

A simplex of dimension k is a set of k + 1 vertices that do not lie in a linear
subspace of IRk. A simplicial complex is a cell complex whose cells are all
simplices. Simplices are represented as dual polyhedra, but for simplices the
cells can be enumerated by simple operations on their vertices, so do not have
to be tabulated. A 2 dimensional simplex (a triangle) with by vertices 1, 4, and
5 is represented as (1, 4, 5). The natural ordering of the integers determines
the order in which the vertices are listed.

The (k − 1)–cells lying in a k dimensional simplex are simplices whose
representation is the same as that of the “parent” simplex, but with one vertex
dropped. The (k−1)–cell is the one opposite the vertex that is dropped. (Fig.
4.) This enumeration holds for cells down to 0–simplices, which are points,
and have a single index.

The dual of a simplex is the list of missing vertices. (Table 2.)



Higher Dimensional Continuation 7

(1,2,10)(1,7,10)(2,7,10)

Simplex
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Fig. 4. The simplex (1, 2, 7, 10) and it’s faces. The faces can be enumerated by
removing from the label of the simplex the index of each vertex in turn. Removing
a vertex index yields the label of the face opposite that vertex. The arrows indicate
the positive ordering of the vertices on the edges.

Orientation and the boundary and co–boundary operators

Simplices (and cells in general), have an orientation of ±1. If two adjacent
vertices in the representation of a simplex are interchanged, the sign changes,
with the simplex with vertices in order being positive. So for an arbitrary list
of vertices the sign is the parity of the permutation which orders the vertices.

The boundary operator dp maps a p–cell into a sum of (p − 1) cells (the
faces of the cell). Each cell in the sum, has an orientation of ±1, assigned so
that the boundary of the boundary is empty (Fig. 5). For simplices there is a
simple expression for the boundary operator.

dp(v0, ..., vi, ..., vp) =
p∑

i=0

(−1)i(v0, .., vi−1, vi+1, ...vp) (6)

(Figure 5.) For example, the face (2, 7, 10) in the simplex (1, 2, 7, 10) (a tetra-
hedron) has boundary

d3(2, 7, 10) = (7, 10)− (2, 10) + (2, 7)

d2d3(2, 7, 10) = {(10)− (7)} − {(10)− (2)}+ {(7)− (2)} = 0
(7)

The co-boundary operator dp is the adjoint of the boundary operator dp.
The co–boundary operator is the boundary of the dual. If σp is a p–cell, and fp



8 Michael E. Henderson

10

7

110

7

2

107

2

1

1 10

2

1 2

7

(1,2,10)(1,7,10)(2,7,10)

Simplex

(1,2,7,10)

(1,2,7)

Face 1 Face 2 Face 7 Face 10

Fig. 5. The Simplex (1, 2, 7, 10) and it’s faces oriented so that the boundary of it’s
boundary is empty.

is a set of p + 1 dual vertices, the the co–boundary is related to the boundary
operator by

(dpfp)(σp+1) = fp+1(dp+1σp+1), or simply dpfp = fp+1dp+1 (8)

The co–boundary operator increases the dimension of a simplex (decreases
the dimension of a dual simplex), while the boundary operator decreases the
dimension of a cell. For a simplex there is an expression for the boundary
operator dp+1, so the co–boundary operator can be written explicitly as well:

dpfp = fp+1dp+1 =
p+1∑
i=0

(−1)i(v0, .., vi−1, wi, vi, ...vp) (9)

Here the wi is in turn each of the vertices that are missing from the index
of the cell. For a simplical complex wi ranges over all vertices that make
the simplex in the sum a cell in the complex. That is, it indexes the p + 1
cells which have the p–cell as a face. For cell complexes the boundary and
co–boundary need to be tabulated.

The boundary of a simplex is a simplicial complex, so we can use the
boundary of our simplex (1, 2, 7, 10) to give a concrete example of a simplicial
complex:

One of the advantages of this notation is that two simplicial complexes
can be added. The example in Fig. 7 removes the face they share from the
boundary. The result is still a simplicial complex, but is the boundary of an
octahedron. This makes it possible to perform such operations as adding a
“handle” to a cell complex [28]. For simplices there is no need to represent
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p σp σk−p+1 dpσp dk−p+1σ
k−p+1 dpσp

0 (10) (1, 2, 7) (2, 7)− (1, 7) + (1, 2) (1,10)-(2,10)+(7,10)

0 (7) (1, 2, 10) (2, 10)− (1, 10) + (1, 2) (1,7)-(2,7)+(7,10)

0 (2) (1, 7, 10) (7, 10)− (1, 10) + (1, 7) (1,2)-(1,7)+(1,10)

0 (1) (2, 7, 10) (7, 10)− (2, 10) + (2, 7) (1,2)-(2,7)+(2,10)

1 (7,10) (1, 2) (10)-(7) (2)− (1) (1,7,10)-(2,7,10)

1 (2,10) (1, 7) (10)-(2) (7)− (1) (1,2,10)-(2,7,10)

1 (2,7) (1, 10) (7)-(2) (10)− (1) (1,2,7)-(2,7,10)

1 (1,10) (2, 7) (10)-(1) (7)− (2) (1,2,10)-(1,7,10)

1 (1,7) (2, 10) (7)-(1) (10)− (2) (1,2,7)-(1,7,10)

1 (1,2) (7, 10) (2)-(1) (10)− (7) (1,2,7)-(1,2,10)

2 (2,7,10) (1) (7,10)-(2,10)+(2,7)

2 (1,7,10) (2) (7,10)-(1,10)+(1,7)

2 (1,2,10) (7) (2,10)-(1,10)+(1,2)

2 (1,2,7) (10) (2,7)-(1,7)+(1,2)

Table 2. The simplicial complex which is the surface of the simplex (1, 2, 7, 10).

(1,2,7,10)

107

2

1

(1,2,7)

(1,7,10)

(1,2,10)

(2,7,10)

Dual

Fig. 6. The dual (right) of the boundary of the simplex (1, 2, 7, 10).

the faces, since they can be generated from the vertex list. For a simplicial
complex the dual edges to each face of a simplex must be stored (i.e. the pair
of simplices which share the faces). For a cell complex there needs to be a
data structure for storing the lists associated with each cell.

