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Abstract

Commercial Scale-Out is a new research project at IBM Research. Its main goal is to investigate and
develop technologies for the use of large scale parallelism in commercial applications, eventually leading
to a commercial supercomputer. The project leverages and explores the features of IBM’s BladeCenter
family of products. A significant challenge in using a large cluster of servers is the installation and
provisioning of the base operating system in those servers. Compounding this problem is the issue of
maintenance of the software image in each server after its provisioning. This paper describes the system
we developed to manage the installation, provisioning, and maintenance process for a cluster of blades.
The system leverages the management facilitation features of BladeCenter, and exploits the network
and storage architecture of the Commercial Scale-Out prototype cluster. It uses a single shared root
filesystem image to reduce management complexity, and completely automates the process of bringing a
new blade into the cluster upon its insertion into a BladeCenter chassis.

1 Introduction

As individual servers continue to get less expensive, the number of (physical and virtual) servers used in
a particular environment has grown. The result is more physical and virtual machines to set up, install
and maintain. This is taken to an extreme in IBM Research’s Commercial Scale-Out (CSO) project.
The project focuses on efficiently and effectively deploying hundreds of blade servers to be used as a
commercial supercomputer.

A näıve approach to provisioning a scale-out system leads to management cost that is at least linear
in the number of servers. The cost can be made much worse than linear if each server has its own
configuration. Operating system installation and configuration for a single physical server currently
takes hours to complete if done manually. A number of tools exist to simplify this process, either by
automating the installation process or by cloning a good install. Nevertheless, in standard practice the
time to install and configure a server remains at least linear in the number of servers.

Examples of automating the install process include the PXE protocol [3] developed by Intel to re-
motely install and run computers, Red Hat’s network install process [2], or IBM Director’s Remote
Deployment Manager [1]. Similarly, a known good image can be cloned, using tools such as Norton
Ghost. Both simplify the installation of a blade, but still require the entire image be installed on the
local storage. As a result, each server has its own boot image, which has to be patched and updated
separately, or reinstalled. Additionally, the individual images may diverge as users change settings on
the servers.

There are also tools for managing the provisioning of nodes in supercomputers, such as the system
management tools for Blue Gene [4], the tools packages [12] developed by national labs for large Linux
clusters, and the single disk design [8] at Los Alamos.

One of our goals in the Commercial Scale-Out project was to develop “lights out” provisioning of
physical servers with assurance that the configuration of all the servers remained homogeneous. As such,
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3 The Provisioning Solution for CSO

In the Commercial Scale Out project, we developed an automated approach to provisioning our physical
servers with the necessary software stack. This approach is based on three design points: (1) make
virtualization pervasive on the blades (2) share a single read-only root filesystem across each Dom0 (3)
exploit the remote control features of BladeCenter.

This section describes the solution we implemented for provisioning physical blades in the CSO cluster.
We discuss the firmware we flash on the blades, and describe the approach we took to provide a single
root file system image to all the blades, thus guaranteeing homogeneity. We also discuss how we used
features of the BladeCenter management module to exercise blade control. We then describe the process
we follow to boot a blade. We explain how we put all the components together in order to completely
automate an installation of a new blade, and we also discuss how we handle error conditions.

3.1 Pervasive Virtualization

One of the key elements of our automation strategy is to ensure that each blade has a virtualization
stack on it. Because we are provisioning blades that may have just had their shrinkwrap removed, our
provisioning process must be able to remove the default hypervisor that ships on the JS21 blades and
replace it with the combination of a lightweight firmware called SLOF and the PowerPC port of the Xen
hypervisor.

Slimline Open Firmware, or SLOF, is boot firmware for PowerPC machines that implements the
IEEE-1275 (Open Firmware) standard. It provides a machine-independent BIOS that is sufficient to
allow Xen or Linux to boot and take over a machine.

