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Abstract

Compared to conventional SRAM, embedded DRAM
(eDRAM) offers power, bandwidth and density advantages
for the design of large on-chip cache memories. However,
eDRAM suffers from comparatively slower access times
than conventional SRAM arrays.

Data prefetching offers an attractive solution for the la-
tency problem of a large capacity eDRAM cache, by reduc-
ing the average access latency. Moreover, data prefetching
allows better exploitation of the large eDRAM bandwidth
by making efficient use of the wide data accesses.

In this work, we present an exploration of design trade-
offs for the prefetch data cache in the Blue Gene/L® su-
percomputer. We also compare our simulation results to
measurement results on actual Blue Gene systems. These
experiments provide a validation for our modeling environ-
ment. Actual execution time measurements also include any
system effects not modeled in our performance analysis en-
vironment, and confirm the selection of simulation parame-
ters included in the model.

1 Introduction

Future microprocessor designs will require new design
trade-offs to address new constraints on architectures. The
increasing compute power available per chip from the use
of chip multiprocessors is not matched by a commensurate
increase memory bandwidth via off-chip I/O. This may lead
to a potentially unbalanced and inefficient design.

SRAM arrays are conventionally used as on-chip cache
memories to obtain a significant reduction in I/O bandwidth
requirements. However, the use of SRAM arrays is lim-
ited by the comparatively low density, and high power dis-
sipation. SRAM memories are also suffering from manu-
facturability constraints limiting future access speeds due
to device variation limiting the ability to accurately match
FET devices of storage cells [8, 12].

A promising solution to these multiple constraints is the

adoption of embedded DRAM (eDRAM) for high-capacity,
high-density on-chip caches. Embedded DRAM merges
DRAM and logic fabrication technologies to build the fa-
miliar 1T DRAM cell into a logic chip, and offers a signif-
icant increase in memory capacity per given unit area over
SRAM, as well as low power operation and very wide data
ports [13]. However, eDRAM typically will have a higher
access latency than an SRAM-based solution.

Therefore, it was found necessary to deploy a prefetch
scheme to decouple application access latency from
eDRAM access latency, and use the available eDRAM
bandwidth to hide latency.

The Blue Gene/L system is the first high performance
computing system that delivers on the promise of on-chip
eDRAM for increased performance at lower cost. The
Blue Gene/L compute chip [5, 20, 21] has two processor
cores. Each processor core incorporates a first level pri-
vate 32kB instruction cache and a 32kB private data cache.
Misses at the L1 cache level are given to a small private
prefetch cache, acting as the L2 level. Each of the two L2
prefetch caches communicates with the 3rd level on-chip
4MB eDRAM cache, which is shared between the two pro-
cessor complexes on the chip.

The work described here evaluates the prefetch architec-
ture for Blue Gene systems.

Many previous studies have focused on application
traces only and may have neglected the impact of the in-
teraction between application software and operating sys-
tem. In contrast, we study the prefetch behavior for a set
of compute intensive workloads using full system simula-
tion. Specifically, we compare an off-the-shelf Linux sys-
tem modified to execute on Blue Gene/L, and the optimized
CNK [16] microkernel tailored specifically for the execu-
tion of Blue Gene workloads.

Brunheroto et al. [6] presented an initial evaluation of
the prefetch algorithms in this simulation environment.

By comparing our simulation results with measurements
on actual Blue Gene systems, we evaluate simulation accu-
racy and the decisions made in the design process.

The contributions of this paper are: (1) an analysis of
the prefetching potential in supercomputing applications,



(2) an extensive simulation-based design space exploration
of prefetching approaches for an on-chip eDRAM cache,
(3) an analysis of operating-system impact on prefetch ef-
fectiveness, and (4) a validation of simulation results with
hardware measurements on a Blue Gene/L system.

While we do not introduce any new prefetch scheme,
several ideas presented in this work are novel: this is the
first multiprocessor architecture implemented with shared
eDRAM-based on-chip caches, and this is the first work to
embed small private prefetch caches in the memory hierar-
chy to hide the access latency to eDRAM in a multiproces-
sor environment.

This paper is organized as follows: Section 2 describes
the Blue Gene/L memory subsystem and prefetch cache
architecture. Section 3 presents the simulation environ-
ment, our workloads and methodology. Section 4 analyzes
simulation results for modeling the prefetch cache. Sec-
tion 5 validates the simulation results with hardware mea-
surements obtained on a Blue Gene/L system. We discuss
related work in section 6, and draw our conclusions in sec-
tion 7.