2.2 Manifolds

A manifold is the generalization of a surface, but has a lot of the freatures of
a cell complex. A k–dimensional manifold is a set of k–dimensional neighbor-
hoods of the origin (called charts) which are isomorphic to the k–dimensional
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Fig. 7. The sum of the boundaries of two simplices (1, 2, 7, 10) and (1, 2, 9, 10).

unit ball B1(0) = {x | |x| < 1}, along with adjacency relations indicating
which charts “overlap”. Two adjacent charts must agree on some common
non-empty sub–region, which means that there is a one–to–one and onto map-
ping from the subregion of one chart to the corresonding subregion of the other
(Fig. 8). The neighborhoods are called chart domains, the collection of charts
is called an atlas. The reference is to navigational charts which cover a small
piece of the globe, and are bound together into an atlas. In this analogy the
overlaps are needed to move from one chart to the next, and the adjacency is
usually indicated by the number of the neighboring chart in the margin. (Fig.
8.)

Chart 2

mapping from
chart 0 to chart 1

and
chart 1 to chart 0

where they overlap

Chart 0 Chart 1 Chart 3

2 3

0

2 3

1

2
0

0

31

1

Fig. 8. A manifold is an “atlas” of overlapping “charts”, with an identification of
overlapping subregions and a one to one and onto mapping between the subregions.

The relation of a manifold to a cell complex is straightforward. A chart is
a k–cell, the overlap between two charts is a k − 1 cell and a common face of
each chart, and so on. With this interpretation the manifold shown in Fig. 8
is a tetrahedron.
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Manifolds with Boundary

A manifold with boundary has special charts called boundary charts. Instead of
a full neighborhood of the origin, the domain of a boundary chart is isomorphic
to the half ball B1(0) = {x | |x| ≤ 1 x0 ≥ 0}. The restriction to the ball
B1(0) = {x | |x| ≤< 1, x0 = 0}, a full ball of one dimension less, is a
chart on one of the boundary manifolds. The boundaries themselves can have
boundaries (just as the edges of a square have end points), so instead of a half
ball we really mean a ball restricted so that some set of the coordinates are
non–negative. (Fig. 9.)

Chart 0 Chart 1 (Boundary) Chart 2 (Boundary) Chart 3

2 3

0

2 3

1

3

3

0

1

2
1

0
2

Fig. 9. A manifold is an “atlas” of overlapping “charts”, with an identification of
overlapping subregions and a one to one and onto mapping between the subregions.

This is a second way that manifolds with boundary are like a cell complex.
The manifold itself is a cell, and the faces of cell are the boundary manifolds.

Embedding a Manifold

The solution manifold M of F (u, λ) is a set of points in IRn, but so far the
definition of a manifold has been in terms of neighborhoods of the origin in
IRk. The relation between a k–dimensional manifold and the solution space
IRn is an embedding of the manifold (if n is large enough so that the manifold
does not cross itself). Each chart is assigned a one to one mapping to IRn,
called the chart mapping, which must map points in the overlap of two charts
to the same point in the embedding space. With an embedding the mapping
between the overlap of two charts can be expressed using the chart mapping
of one and the inverse of the chart mapping of the other. For a manifold
defined by a system of equations we considered branches which consist of
regular points, and the implicit function theorem gives the chart mapping.
The singular boundary manifolds are the where this embedding fails. (Fig.
10.)

Representing a Manifolds

The algorithms described in Section 3 use different representations of the so-
lution manifold. Allgower and Schmidt’s algorithm [3] represents the solution
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mapping from
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mapping

0

chart 
mapping

3
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mapping

1
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mapping
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chart 
mapping

0
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chart mapping

1

Fig. 10. An embedded manifold with boundary.

manifold as a set of simplices in the embedding space IRn, each of which
contains a piece of the manifold. Rheinboldt’s moving frame algorithm [31],
Brodzik’s algorithm [9] and Melville and Mackey’s boundary representation
[29] instead use a simplicial complex whose vertices are points on the solu-
tion manifold. The author’s algorithm [20] represents the solution manifold as
a complex with convex polyhedral cells. These are the three representations
that are used by the five algorithms described in secion 4. (Fig. 11.)

2.3 Basic Computational Geometry

The representations of manifolds which are used for higher dimensional contin-
uation are all based on cell or simplicial complexes. In computational geometry
two of the most frequently used complexes are the Delaunay triangulation of a
set of points and the dual Voronoi diagram. Of course, the Delaunay triangu-
lation in higher dimensions isn’t a triangulation, but it still is refered to as a
triangulation. Generically, the Delaunay triangulation is a simplicial complex,
and the Voronoi diagram is a complex with convex polyhedral cells. There is
a large literature on both but the reader might begin with [7], [15], [34], [11],
[8], or any introductory text on computational geometry.

The Delaunay triangulation has good properties for mesh cells (it creates
“fat” simplices). In two dimensions it has been proven [30] that over all tri-
angulations of a fixed set of points, the Delaunay triangulation is the one the
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chart 1

chart 2

chart 3

ch
art

 4

chart 5

Fig. 11. The four main ways of representing a manifold. (upper left) The definition,
a list of overlapping chart mappings from IRk to IRn, in this case k = 1, n = 2. (top
right) A covering, or containment in solution space, k = 1, n = 3. (lower left) A
triangulation k = 2, n = 3, and (lower right) A polygonal tiling k = 2, n = 3.

maximizes the smallest angle in any of the triangles. The Voronoi diagram
contains information about “nearest neighbors”, so is used in many pattern
matching applications.

Voronoi Diagrams

Given a set of points ui in IRn, the Voronoi diagram of the points is a de-
composition of IRn into n–cells, each associated with one of the points. The
Voronoi cell Vi of ui is

Vi = {u ∈ IRn | |u− ui| < |u− uj | for all j 6= i} . (10)

Here | · | is the Euclidean 2-norm. Figure 12 shows an example of a Voronoi
diagram for a set of points in the plane.