JS21 blades ship with a dedicated hypervisor that implements a subset of the PAPR standard sufficient
to allow AIX to run in supervisor mode. Because we want a full hypervisor, we need to remove this default
firmware and allow Xen to run with the machine in hypervisor mode. Because we need to do this in
an automated and reactive fashion, we developed a procedure that netboots a custom Linux kernel on a
blade in response to a new blade being inserted or upon detection of a revert from SLOF in the temporary
firmware bank to the failsafe hypervisor in the permanent firmware bank. This custom Linux flashes
SLOF into the temporary bank, marks the temporary bank as active, and reboots the machine. Upon
reboot, SLOF will run and will netboot a Xen image, at which point the machine will be running with
a full hypervisor.

3.2 Single Root File System Image

The cluster management tools for the virtual machines require a certain software stack on the physical
machines. Other than the tools for managing the virtual machines, we run very little software on the
Dom0. The stack includes only a small set of utilities that need to be run on the Dom0, allowing us
greater control of the system image. In order to keep all the blades identical, we operate with a single
root file system image maintained on a logical disk (LUN), accessible to the blades through a storage
area network (SAN). All of the blades mount the same LUN as their read-only root device, and use
ramfs devices for directories that must be writable for correct operation, as shown in Figure 2. With this
design, all the blades tend to behave identically, and when a blade is rebooted it is virtually guaranteed
to come up in a known good state. The directory hierarchy is shown in Figure 2.

However, some data needs to be persistent across reboots, and we use the GPFS network file sys-
tem [11] for this. GPFS uses SAN storage and allows all blades in a cluster to directly communicate with
the logical drives on the SAN. We take advantage of recent modifications to GPFS that enable stateless
operation. At boot time, the blade connects to the primary node of the cluster and determines if it is
already in the cluster. If it is not in the cluster, it adds itself. The blade then gets its configuration data
from the primary node and starts up the GPFS filesystem.

We use the filesystem for cluster wide data, as well as blade-specific data when needed. For instance,
all blades have a unique /opt directory. This directory exists on the GPFS filesystem, identified by
hostname. At boot time, the blade remounts the appropriate directory at /opt. If the appropriate
directory does not exist, a golden version is copied. In this way we can also refresh a blade by deleting
its blade specific directory and rebooting.

3



/ --> Read Only Root FS
bin/
etc/
gpfs1xen/ --> Shared GPFS network storage

home/
blade_opt_dirs/

home/ --> /gpfs1xen/home
...
mnt/ --> RAMFS (for the creation of specific mount points)
opt/ --> /gpfs1xen/blade_opt_dirs/hostname (blade specific)
opt2 (non-blade specific version of /opt)
tmp/ --> RAMFS
var/

adm/
ras/

mmfs/ --> RAMFS
lib/ --> RAMFS
lock/ --> RAMFS
log/ --> RAMFS
mmfs/ --> RAMFS
run/ --> RAMFS
tmp/ --> RAMFS

Figure 2: Directory Structure for the Shared Read-Only Root FS.

3.3 Blade Control

The BladeCenter chassis comes with a management module (MM) [6] to control the blades. The man-
agement module is normally accessed through a web interface, and can be used to detect installed blades,
power the blades on or off, and provide a remote console. The management module also has two other
interfaces: the MMcli [10], and the MPcli [9]. The MMcli is a telnet interface to the management module
and the MPcli is a program that can directly communicate with the MM’s service processor, and through
it to the service processor on all the blades. We exploit the functionality of the MMcli and the MPcli for
the following:

• Power control: Power on, power off, power cycle a blade

• Determine the current power state of a blade

• Detect the architecture of a blade (PowerPC or x86)

• Read and change the boot device order for the blade

• Read the MAC addresses of the network adapters

The BladeCenter management module also supports SNMP in addition to the MMcli and MPcli
access. Specifically, it supports sending SNMP traps on certain events, such as a change in the power
state of a blade, or the insertion of a blade. The management module can be configured to send SNMP
traps to any remote servers, and we configured the chassis to send the traps to our management software
in order to initiate the provisioning process automatically upon blade insertion.