2 Blue Gene memory subsystem architecture

Blue Gene/L is a scalable high performance computing
system containing up to 65,536 nodes. Each node con-
sists of a Blue Gene/L Compute chip surrounded by 9 or
18 SDRAM-DDR memory chips, which provide 512 MB
or 1GB of external memory. The Blue Gene/L Compute
(BLC) chip is a System-on-a-Chip built with IBM CMOS
Cu-11 (130 nm) technology. As illustrated in Figure 1,
the BLC chip contains two PowerPC 440 processor cores,
each with a SIMD floating point unit. Each PowerPC 440
core contains a 32kB private L1 I-cache as well as a private
32kB L1 D-cache with 32B cache line size, and interfaces
to a private prefetch L2 cache with 128B buffer line size.
The L2 caches communicate with a shared 4MB L3 on-chip
eDRAM cache with a 128B cache line size. The eDRAM
is configured as two interleaved banks of 2 MB each [17].

The prefetch L2 cache decouples the number and timing
of requests generated by the core from requests to the L3 as
follows: the L2 cache stores wide L3 cache lines, and sat-
isfies multiple narrower L1 requests. This reduces latencies
for L1 requests and also reduces traffic for the L3 cache.

In this configuration, each core uses a prefetch cache,
which serves multiple purposes:

o It stores demand-fetched L3 cache lines as well as pre-
fetched L3 cache lines.

e It detects data streaming behavior.

Note that the prefetch L2 cache implements a line size
corresponding to the eDRAM cache line size at the next
hierarchy level, capturing locality of reference within an
eDRAM line. This decision is key to reducing the num-
ber of eDRAM accesses and allows efficient sharing of the
eDRAM-based L3 cache between two cores.
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Figure 1. Blue Gene/L compute chip.

Comparing the Blue Gene/L memory system design to a
traditional memory system design with an L1 cache and an
SRAM-based L2 cache in terms of complexity, area, and
power/performance, the present design offers several ad-
vantages.

There are several different ways to make this compari-
son:

e Remove the prefetch cache and use the eEDRAM as L2:
while keeping the cache size the same, it has longer
latency. This configuration is part of our simulations
and will be referred to in the rest of the article as the
’no prefetch cache”.

e Keep the L1 SRAM and L3 eDRAM caches, and add
a standard L2 SRAM-based cache, having the same
size (2kB total) as our prefetch cache. Such a small L2
cache would be ineffective. Placing a larger L2 cache
would increase the chip area unacceptably.

e Remove eDRAM L3, use standard SRAM based L2.
To keep the chip area the same, the 4AMB eDRAM
can be replaced by a 1IMB SRAM. In addition, the
eDRAM based solution requires about 4 time less
power compared to a 1/4 sized SRAM based solution.
Power considerations are especially important for em-
bedded systems, and systems of significant scale such
as Blue Gene.

It was a Blue Gene/L project requirement to reuse an
unmodified PowerPC core available as a hard macro. Any
change to the core would have incurred significant cost and
would have delayed introduction of the Blue Gene system.
The PowerPC 440 L1 cache is tightly integrated with the
load-store unit, and any changes to the L1 cache architec-
ture would have required changes to the processor core. In
case of such a change, the entire core design would have
had to be re-timed and re-validated. However, by deploy-
ing an external prefetch cache, the pre-tuned PowerPC 440
hard macro could be placed unmodified and could achieve
peak clock frequency without design rework.

Compared to a hypothetical addition of an internal
prefetch unit to the PowerPC 440 core, the approach of
having an external prefetch cache is advantageous because
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Figure 2. Prefetch cache architecture.

of contention for the L1 data cache port if the single data
cache port would have been shared between the load-store
unit and the internal prefetch unit. To overcome the con-
tention problem, a two-port cache could have been be im-
plemented, but this would have nearly doubled the array
size.

By keeping the prefetched data out of the L1 data cache,
we avoid pollution of the L1 cache from prematurely fetch-
ing data which could potentially displace data still needed
by the processor. This is particularly important for carefully
tuned algorithms that size their working sets to efficiently
exploit the memory subsystem. Extraneous prefetching in
this environment can interfere with the delicate tuning per-
formed to achieve peak performance.

2.1 Prefetch Cache Architecture

Figure 2 illustrates the architecture of the prefetch cache
unit explored in this work and deployed as a L2 data cache
in the Blue Gene/L compute chip. The prefetch cache con-
sists of several components:

e Line buffers provide storage for demand-fetched and
prefetch cache lines from eDRAM;

o A prefetch engine initializes prefetches, predicts the
prefetch address and selects which line buffer to re-
place; and

e A stream detector unit detects reference patterns cor-
responding to data streams.