The Voronoi regions are a “domain of influence” of the points. They also
give information about the nearest neighbors of each point (the n− 1 dimen-
sional faces separate the Voronoi regions of two nearby charts).
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Fig. 12. (Left) the Voronoi diagram of a set of points (red) in the plane. Each region
is the set of points closest to a particular point. (Right) the duality of the Voronoi
(black) and Delaunay diagrams (blue).

The Laguerre–Voronoi Diagram and the boundary of a union of
spherical balls

There are several generalizations of the Voronoi diagram [24]. One of these,
the Laguerre–Voronoi diagram, or power diagram, [5], [4], and [22], [6], can be
used to find points on the boundary of a union of spherical balls, an operation
which will be refered to in Section 3. In the Laguerre-Voronoi diagram each
point is given a weight, which is the radius of the spherical ball about the
point.

The face between two Laguerre–Voronoi cells is defined by the equation

|s− si|2 −R2
i = |s− sj |2 −R2

j (11)

which is easily solved. We find that points s on this Voronoi face are solutions
of

2(sj − si).s = R2
i −R2

j + |si|2 + |sj |2 (12)

which is a plane orthogonal to the line connecting the centers of the two cells.
So the Laguerre–Voronoi diagram has cells with planar faces. Substituting
s = si +α(sj − si), we find that the planes intersects the line between the two
points at

α =
R2

i −R2
j + |si − sj |2

2 |si − sj|2
(13)

If |si − sj | ≤ Ri + Rj , the plane contains the intersection of the two spheres,
and divides the part of the first sphere that lies outside the second from the
part that lies inside the second (and vice versa). (Fig. 13). The n–cell is the
intersection of the halfspaces defined by each pair of points, so is a convex
polyhedron, and the boundary of the union of balls which define the diagram
is the union of the parts of each sphere that lie inside the corresponding
Laguerre–Voronoi n–cell.

The boundary of a union of spherical balls is the union of the parts of the
spherical boundaries that do not lie inside another ball. So the boundary of
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i )
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(s0 − s0
j )
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≡ (s0 − s0
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2 + (s1)2 = R2
i
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0 + (s0

j )
2 − (s0

i )
2 ≤ R2

j −R2
i

Fig. 13. (left) The Laguerre–Voronoi face when (s0
i − s0

j )
2 ≤ Ri + Rj , and (right)

when (s0
i − s0

j )
2 > Ri + Rj .

the union consists of the parts of the spheres which lie inside their restricted–
Laguerre Voronoi diagram. (Fig. 14.)

The Delaunay Triangulation

The Delaunay triangulation is the dual of the Voronoi diagram in the sense
discussed above for complexes (Fig. 15). In two dimensions it has been shown
[30] that Delaunay triangulations, among all possible triangulations of a set
of points, maximizes the smallest angle in any triangle. In three dimensions
there appears to be a similar property, but it is not clear exactly what maxi-
mum principle there might be. Because of this property of having “fat” cells,
the Delaunay triangulation is widely used for mesh generation. For an more
complete explanation of the properties of Delaunay triangulations, and how
to they are constructed see [15], [18], [7] and [33].

The Delaunay tessellation can be defined independantly of the Voronoi
diagram by means of the “in–circle” test. Each n-cell of the triangulation is
such that no point is inside the Euclidean sphere which contains the vertices
of the n-cell. (Fig. 15.)

The Coxeter–Freudenthal–Kuhn Triangulation

The Coxeter–Freudenthal–Kuhn triangulation, or tessellation [2] is a simplicial
decomposition of IRn. (It is also described in [3], but with quite a few typo-
graphic errors.) The tessellation is defined in terms of an initial n-dimensional
simplex, with n+1 vertices labeled vi for i = 0 to n. An n−1 dimensional face
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Fig. 14. (Top left) the Laguerre–Voronoi diagram of a set of points (red) in the
plane. Each region is the set of points closest to a particular point, using the distance
|s−si|2−R2

i . (Top right) the Laguerre–Voronoi diagram contains information about
the boundary of the union of balls. The boundary of the union of balls is the union of
the part of the boundary of each ball that lies within it’s Voronoi region. (Bottom)
Only the part of the Laguerre–Voronoi diagram that corresponds to overlapping
balls is needed. This is the restricted Laguerre–Voronoi diagram.

Fig. 15. (left) The Delaunay tessellation of a set of points in the plane. (right) Each
simplex in the tessellation satisfies the “in circle” test. No point lies interior to a
Euclidean sphere passing through the vertices of the simplex.
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separates two n dimensionalsimplices which share the face. If one of the sim-
plices has vertices (v0, v1, ..., vn) then in this triangulation the simplex across
the face vi is defined to be the simplex with vertices

Pvi(v0, v1, ..., vn) := (v0, v1, ..., vi−1, ṽi, vi+1, ..., vn) (14)

where

ṽi =

 v1 + vn − v0 i = 0
vi+1 + vi−1 − vi 0 < i < n
vn−1 + v0 − vn i = n

(15)

This operation – of moving across a face to an adjacent simplex – is called a

0

1

2

1+(2-0)

0+(2-1)

1+(0-2)

2

1 0

2
0

0

12

1

0

1
2

3

3-2

1+(3-2)

2

Fig. 16. (left) A pivot in the two dimensional Kuhn triangulation. (right) A pivot
in the three dimensional Kuhn triangulation.

pivot.
This pivoting works for any initial simplex, but one particular choice has

an explicit representation, and is well suited to computations. The initial
simplex is a path simplex. A path simplex has vertices which are defined by
the endpoints of the segments of a piecewise linear path. In particular, if the
coordinate directions are used as segments, and no coordinate direction is
allowed to appear twice, the set of path simplices decomposes the interior of
the unit cube [25] (which attributes the idea to Tucker and Problem 3 on page
140 of [26]). (Fig. 17). It is trivial to tile IRn with cubes. So this decomposition
of the cube also gives a simplicial decomposition of IRn. This is not true for an
arbitray decomposition of the cube, since translation in a coordinate direction
will generate incompatibile faces unless opposite faces of the cube have the
same decomposition.

If the coordinate of the “lower left ” corner of a cube (the corner which is
closest to the origin) is v0, and the side of the cube is length δ, the simplices
in this decomposition can be represented by a translation vector z ∈ INn, and
a permutation π ∈ [0...n− 1]n (every number in [0...n− 1] appears once and
only once in π). The permutation identifies the simplex in the decomposition
of the cube. The vertices of the simplex with representation (z, π) are given
by the recursion:
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(0,0) (0,0)+(1,0)

(0,0)+(1,0)+(0,1)

(0,0)+(0,1) (0,0)+(0,1)+(1,0)

0

1 2

0 1

2

(0,0,0) (0,0,0) + e0
^

(0,0,0) + e  + e0
^

(0,0,0) + e  + e  + e0
^

1
^

1
^

2
^

Fig. 17. (left) A path simplex decomposition of a square, and (right) of a cube.
The simplices for the n dimensional cube are generated by paths with n segments,
each segment parallel to a coordinate direction, with no direction repeated.

v0(z, π) = v0 + δz

vj+1 = vj + δêπj+1

(16)

The effect of the pivot across face j (Pj) on the permuation π is:

Pjπ =


{π0, ..., πj−1, πj+1, πj , πj+2, ..., πn−1} 0 < j < n

{π1, ..., πn−1, π0} j = 0

{πn−1, π0, ..., πn−2} j = n

(17)

And the action on z is

Pjz =


z 0 < j < n

z + êπ0 j = 0

z− êπn−1 j = n

(18)

We now have the language and tools for describing algorithms for higher
dimensional continuation. Cell and simplicial complexes will be used to the
solution manifold, Delaunay triangulations for decompositions of the mani-
fold, the restricted Laguerre–Voronoi tellessation to obtain information about
the boundary of a collection of balls, and the Coxeter–Kuhn–Freudenthal tes-
sellation for finding a set of simplices which encloses the solution manifold.

3 Five Algorithms

Below we describe five algorithms for higher dimensional continuation: All-
gower and Schmidt’s “pattern algorithm” [3], Rheinboldt’s moving frame al-
gortihm [31], Rheinboldt and Brodzik’s k = 2 [10] and Brodzik’s [9] general
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dimension tiling algorithms, Melville and Mackey’s k = 2 boundary represen-
tation algorithm [29], and the author’s covering algorithm [20].

All of these methods can be viewed as an iterative application of three
steps, beginning with M0 being the initial point:

1. Find a point ui on the boundary of Mi

2. Build a neighborhood Ni of ui

3. Merge Ni into Mi to obtain Mi+1

The algorithms differ in how Mi is represented, and the three operations are
performed.

Continuation in higher dimensions is conceptually different from one di-
mension. There are only two ways to represent a 1–manifold, and these cor-
respond to Pseudo–arclength continuation [23], which uses a set of polygonal
arcs to represent M , and simplical or piecewise–linear continuation [1], which
uses n–dimensinal simplices in IRn to cover M .

Pseudo–arclength continuation exploits the fact that for 1–manifolds the
boundary is a set of points, and the merge operation is just a matter of dis-
carding one of the two intervals which make up the neighborhood of a point
on M . If a simplicial approximation of M is used in higher dimensions the
boundary of Mi is a k−1 dimensional simplicial complex. Constructing a sim-
plicial neighborhood of a boundary point so that the simplices are compatible
with Mi seems tractable, but turns out to be a difficult problem.

For 1–manifolds in IRn+1 simplicial continuation uses an n + 1 dimen-
sional Coxeter–Kuhn–Freundenthal simplicial complex, and only requires piv-
ots across n–cells. The is because a boundary “point” is the face of an n + 1–
dimensional simplex, and with k = 1, n–dimensional faces intersect M at
a point (or not at all). There are exactly two simplices which contain this
boundary face. One is the simplex on the boundary and the other can be
found with the pivot operation. In higher dimensions the intersection of M
with an n + k dimensional simplex is a k–cell, and there are more than two
simplices containing an n dimensional simplex which intersects M at a point.

It is easier to understand the algorithms when the manifold is flat, so we
will make use of natural parameter continuation to present the five algorithms.

3.1 Natural Parameter Continuation

Let us begin with the case that there is a unique solution at each point in
parameter space, and consider the generalization of natural parameter contin-
uation. (Fig. 18). Natural parameter continuation is a fairly obviousmeans of
adapting an iterative solver for F (u, λ) at a fixed parameter value to map out
the solution manifold. Iterative methods require an initial guess, and rather
than start with the same initial guess at each new parameter value, the solu-
tion at a nearby parameter value is used. (Fig. 18).

If a set mesh is used, natural parameter continuation selects a point from
the mesh at which the solution is known, and which has a neighbor at which
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Fig. 18. (top left) Natural parameter continuation with one parameter. The solution
at the point to the left is used as an initial guess for an iterative method at the next
point. (top right) Natural parameter continuation with two parameters, using a
rectangular grid on parameter space. The technique is the same as one parameter,
but the grid vertices are travelled in a predetermined order. (bottomleft ) Natural
parameter continuation with two parameters, but with a triangular grid on the
region of interest in parameter space. (bottom right) A case where natural parameter
continuation fails.

the solution is not yet known. (Fig. 18) If the points in parameter space are
chosen adaptively, the method becomes a generalization of advancing front
mesh generation, which is a challenging problem in higher dimensions. The
main consideration is that the new point lie on the edge of the previously
computed points, but lies near enough so that one of the known points provides
a good initial. This makes the boundary of the meshed region an important
object.

3.2 Solution Space Continuation

For many interesting problems the solution manifold cannot be expressed as
a function of the paramters. Fig. 18 shows such a case for k = 2. Natural
parameter continuation would find the lower or upper sheet, depending on
the initial guess, and the iteration would fail to converge beyond the fold.