On each L1 data cache miss, the prefetch cache directory
is checked. If the requested data is already available in the
prefetch cache, it is forwarded to the L1 data cache. For
an L1 cache request which misses in the prefetch L2 cache,
only a quarter of the addressed L3 cache line is fetched from
the L3. Only the portion corresponding to the requested L1
cache line is buffered in the L2 cache (in a portion of one
line buffer dedicated for this) before it is forwarded to the
L1 cache.

We have modeled a number of approaches to detect
streams. An initial set of experiments uses an N-deep his-
tory queue for storing N prefetch cache address tags [18].
We refer to this history queue as the stream detection buffer.

When the processor requests data which miss in the L1
data cache, the prefetch unit records the corresponding L2
address in the stream detection buffer (step 1). If the re-
quested address matches an L2 address already recorded in
the stream detection buffers, but the address tag does not
match, the requested L3 cache line is fetched and stored in
a line buffer (step 2) and a stream is established.

Once a stream is established, the first subsequent access
to data resident in the line buffer triggers a prefetch request
to be issued (step 3). In a prefetch request, one prefetch
line (corresponding in size to four L1 cache lines) is fetched
from the L3 cache and stored in the prefetch cache.

An alternative prefetching approach does not use stream
detection buffers, but instead, issues a fetch request for each
new L2 data cache request which is not satisfied in the
prefetch cache, and also a prefetch request for the next line.
Thus, this approach automatically starts prefetching a data
stream based on only one request. We refer to this approach
as optimistic prefetch stream detection.

The advantage of this approach is the ability to use the
prefetch address tags associated with each line buffer also
as the address tracking method for identifying streams. This
is advantageous because it reduces the number of state bits
which have to be maintained. As the optimistic prefetching
uses a more aggressive prefetch strategy, it issues a higher
number of prefetches to the L3.

The line buffers are managed as a fully associative cache.
Once prefetched, the lines reside in the prefetch cache as
long as no other request evicts or invalidates the entry. In
the described architecture, each established stream uses ef-
fectively at least two entries in the prefetch cache: one entry
to serve requests to the current L3 line, and another one to
store prefetched data from the L3-cache.

Once a data stream has been detected, the condition to
sustain the stream is that the prefetched line correspond-
ing to the next address line has not been displaced by the
time it is requested by the L1 cache. If new streams are de-
tected and referenced more frequently, they will eventually
displace older streams, which are no longer referenced.

We will explore tradeoffs in stream detection architec-
ture, such as maintaining separate stream detection capa-
bilities (stream detector), or using the line buffer tags for
detecting streams (optimistic prefetching). We will also
evaluate the impact of detection logic depth, number of line
buffers, and impact of operating system on prefetch strategy
in the next sections.

3 Methodology

As previously mentioned, we use full system simulation
and two different operating systems to explore the effec-
tiveness of stream prefetching for supercomputer applica-
tions, along with the impact of the operating environment.



Our system simulator is BGLsim [7], a full system sim-
ulator for the Blue Gene/L system based on the Mambo
PowerPC simulator [4]. BGLsim is an architecturally accu-
rate simulator at the instruction-set level. BGLsim exposes
all architected features of the hardware, including proces-
sors, floating-point units, caches, memory, interconnection,
and other supporting devices. The simulator runs unmodi-
fied system and user software, as used on actual Blue Gene
hardware. An architectural simulation at the instruction-set
level is several orders of magnitude faster than VHDL sim-
ulation at the logic design level, allowing exploration of a
large design space with real applications. While the full
system simulator can simulate a multi-node system, in this
work we use it for simulation of a single Blue Gene/L node.

BGLsim can run a range of unmodified codes, from sim-
ple self-contained executables to full Linux images. The
simulator includes interaction mechanisms for inspecting
the entire internal machine state. It allows more flexible and
more detailed instrumentation than what is possible with
real hardware. We have modified the simulator to include
tracing capabilities [15].

In our experiments, we have developed a trace driven
cache model. We use the L1 address miss sequence (con-
taining both application and operating system references)
for a variety of numerically intensive applications, run-
ning under the Blue Gene/L compute node kernel (a single
threaded OS) and Linux. To improve the simulation speed,
we use a separate cache model for the prefetch cache and
the L3 cache level.

We have opted for a multi-module simulation environ-
ment which comprises of two modules: one the full system
simulator with pseudo cycle accuracy that takes binary code
as input, and the other based on traces. The pseudo cycle
accurate simulator provides execution cycle estimates. The
trace simulator is much faster since it does not implement
all the details. This second module is used to do the coarse
design space exploration, yielding design parameters that
we then evaluate in full detail using the first model.