When k = 1 there are two choices of algorithm. If n (the dimension of
the solution space) is small simplicial continuation can be used. On the other
hand, pseudo–arclength continuation may be used for any n.

Allgower and Georg’s k = 1 simplicial continuation begins with a simplex
in IRn+1 which contains a point on the solution manifold, which is a branched
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curve. If the simplex is sufficiently small, and the point is a regular point,
the curve enters this simplex through one face and leaves through another.
With these assumption a linear approximation of F over the simplex results
in a good approximation to these two points on the n − 1 dimensional faces
of the simplex. It is important that simplices are used, so that there is a
unique, continuous piecewise linear interpolant. This also produces a piecewise
linear solution curve. Figure 19 shows the effect of a second parameter on the
piecewise linear solution of F = 0.

u0 l= (l  ,l   )0
0 1

1

l= (l  ,l   + Dl )0
0 1

1

l= (l  ,l   - Dl )0
0 1

1

Fig. 19. The solution of F = 0 for a piecewise linear interpolant with the second
parameter fixed. As the second paramter is allowed to change the entry and exit
points move and the line segment connecting them sweeps out a ruled surface.

Pseudo–arclength continuation (PSALC) [23] uses the tangent of the solu-
tion curve to define a new parameter. This is done by appending a constraint
that the projection of a solution point (u(s), λ(s)) onto the tangent vector
is s. The curve of solutions is represented as a piecewise linear arc, and is
extended by using one of the end points and a linear extrapolation for an
intial guess to Newton’s method for the system plus the pseudo–arclength
constraint. (Figure 20 (left).) When the solution set is a closed curve, or isola,
as shown on the right in Figure 20, the PSALC algorithm will repeatedly
trace the isola. Usually an upper limit on the arclength is included in the con-
ditions that terminate the algorithm. In higher dimensions we will call this
the self–intersection problem, and it is related to the problem of incompatible
simplices.

Figure 21 shows the effect of adding an additional parameter to PSALC.
The tangent space is no longer one dimensional, and it is possible to make
a step in more than one direction. The continuation algorithm must choose
what direction to step while ensuring that the resulting points sample the
solution manifold uniformly.
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Fig. 20. (left) Pseudo arclength continuation. (right) An isola, which causes pseudo–
arclength continuation to repeatedly trace the same curve. on the solution manifold
M .

.

3.3 Local Analysis.

To build a neighborhood of M at a point u ∈ IRn a local analysis is required.
The operations used by the five algorithms are

• Find a basis for the k dimensional tangent space of M at a point u,
• Project a point from the tangent space onto M ,
• Estimate the size of a ball in the tangent space so that points within the

ball project uniquely onto M .
• Determine if an n dimensional simplex contains a point on a piecewise

linear approximation to M .

Finding a basis for the tangent space.

M is defined by the equation F (u) = 0. If u is a point on M then the tangent
space of M (Fig. 21) at u satisfies:

Fu(u)Φ = 0 or F i
,pΦ

p
j = 0.

ΦT Φ = I

(19)

Finding the tangent space means finding a basis for the nullspace of the Ja-
cobian. At a regular point F i

j is full rank, which is rank n, so the nullspace
is k-dimensional. (Figure 22.) If n is moderately small a singular value de-
composition or QR decomposition might be used. If the problem is large, one
approach is to use the tangent space at a nearby point. This replaces the first
Φ in the normalization, and results in the linear system:Fu(u)

ΦT
0

Φ =

 0

I

 (20)



Higher Dimensional Continuation 23

The columns of Φ0 are the orthonormal basis for the nearby tangent space.
The columns of Φ will not be orthonormal, but Gram–Schmidt can easily
be used to find an orthonormal basis from Φ. This linear system aligns the
new tangent space as much as possible with the old, which will be used in
Rheinboldt’s wrapping algorithm.

u0

Predictor

Corrector

Fig. 21. Pseudo–arclength continuation in higher dimensions by choosing one pa-
rameter and following the corresponding curve on the solution manifold M .

Whichever system is used, any structure in Fu should be exploited. For
example, if F is a two point boundary value problem and collocation is used,
then the collocation points can be eliminated to yield a smaller system.

u
f

f
1

0

Fig. 22. The tangent space of the solution manifold M at u, spanned by the or-
thonormal basis Φ = [φ0, φ1].

Projecting a point in the tangent space onto M .

The projection of a point s ∈ IRk, in the tangent space of M at u0 (with
orthnormal basis Φ0) orthogonal to tangent space is the solution of the system
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F (u) = 0
ΦT (u− u0) = s

(21)

(Figure 23.) If u0 is a regular point of M and s is small enough, the Jacobian
of this system is non-singular. Modified Newton’s method for the nonlinear
system results in linear systems with the same matrix as for the tangent space,
but with different right hand sides.

u

u + Fs

0

u
0

Fig. 23. Projecting a point s onto the solution manifold M orthogonal to the tangent
space at u.

Estimating the size of a ball in the tangent space.

The IFT in finite dimensional spaces is a modified Newton’s method, and
there are bounds on the size of the ball in terms of norms of the Jacobian,
it’s inverse, and Lipschitz bounds on the Jacobian. Experience indicates that
local estimates of these quantities are expensive to compute, and provide a
very conservative radius. Global bounds can sometimes be found, but then
the estimated radius is even more conservative.

A different approach is to impose a maximum number of Newton iterations
required for the projection, and reduce the radius by a fixed factor if the
number exceeds the maximum allowed. This is an estimate that comes after
the fact, and the way we posed the continuation method above requires an
estimate before the projection is done.

Here we present a method from [20] that chooses the radius of the ball so
that the distance from the tangent space to the manifold is roughly constant.
If the rate of convergence of Newton’s method is constant over the manifold
this will be the same as limiting the number of Newton steps.

Using Taylor’s remainder theorem, we have:

|u(s)− u0 − Φs| ≤ 1
2
|ussξξ| (22)

where ξ is some point in the ball ξ ≤ |s|. If a tolorance ε is given on the error,
s must lie in a ball of radius radius of the ball in which the error is less than
that tolerance is
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R(s =
√

ε

2|uss|
(23)

(Figure 24.) The second derivative of u is the solution of the system

Fu(u0)uss = −FuuΦΦ

ΦT uss = 0
(24)

It is therefore possible to find the second derivative (which is a k × k matrix
whose entries are vectors in IRn), and estimate it’s norm.

u

u + Fs

0

u   (s)
0

}
ss

Fig. 24. The curvature of the solution manifold M at u.

Determining whether an n dimensional simplex crosses M .

The mapping F (u) takes a simplicial complex with vertices vi ∈ IRn+k and
assigns new coordinates F (vi). In particular, F maps an n dimensional sim-
plex with vertices in IRn+k into an n dimensional simplex in IRn (provided the
vertices are regular points and the simplices are small enough). (Figure 25.)
If an n dimensional simplex contains a point on the solution manifold, it will
generically be a single point. Using barycentric coordinates α, the system for
the point is

F (
n+k∑

0

αivi) = 0
n−k∑

0

αi = 1. (25)

This is a square system for the unknowns αi, and is a mapping from a reference
simplex in IRn+1 to the simplex with vertices F (vi). In practice a piecewise
linear approximation to F is used. Again using barycentric coordinates, the
approximation within a p–cell is

F (
p∑
0

αivi) ∼
p∑
0

F (vi)αi (26)

This expression only depends on the vertices of the p–cell, so the approxima-
tion is continuous between adjacent simplices. The point where the interpolant
is zero is the solution of the (n + 1)× (n + 1) linear system.
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Fig. 25. The image of an n dimensional face in a simplicial complex under F (with
the mapping applied only to the vertices). This is equivalent to a global piecewise
linear approximation to F over the complex. The question of whether an n dimen-
sional face in a simplical decomposition of IRn+k contains a zero of the interpolant
is whether 0 lies in the image of the face.

∆α ≡


F 0(v0) ... F 0(vn)

...
...

Fn−1(vn) ... Fn−1(vn)
1 ... 1




α0

...
αn−1

αn

 =


0
...
0
1

 (27)

This is one step of Newton’s Method using differences for the Jacobian. If
α0 (for example) is eliminated using the last row, we have that α0 = 1−α1−
...− αn, and the system for the remaining α’s is F 0(v1)− F 0(v0) ... F 0(vn)− F 0(vn)

...
...

Fn−1(vn)− F 0(v0) ... Fn−1(vn)− F 0(vn)


 α0

...
αn

 =

−F j(v0)
...

−F j(vn)

 (28)

3.4 Allgower and Schmidt’s Pattern Algorithm.

This algorithm, described in [3] extends Allgower and Georg’s one dimen-
sional simplicial continuation [1] to arbitrary dimension. It produces a list
of n + k dimensional simplices and points at which which a piecewise linear
approximation to F is zero.

The solution space IRn+k is decomposed as a simplicial complex, using the
Kuhn–Freudenthal triangulation. (Section 2.3.) The initial solution (u0, λ0)
is used to choose the origin z so that the simplex (z, π) with π the identity
permutation contains the initial solution. For example, the expression for the
vertices of the simplex can be used to choose z so that the point with barycen-
tric coordinates (1, ..., 1)/

√
n + k is the initial point. A list of the indices (z, pi)

of the simplices which will be output is kept, starting with the initial simplex.
Iteratively, the n–dimensional of the simplices in the aggregate which lie

on the boundary are tested to find those that cross M (Section 3.3). The



Higher Dimensional Continuation 27

candidate faces are kept in a list, which is updated as simplices are added to
the aggregate. The n–faces of the initial simplex are found by removing all
combinations (without order) of k vertices from the index of the simplex. The
n dimensional simplices that are found to cross M play the role of points on
the boundary. The points on the piecewise linear interpolant can be stored,
but are not needed by the algorithm.

With a simplex that crosses M , all of the n + k dimensional simplices
which have it as a face are checked. Any that are not on the list are added.
This is a process of adding k vertices to the index of the face, with vertices
which lie across any n + k − 1 face that contains the boundary simplex. This
set of simplices is the neighborhood of the boundary. (Figure 26.)

Finally, the list of boundary points is updated, removing those which lie
on an n + k − 1 dimensional face for which both cells on either side of the
face are in the list, and adding those n dimensional faces of the newly added
simplices which lie on n + k − 1 dimensional simplices with only one cell on
the list. Finding the index of the simplex on the opposite side of an n + k− 1
dimensional face is a pivot, and the action of the pivot on the index is known.

3
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Fig. 26. Allgower and Schmidt’s algorithm: A transverse n−k = 1 dimensional face
(edge), shown in red, and the simplices on which it lies. This collection of simplices
is the neighborhood of the transverse face. The merge is easy, since the simplices
are all drawn from a larger simplicial complex.

3.5 Rheinboldt’s Moving Frame Algorithm.

Rheinboldt’s moving frame algorithm [32] represents M as a k dimensional
mesh with vertices on M . Any fixed mesh can be used, but there must be an
ordering on the mesh points si, and a way to find a point sĩ with ĩ < i and
close to si. For a rectangular mesh this is straightforward.

The initial point is s0, which is mapped to the initial point (u0, λ0), and
Φ0 is any orthnormal basis for the null space of the Jacobian at the initial
point. (Figure 27.)

Each mesh point is computed in sequence. At step i, (uĩ, λĩ) is the bound-
ary point.
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The neighborhood of the boundary point isn’t explicitly represented, but
might be defined as the mesh cells with index less than i that include sĩ as a
vertex. The only point without a mapping to M is the point i. The mapped
point (ui, λi) is found by projecting si − sĩ orthogonally onto M using the
tangent space Φĩ. The new tangent space is found by first solving the linear
system

F(u, λ)(ui, λi)Φ̃i = 0

ΦT
ĩ
Φi = I

(29)

and then orthonormalizing Φi.
The merge operation is trivial, it just involves incrementing i.
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Fig. 27. Rheinboldt’s moving frame algorithm using a rectangular mesh. The nat-
ural parameter version of Rheinboldt’s (left), and (right) the solution spaceversion
. The natural order (e.g. left to right, bottom to top) is used on the mesh vertices,
and the continuation advances in the same order. Moves from scan line to scan line
use the point at the beginning of the scan for an initial guess.