We have opted for a single processor simulation, as hav-
ing multiple processors on a chip do not affect the prefetch
hit rate in any way. The reason for this is that prefetch cache
is private to each processor, an there is no inter-processor
interaction for prefetch cache.

There is a benefit to multi-processor designs due to
the reduction in bandwidth requirements when using the
prefetch cache relative to the L1 cache, which is shown in
the bandwidth reduction study.

The metrics we use to characterize the prefetch cache
performance are prefetch cache hit rate, prefetch cache
miss rate, and the execution time (as predicted by the Blue
Gene/L Pseudo Accurate Timing Model) [1]. The prefetch
hit rate is the fraction of L1 data cache misses that hit in the
prefetch cache divided by the total number of requests to
the prefetch cache. A perfect prefetch scheme would mini-
mize the impact of latency of the L3 cache, i.e., all memory
accesses would be satisfied in the L2 prefetch cache and
would have a prefetch cache hit rate of 100%.

NAS | Instructions | L1 Misses Misses per
1000 instructions
BT | 547,414,050 | 30,788,712 56.24
CG | 349,304,498 | 19,824,670 56.75
FT | 645,116,212 | 37,248,944 57.74
IS 30,697,133 564,715 18.40
LU | 238,891,062 | 10,934,076 45.77
MG | 56,399,797 | 2,897,583 51.38
SP | 273,988,939 | 20,660,969 75.41

Table 1. NAS Benchmarks Characteristics

Splash | Instructions | L1 Misses Misses per
1000 instructions
LU 57,687,452 | 343,118 5.95
FFT | 60,373,803 | 712,177 11.80
Radix | 87,116,807 | 582,659 6.69
Ocean | 30,005,066 | 1,843,293 61.43

Table 2. Splash-2 Benchmarks Characteris-
tics

In case of a prefetch cache miss, we assume in our sim-
ulation model that the subsequent request to the L3 is sat-
isfied with a constant L3 cache latency, while in the actual
hardware the L3 cache latency varies depending on several
factors (e.g. page already open, number of pending load re-
quests). All experiments were done with the L1 cache in
write-back mode.

In our experiments, we use a set of applications from
the publicly available NAS [2] and Splash-2 [23] bench-
mark suites. These are well known benchmarks containing
shared memory applications that have driven much research
into shared memory architectures and cache-coherence pro-
tocols. We have opted to use these publicly available appli-
cations, as they are good representatives of a wide range of
scientific applications. We concentrated our efforts on sci-
entific computing intensive applications, as these were the
target workloads for the Blue Gene system.

Here, we report on all of the NAS class S benchmarks,
and the Splash-2 kernel applications (LU, Radix, FFT), and
the ocean application. For Splash-2, we have used default
settings resulting in a small footprint size.

For each of the benchmarks reported, we have executed
a full application run, and we have collected the entire L1
data miss sequence to determine prefetch opportunities. Ta-
bles 1 and 2 show the benchmarks used, the number of in-
structions executed during the run, the number of L1 data
cache misses in absolute number, and the number of L1 data
cache misses per 1000 instructions which represent the total
prefetch opportunity.

4 Experimentsand Simulation Results

We model the prefetch cache to optimize the prefetch
cache hit rate and execution time. We study the impact of
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several design parameters, and two operating systems.

We first vary the size of the stream detector buffers to
determine the minimum size which yields a good prefetch
cache hit rate. In order to determine how the sizing of the
line buffers influences the prefetch cache hit rate, we vary
the number of line buffers, and we also explore in detail the
impact of using various replacement policies for the line
buffers. In addition, we evaluate the impact of supporting
bi-directional stream detection, which requires more com-
plex hardware implementation, as opposed to prefetching
only in ascending address order. We also analyze the im-
pact of the operating system used. To fully understand the
impact of prefetching on the overall memory subsystem, we
determine the impact of prefetching on the memory band-
width to the shared L3 cache.

In an initial set of experiments, we have tried to isolate
each factor by varying one parameter at a time and setting
the other parameters to a sufficiently large configuration.
We later explore a set of results, which combine the most
realistic (under the design constraints of area, power, design
complexity and so forth) and best performing parameters in
combination.

4.1 Stream Detector Buffers

As previously mentioned, we have explored an approach
to detect access streams using an N-deep history queue for
storing N prefetch cache address tags. In this approach, a
new stream is started only if an L2 cache request hits in the
address history queue, requiring two requests to establish a
data stream.