3.6 Brodzik’s Tiling Algorithm.

Brodzik and Rheinboldt’s continuation method for 2-manifolds [10], and
Brodzik’s extension to arbitrary dimension [9] represent M as a k-dimensional
Delaunay triangulation with vertices lie on M .

The initial simplicial complex is a reference Delaunay triangulation of a k
dimensional spherical ball. The vertices on M are found by projecting the set
of vertices si onto M using the tangent space at the initial point.

A boundary point is a vertex on any simplex which has a k−1 dimensional
face without two simplices on opposite sides if the face.

The neighborhood is the projection of the vertices of the reference decom-
position of the spherical ball orthogonally onto M , though not all vertices are
projected.
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The difficult step in this algorithm is the merge. The points of the current
Delaunay triangulation which are near to the boundary point are projected
into the tangent space at the new point

s̃j = ΦT
i ((uj , λj)− (ui, λi)) . (30)

The previously computed vertices carry with them part of the entire Delaunay
triangulation. First points from the spherical ball which lie inside this pro-
jected triangulation are discarded. Next points from the sphere that lie too
close to a vertex of the triangulation are also discarded. Finally the remaining
points are projected orthogonally onto M , and the Delaunay triangulation
is updated to include the new vertices. This last step is done in the tan-
gent space, and involves removing some of the cells from the triangulation,
and replacing them with new cells. (Fig. 28.) The extension to an arclength

Too Close

Interior

Incircle!

Triangulation
of Ball

Mi

Ni

ui

Mi+1

Fig. 28. The natural parameter version of Brodzik and Rheinboldt’s algorithm [10]
(and Brodizk’s extension to arbitrary dimension [9]).

continuation is done by projecting the points which are near the boundary
point onto the tangent space at the boundary point, and then proceeding as if
the tangent space coordinates were the parameters in the natural parameter
continuation. (Fig. 29.)
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Fig. 29. The arclength version of Brodzik and Rheinboldt’s algorithm [10] (and
Brodizk’s extension to arbitrary dimension [9]).

3.7 Melville and Mackey’s Tiling Algorithm

Melville and Mackey’s algorithm [29] is strictly two dimensional. M is not
explicitely represented, rather the boundary of the triangulation is represented
as a polygonal curve with vertices on M .

The initial polygon is found using PSALC, starting at the initial solution,
and solving the modified system

F (u, λ) = 0
|u− u0|2|+ |λ− λ0|2 −R2 = 0 (31)

To obtain an initial solution for this system, a homotopy can be done in the
radius R starting at R = 0 when (u0, λ0) is a solution, to the full value of R,
where R is chosen to be roughly the desired resolution of M . With a point
on the intersection of M and the sphere, PSALC can be used to trace the
intersection of M and the sphere clockwise relative to Φ0. The polygon formed
by the computed points is the initial boundary polygon. The tangent space
Φi at each point on the boundary is found as in the moving frame algorithm,
which preserves the orientation of tangent space. (Figure 30.)

With an explicit representation of the boundary, any vertex will serve as
a boundary point.

The neighborhood of the boundary point is a circular disk of radius R,
represented by it’s boundary. Two PSALC’s are done in the tangent space of
the boundary point. The first to the circle, and the second around the circle.

The merge operation starts by projecting the part of the existing boundary
whose vertices are near the boundary point into the tangent space at the
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l1

l 0

M0

u0

N0

Fig. 30. A homotopy in the radius R of the circle about λi for obtaining a starting
point on the boundary of the neighborhood of λi for Melville and Mackey’s boundary
algorithm.

boundary point. This leaves a relatively simple two dimensional problem of
clipping the boundary of the neighborhood against the existing boundary.
(Figures 31 and 32.)

l1

l 0

M0

u0

N0

l1

l 0

u1

N1 l1

l 0

M1

Fig. 31. The natural parameter version of Melville and Mackey’s boundary rep-
resentation algorithm for k = 2. Left to right are shown the initial configuration,
where a continuation has been used around the boundary of the region of interest,
then the construction of a neighborhood by continuing around a circle, and finnaly
the merge.

3.8 The author’s covering algorithm

This algorithm [20] represents the solution manifold M as a union of the
projection of spherical balls. Each ball lives in the tangent space of a point on
M , and is represented by it’s radius Ri, an orthonormal basis for the tangent
space Φi, and a restricted Laguerre–Voronoi polyhedral k–cell Pi.

The initial condition is found by finding Φ0, estimating the size of the ball
(Section 3.3), and setting P0 to a cube slightly larger than the spherical ball.

The boundary point is found by selecting a ball that has a polyhedral ver-
tex which lies outside its spherical ball. If the ratio of the radii of neighboring
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Fig. 32. Melville and Mackey’s boundary representation algorithm for k = 2 and
n = 3.

balls is within
√

2 the origin (the center of the ball) is inside the polyhe-
dron, and a boundary point can be found by finding the intersection of a line
between the origin and the exterior vertex and the sphere.

The neighborhood of the boundary point is the projection of a spherical
ball in the tangent space at the boundary point onto M . The polyhedron for
the boundary point is initialized to a cube centered about the origin.

The merge requires finding neighboring balls, and subtracting complemen-
tary half spaces from their polyhedra. The half spaces are found by projecting
each center into the tangent space of the neighbor, and using a ball of the
same radius, but now in the other tangent space. (Figures 33 and 34.)