Figure 3 shows the behavior for a prefetch cache ar-
chitecture with a stream detector mechanism with varying
stream detector sizes ranging from 2 to 32 stream detection
buffers to track address history, maintained in a FIFO or-
ganization, for both NAS and Splash-2 benchmarks. For
this simulation, we use a prefetch cache large enough to not
limit the number of streams which can be established and
maintained.

Figure 3(a) shows that for the NAS benchmark using
stream detector sizes above 16 does not significantly im-
prove the hit rate, except for SP. For SP, adding more stream
detection buffers continues to increase prefetch hit rate, as
more of the distinct data streams referenced by SP can be
kept in the prefetch cache. For most applications, though,
16 stream detection buffers are sufficient to detect all data
streams in the application.

For the Splash-2 benchmark, as shown in Figure 3(b),
the hit rate is not significantly improved for stream detec-
tors having a history queue deeper than 8. For some appli-
cations, like Radix and LU, the spatial locality of data is
very high, so that the size of the stream detector does not
change the prefetch cache hit rate. Based on this, a stream
detector with 16 entries seem to be the best design choice.

4.2 Prefetch Cache Size

In order to determine the optimal number of prefetch
cache line buffers, we have varied their number from 7 to
31 while keeping the stream detector size fixed at 16. We
change the number of line buffers in multiples of eight. One
line buffer is used for buffering the data that are returned
from L3 from demand fetches that are not buffered in L2
(e.g., L2 requests without an established stream), hence the
odd number of line buffers available for stream prefetch.
The results are illustrated in figure 4.

We observed that the effect of increasing the prefetch
cache size on it rate is not linear. Choosing a prefetch cache
size of 7 lines is clearly not exploiting the full prefetch po-
tential, and a cache size of 15 lines is a significantly better
performing design point. For NAS benchmarks, selecting
23 line buffers increases the hit rate across all benchmarks
on average by 2.7%, with the biggest benefit for the SP
benchmark with a hit rate increase of 7%. A configuration
with 31 line buffers only increases the hit rate for the SP
benchmark.

For Splash-2 benchmarks, only the LU application bene-
fits from increasing the number of line buffers to more than
15. The LU and SP applications have more streams, thus
benefiting from a higher number of line buffers. Given
that further increase in line buffers offers only modest
incremental performance gains at significant area cost,
a configuration with 15 line buffers offers an attractive
cost/performance tradeoff.

4.3 Prefetch Cache Replacement Policy

The replacement policy determines how streams are
aged out of the prefetch cache to make room for new
data lines. We have modeled a number of different re-
placement policies including the optimal replacement pol-
icy (one that requires future knowledge, therefore cannot
be implemented in hardware) to show the theoretical upper
bound for the stream detection.

We have explored and evaluated the following prefetch
cache replacement policies:

e round-robin

e random

e least recently used (LRU)

e round-robin skipping most recently used (RRMRU)

e optimal (one that relies on future knowledge)

Whereas round-robin is simple to implement in hard-
ware, this approach has a disadvantage that it can displace
lines from the prefetch cache that have recently issued a
prefetch request to the L3, for which the line is allocated,
but the data is still in-flight from the L3 cache. To avoid this
problem, we have modeled a modification to round-robin



where the three most recent requested lines are skipped
(MRU=3).

Figure 5 presents the effect of varying the replacement
policy on the miss rate for the NAS and Splash-2 bench-
marks, respectively. Across all applications, we can see
that all replacement policies are positioned between the op-
timal replacement policy — which gives the theoretical up-
per bound for line buffer replacement — and the random re-
placement policy. As expected, LRU is the best choice for
majority of applications, but was not chosen in the actual
Blue Gene/L hardware design because of its complex hard-
ware implementation. RRMRU (round-robin with skipping
the three most recently used lines) is as good as or better
than round-robin replacement policy. In addition, this re-
placement policy is as simple to implement in hardware as
round-robin, requiring only addition of two latches per line
buffer to record the MRU status for the last three requests.

4.4 Support for Bidirectional Streams

All results so far assume streams are only accessed in
ascending address order. We have also explored whether
bidirectional stream support (i.e., detecting and prefetching
streams with positive and negative address strides) is bene-
ficial for performance.

To implement bidirectional stream support, each line
buffer stores an additional two bits to record the L1 cache
line address of the first request. For a subsequent request
to this prefetch cache line, the address of the new request
is compared to the saved data, and it is determined if the
new address is descending or ascending compared to the
previous request. This information is stored in a stream di-
rection bit associated with each line buffer. Based on this
information, the next prefetch request is issued to access the
ascending or descending address.