M3
u3

l1

l0

M3

N3

u3

l1

l0

M4

l1

l0

Fig. 33. The natural parameter version of the author’s covering algorithm.
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Fig. 34. The author’s covering algorithm in solution space. To update the polyhedra
Pi the centers of neighboring neighborhoods are projected into the tangent space at
ui

4 Example and Comparisons

We have tried to cast each of these algorithms as an iteration of two steps.
If Mi is the part of the manifold that has been computed in i steps, then
Mi+1 is found by first selecting either a point or transverse face ui that lies
on the boundary of Mi, constructing a neighborhood N (ui) of that point, and
merging the neighborhood into Mi to get Mi+1.

The algorithms differ in how they perform these steps, but there are two
challanges which they all must address. All use a simplicial or cellular ap-
proximation to the manifold, and to perform the merge the simplices in the
neighborhood must be compatible with those in Mi (that is, they must either
be disjoint or have an interseection which is a face). Allgower and Schmidt’s
pattern algorithm maintains compatibility by selecting simplices from a de-
composition of the entire region of interest, as does Rheinboldt’s moving frame
algorithm, so that compatibility is guarenteed for these two algorithms unless
the mapping from simplices to M becomes singular. Melville and Mackey do
not attempt to store a representation of Mi, but instead keep it’s boundary
as a set of polygons, and update the boundary. This is limited k = 2, though
in principle a simplicial approximation could be maintained for the bound-
ary in higher dimensions. But in that case the compatibility issue arises again.
Brodzik’s algorithm maintains a Delaunay triangulation on M , and deals with
compatibility by removing points, and recomputing the triangulation locally.



34 Michael E. Henderson

Finally, the author’s algorithm avoids the compatibility issue by representing
Mi as a set of overlapping neighborhoods. Underneath the covers however, is
a type of Voronoi triangulation of Mi which aids in finding boundary points,
and whose dual is a Delaunay triangulation. So it is possible to view the algo-
rithm as having a merge, but by way of a method that isn’t easily described
without the Voronoi cells.

The second challange is to avoid computing part of the manifold more
than once. This means that the boundary must be maintained in some form or
other. In Allgower and Schmidt’s pattern algorithm care is taken not to pivot
to a simplex which is already in Mi. This is done using a clever integer coding
of the simplices, and keeping a coded list of simplices for Mi. Rheinboldt’s
moving frame algorithm does not address the issue, but since there are a
finite number of “boundary” vertices in the reference k dimensional complex,
the algorithm at least terminates and does not cycle. Melville and Mackey
explicitly represent the boundary, and update the boundary of Mi to find the
boundary of Mi+1. Brodzik’s algorithm detects the overlap of simplices, but
simply removes one of the overlapping simplices to leave a gap. THe author’s
algortihm indirectly represents the boundary in terms of polyhedra in the
tangent space, which insure that new points are within a given tolerance of
the boundary.

To illustrate how the various algorithms actually perform, we implemented
all except Brodzik’s, and applied them to the simple example of a sphere:

F (u) = |u|2 − 1 (32)

with n = 3, k = 2.
In this case (k = 2, n = 3) Allgower and Schmidt’s algorithm produces a

decomposition of the sphere, but even though the simplices in IR3 are fairly
uniform, their intersection with the sphere is not, and the method can be
expected to produce small triangles. Fig. 35(upper left).

As described above, for a rectangular mesh, Rheinboldt’s moving frame
algorithm covers parts of the sphere more than once, and although square
cells were used in the k dimensional reference space, the projection to the
sphere results in clustering of vertices near the pole (the initial point and
tangent space define an equator). Fig. 35(upper right).

Melville and Mackey’s algorithm is able to cover the sphere, and to avoid
covering it more than once. The vertices obtained lie on curves on the sphere
which are the intersection of the spherical neighborhood in IR3 that is used to
define a curve about the boundary point. In this case these are circular arcs.
Fig. 35(lower left).

Brodzik’s algorithm not only leaves gaps, but the triangles on the sphere
are of a range of sizes. Fig. 36, from [9].

And the author’s algorithm sucessfully covers the entire sphere, and pro-
duces polygonal Voronoi regions on the sphere. Fig. 35(lower right).

The result of these computations is an approximation to a branched man-
ifold, but no mention has been made yet of how to compute the singular
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Fig. 35. (top right)Allgower and Schmidt’s pattern algorithm with tetrahedra se-
lected from a decomposition of IR3 with 5 ∗ 20 ∗ 20 ∗ 20 = 40000 tetrahedra (the
five tetrahedral decomposition of the cube was used, with eight copies reflected so
that there are no incompatibilities). (top left) Rheinboldt’s moving frame algorithm
with a 50x50 mesh of size 0.1. (lower left) Melville and Mackey’s algorithm, which
produces a set of boundaries (curves) on the sphere, which in this (lower right)
The result of the author’s algorithm with the maximum radius of .1 and tolerance
ε = 0.01. case are circular arcs.

boundary manifolds, or how to move from one branch to another. The author
[21] has a discussion of branch switching for manifolds, and though it is cast
in terms of the author’s algorithm, it could be applied to all of the algorithms
except the pattern algorithm. The idea is that moving from a point on M
to a point projected orthogonal to the tangent space is one step of PSALC.
Therefore singular points may be detected as usual. Branch switching is a
little more complicated. For simplicial continuation each of the n dimensional
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Fig. 36. A figure from [9] showing Brodzik’s algorithm applied to a sphere with a
larger simplex edge than those above. Note that a “gap” is left. The gap is left after
removing incompatible simplices generated by non-local overlaps.

faces of the simplices are checked for point on M , so unless a singular point
lies at a vertex of the complex, there is no difficulty.

How a mathematical object is represented can effect the complexity of an
algorithm. These five algorithms all use different representations of either the
solution manifold or the neighborhood of a boundary point. They draw on
techniques from algebraic topology, computational geometry, linear program-
ming (the algorithm for subtracting a half space from a polyhedron), and
differential geometry. When the results are placed side by side, it can be seen
that all are a variation of constructing an approximately spherical neighbor-
hood of a point (or face) on the boundary, and merging the neighborhood into
the whole.

Lastly, a practical note. Some work has been done on visualizing solution
manifolds [27], but it is still not clear what can be done with a 3–manifold
computed with these algorithms.
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