Figure 6 shows the effect of changing from an ascending
stream detector to a bidirectional stream detector, using the
RRMRU replacement algorithm.

One can observe that there is no significant benefit
in using a bidirectional stream detector for these bench-
marks, indicating that there are no significant access pat-
terns with negative strides present in these benchmarks.
Also, scientific workloads in general do not show negative
stride streams. Our model supporting bi-directional strides
achieved minimal performance improvement.

45 Optimistic vs. Stream Detector Buffers

In order to evaluate the efficiency of the stream detection
buffer, we have compared it against the optimistic prefetch-
ing, as described in 2.1. Figure 7(a) compares the miss rates
for the optimistic and stream detector prefetch schemes.
We observed that for some benchmarks (BT, FT and LU)
the optimistic approach yields a lower miss rate, while for
the other benchmarks both approaches present roughly the
same miss rate.
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Figure 6. Bidirectional stream support using
NAS benchmarks.

To gain a better understanding of quantitative advantages
of the stream detection buffer design, we also compare the
execution times for the two prefetching approaches across
the NAS benchmarks. The results are illustrated in Fig-
ure 7(b). We observed that the execution times for both ap-
proaches are remarkably similar across all the applications
of the NAS benchmarks, with the largest difference in the
execution times being 1.8%. The optimistic approach has
shorter execution times for the BT and FT applications, and
stream detection buffer results in better execution time for
the CG application.

As the optimistic prefetching uses a more aggressive
prefetch strategy to increase the hit rate, we expected that
the bandwidth requirements for the L3 will increase for
the optimistic prefetching, as this approach issues a higher
number of prefetches to the L3.

Figure 8 shows the normalized breakdown of L3 ac-
cesses for both prefetch approaches for the NAS benchmark
suite. The choice of optimal prefetch algorithm depends on
the workload. While some workloads (as exemplified by
the FT benchmark) produce fewer accesses with the opti-
mistic prefetcher, other workloads (as exemplified by the
SP application) show a lower number of overall accesses
with the stream detector.

The breakdown of L3 accesses into the categories for
each approach gives more insight into this behavior. We
classify the number of L3 accesses into two broad request
categories, demand requests and prefetch requests. For the
design with stream detection buffers, we classify demand
fetches into two subcategories, a demand request, and a
stream establishing demand request (i.e., a demand request
hitting in the stream detection buffers and thereby causing
a stream to be identified).

As is to be expected, optimistic prefetching initiates a
higher number of L3 prefetch accesses relative to the stream
detector approach. However, the number of demand ac-
cesses is smaller for optimistic prefetching, resulting in a
smaller total number of accesses.
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For the cases where optimistic prefetching achieves a
lower number of accesses, the breakdown of the demand
fetches for the stream detector shows the cause for the
higher number of accesses using the more conservative
stream detection logic: when a stream has not been de-
tected, no buffer is allocated to store a wide L3 line for fu-
ture accesses. As a result, two subsequent demand accesses,
a first demand access to an L3 line, and a second, stream
establishing demand access to the same L3 line, are per-
formed before a stream is established. In comparison, the
optimistic prefetching associates a stream with a demand
buffer immediately and retains the entire L3 cache line for
future accesses, thereby obviating the need for performing
a second access to the same line.
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Figure 9. Normalized execution time for the
optimistic prefetch cache, stream detector
prefetch cache, L2 with disabled prefetching,
and without L2 prefetch cache configurations
across the NAS benchmarks.

4.6 Prefetch Cache Performance Characteristics

In order to evaluate the efficiency of the prefetch cache,
we compare the two prefetch schemes — stream detector
buffer and optimistic prefetching — with application perfor-
mance results obtained when prefetching is disabled, but L2
line buffers are used. We also compare these schemes with
the configuration without L2 prefetch cache.

Figure 9 compares the normalized execution time for
these four approaches. The prefetch cache reduces execu-
tion time for both prefetch methods by 12% on average.
The biggest performance improvement due to the prefetch
cache is achieved for the CG benchmark (22%), whereas for
the LU benchmark the performance improvement is only
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2%.

Simulation results also show a performance benefit when
using prefetching, versus just exploiting multi-line buffers
without the prefetch engine. While multi-line buffers re-
duce execution time on average by about 10%, prefetching
provides an additional 2%-5% performance improvement
across all applications compared to an architecture with line
buffers without prefetching.

The second important aspect is reducing the number
of accesses to the eDRAM, to reduce contention for the
eDRAM cache port by the two L2 prefetch caches, the
network interface and the memory controller. Figure 10
shows the normalized breakdown of eDRAM accesses for
both prefetch approaches, and without L2 prefetch cache
for the NAS benchmark suite. The prefetch cache reduces
the number of eDRAM accesses significantly, on average
by 60% across all NAS benchmarks. This is caused by
the fact that for scientific application most references are
streams, and thus buffering of the eDRAM data in wide
128B prefetch cache lines dramatically reduces the number
of requests needed.

The two prefetch schemes show remarkably similar
characteristics in terms of execution time and eDRAM ac-
cesses. Although the hit rate of the optimistic prefetch
scheme is higher, the overall execution time obtained by
running a pseudo-cycle accurate version of BGLsim (tak-
ing into account the latency to the L3 and the pending re-
quests to the L3) is equivalent to the stream detector buffers
scheme.

4.7 Operating System Impact

Finally, we have explored the impact of using differ-
ent operating systems on prefetch cache performance. We
compare two basic models, representing a full-fledged mul-
tithreaded UNIX operating system (Linux), and a stream-
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Figure 11. Linux page translation and
prefetching

lined single-threaded kernel solution (the compute node
kernel CNK employed in Blue Gene/L [16]).

CNK implements static mapping of virtual address to
physical address. This linear mapping ensures that an appli-
cation’s access patterns in virtual address space are reflected
in the physical address space available to the memory sub-
system.

In comparison, a standard Linux kernel uses a 4kB page
size. As a result of establishing page translations in re-
sponse to demand paging, the kernel will map a contin-
uous virtual address space to discontinuous physical 4kB
pages as illustrated in Figure 11. At each page boundary,
the prefetch engine continues to prefetch from the contigu-
ous physical address which may not match the actual access
pattern in virtual address space. Thus, streams have to be
re-established and bandwidth and access efficiency is lost
at every page transition. Figure 12 compares the impact
of memory allocation policies in Linux and CNK on the
prefetch cache hit rate.

With small pages, the 64-entry TLB of the PowerPC440
processor core cannot contain the entire address space for
memory and I/O devices of a Blue Gene node. Addi-
tional degradation is introduced when TLB entries must be
reloaded. This is particularly expensive in an environment
without hardware-managed TLBs where each TLB miss
will cause an exception to the operating system. This effect
has been mitigated somewhat in more recent versions of the
Linux kernel with the introduction of large page support.

5 Hardware M easurements

The Blue Gene/L compute chip implements a 15 entry
prefetch cache with a choice of both prefetch algorithms
(stream detection and optimistic prefetching).

To verify our simulation results, we have performed
extensive empirical performance analysis of applications.
Here, we report hardware measurement results for the se-
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ized) for the NAS benchmark.

rial NAS benchmarks.

Figure 13 shows the normalized measured execution
times for three configurations implemented in hardware,
and compares the measured execution times to simulated
execution times for each NAS benchmark. The three im-
plemented hardware configurations are the two prefetch
schemes and L2 disabled, in which L2 is bypassed. The
hardware measurements confirm the trends shown by sim-
ulations of a significant improvement in performance due
to the use of the prefetch cache. Both hardware results
and simulation are normalized to itself (e.g., hardware re-
sults are normalized using hardware optimistic prefetch re-
sults, and simulation results are normalized using optimistic
prefetch simulation results) to eliminate systematic devia-
tions between simulator and hardware measurements. This
confirms the relative accuracy of the model to select the op-
timal design point.
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Figure 14. Simulation error against hardware
measurements for the NAS benchmark.

Figure 14 plots the simulation error expressed as a dif-
ference of simulated execution time in cycles and measured
hardware execution time over the corresponding measured
hardware execution time. The simulation results are typ-
ically within 10 to 20% of measurements obtained on the
actual hardware, including all system effects, operating sys-
tem interaction, and so forth. We note that the simulation
results are also conservative in projecting both the baseline
performance, and even more so, in the modeled improve-
ments.

The simulation error compares very favorably to the
only other work published on correlating simulated results
against actual hardware measurements for the FLASH sys-
tem [10]. This confirms the quality of our simulation envi-
ronment, and the decision to go with a full system simulator
for the Blue Gene system.

6 Reated Work

Fetching data from memory before the processor needs
it has been a widely deployed and explored concept. The
underlying idea is to overlap memory access time with com-
putation, and thus to improve processor performance by re-
ducing the number of stall cycles. Ideally, only data which
are needed are prefetched so the data are ready to be used
when the processor needs them. However, by prefetch-
ing too many unneeded data into the data cache, available
memory bandwidth for other participants on the memory
bus is reduced. Moreover the data cache gets polluted as
prefetched data can displace useful data.

All prefetch schemes can be grouped into three prefetch-
ing techniques: hardware prefetching, software prefetch-
ing, and hybrid techniques. Generally, hardware prefetch-
ing techniques do not need modification of existing exe-
cutables — prefetching is completely transparent from the
software point of view — and can be implemented with rel-
atively simple hardware. Software prefetching is generally



based on application properties obtained during compila-
tion time and/or run time. While it requires no hardware
support, the application suffers additional overhead, like
code expansion, runtime cycles paid for executing prefetch-
ing instructions, and increased register usage.

Early work on cache prefetching includes the one-block-
lookahead (OBL) scheme by Smith [22]. This approach ini-
tiates a prefetch for (i4-1)-th block into the data cache when
the i-th block is accessed into the cache. Jouppi [14] ex-
tends this idea by introducing stream buffers external to the
cache to keep prefetched data. Each referenced buffer en-
try is loaded into the cache while the remaining prefetched
blocks are kept in the external buffers.

Palacharla and Kessler [18] propose several improve-
ments to the stream buffers. They have limited the num-
ber of unnecessary prefetches by using a history buffer to
record the most recent primary cache misses and detect
streams. Prefetching is done only for detected streams thus
reducing bandwidth requirements at the expense of the re-
duced stream buffer hit rates.

Hardware-based prefetching techniques require no
changes to existing executables and can be implemented
with relatively simple hardware. However, compared
to software prefetching techniques, sequential hardware
prefetching performs poorly when non-sequential memory
access patterns are encountered.

Gschwind and Pietsch [11] prefetch into stream buffers
under program control. In this approach, prefetch streams
are identified by prefetch register FIFOs, and software can
specify arbitrary stride.

The PowerPC architecture supports data stream
prefetching into the L1 cache with appropriate data stream
touch instructions. However, these approaches require
significant investment by the programmer (or appropriate
compiler support) to specify the streams.

Lee et al. [24] evaluate the performance of several
prefetching cache architectures for multimedia applica-
tions.

Sequential prefetching techniques perform poorly for se-
quences of irregular access patterns, as in pointer chas-
ing, where the code follows a serial chain of loads. The
approach described in [9] uses a pointer cache to assist
prefetching for pointer load sequences.

In prior work, Gibson et al. [10] have evaluated the ef-
fectiveness of the FLASH simulation environment, and cor-
related hardware and simulation results.

Puzak et al. [19] discuss prefetching metrics, and ana-
lyze the potential for prefetching in SPECcpu and OLTP
workloads.

In this work, we concentrate on workloads with estab-
lished regular access patterns in compute intensive applica-
tions with regular memory access patterns.

7 Conclusion

Large capacity eDRAM caches make high bandwidth
access to high capacity on-chip storage a reality by offering

both wide data paths, and high on-chip transfer speeds. In
conjunction with chip-multiprocessor solutions, it is possi-
ble to deliver increased performance at low power and with
reduced bandwidth requirements to off-chip memory.

eDRAM is characterized by low power, high density,
high bandwidth but also high latency. Prefetching funda-
mentally trades off the bandwidth to hide this access la-
tency.

This study presents an exhaustive analysis of design
options for a prefetch cache, designed specifically to in-
terface to a large L3 cache implemented with embedded
DRAM. This study concentrates on the performance of
supercomputer class applications, and considers operating
system impact by comparing different operating systems (a
full-featured Linux and a custom-tailored single-threaded
lightweight kernel specially designed for the Blue Gene/L
supercomputer). We have used full system simulation to
get representative cache miss behavior including OS inter-
action, and used the full L1 miss sequences to explore the
prefetch cache design space.

In architectures where prefetching is implemented
within a cache, careful prefetching is important so as not
to pollute the cache. This equation has changed for the
architectures where prefetch cache lines are outside of the
L1 cache. Using wide prefetch cache lines captures spa-
tial locality present in many applications (and in particular
many HPC workloads), thus exploiting the wide L3 lines of
the eDRAM cache efficiently. The high bandwidth of the
shared eDRAM cache is capable of sustaining both proces-
sors’ memory requests. This enables efficient data stream
prefetching, thereby reducing execution time.

While prefetching is not a complete solution to memory
latency issues, we believe that prefetching combined with
high density on-chip eDRAM-based caches is an important
aspect of a successful solution. While for Blue Gene/L ar-
chitecture the prefetch cache’s size is only 2kB per proces-
sor, it reduces execution time across a wide range of work-
loads by 10% on average.

Our simulation environment could be used to influence
as yet undisclosed future Blue Gene processor designs.
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