Additionally, we can control other aspects of the blade’s behavior from the network infrastructure,
through DHCP and TFTP, as well as directly through SSH access. If a blade is up and operational, we
can ssh into the blade and execute commands. We use this to check that a blade is functioning properly,
as well as to safely power the blade off.

3.4 DHCP and Boot Image Control

Once a blade has been set to network boot (either netboot or pxeboot), the blade will interact with the
DHCP and TFTP servers to get an image to boot. The blade will send a request to the DHCP server,
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which will return an IP address for the blade, and a file to download from the TFTP server. The blade
will download the file and attempt to run it.

The DHCP server is controlled through the /etc/dhcpd.conf file on the server. The file specifies
how to assign IP addresses when requests come in. Two pieces of functionality are particularly useful to
us: the ability to identify hosts by MAC address, and the ability to specify a boot file for the host to
use. A host entry can be created for a particular host, identified by its MAC address, and assigned a
location specific IP address. The host entry can then specify the IP address, the TFTP server, the file
to download from the TFTP server, and the hostname the blade should use.

We developed a set of tools to automate inserting and updating host entries in the dhcpd.conf file.
The tools parse the existing dhcpd.conf file, update or add the specific information, write it back out,
and restart the server.

The dhcpd.conf file specifies the file that should be used as the boot image for each host. However,
we would prefer to avoid rewriting the dhcpd.conf file and restarting the dhcpd server when possible.
Therefore, instead of directly storing the boot file name in the dhcpd.conf file, we instead store a host
specific filename, and make that a symbolic link to the boot image. In this scheme, to change the boot
image for a blade we only need to rewrite the symbolic link. The symbolic link is easily changed, and we
have developed tools to automatically do that.

Our tools, developed to provide all of the functionality discussed in this section, are implemented as
a set of Python scripts. The scripts provide a seamless mechanism for exploiting the functionality and
implementing more complicated use cases that exploit multiple resources.

3.5 Bring Up – Putting It All Together

In the previous section we described a set of functionality we have exposed to control the blades in the
BladeCenter chassis. We now describe how to combine the use of those tools to completely automate the
installation of a new blade, and to very easily reboot and update a large number of blades.

When a blade is added to the cluster it needs to be identified and provisioned with the appropriate
firmware and booted with Xen and a Linux Dom0. Once a blade has been booted into Xen with access
to the same shared storage as other blades, higher-level management software can provision and deploy
the worker domains (called DomU’s in Xen nomenclature) across the cluster. In order to provision and
boot the blade we need to:

• Add the blade to the DHCP server

• Update the firmware on the blade to SLOF

• Boot the blade into Xen

We accomplish each of those tasks using the control tools described in the previous section.
The first step is to add the blade to dhcpd.conf so that it has a proper IP address, hostname, and

boot file name. We use our tools that exploit the MPcli interface to query the BladeCenter MM for
the MAC addresses for the blade. Once we have the MAC address of each of the two network adapters
on a JS21, the tool creates two new host entries for the blades (one for each subnet) using the MAC
address and specifying the IP address, hostname, and boot file for the host, updates /etc/dhcpd.conf,
and restarts the dhcpd server.

With the blade having an appropriate host entry in dhcpd.conf, we next need to update the firmware
on the blade to SLOF. We do this by netbooting the blade to a Linux image that runs the firmware update
program and reboots or powers itself off. The blade has a host entry in dhcpd.conf that specifies a boot
file. We create a symbolic link with the name of the boot file. The symbolic link points to the Linux
image that updates the firmware. We then use the MPcli tools to make sure the blade is set to netboot
as its first boot option, and set it to be the first option if it is not. The tools then power on the blade.
When the blade powers up, it will download the firmware update Linux image and run it. When it is
done, the blade will power itself off. The tools will detect that the blade has been powered off, and will
know that the firmware has been flashed.

The last step in bringing up a new blade, is to boot it into Xen with a Linux Dom0. All that is needed
is to update the symbolic link for the blade to point to the Xen boot image, and power on the blade.
However, when the blade boots, it will want to join a GPFS cluster and mount host specific directories,
even though the host is not part of any cluster, and the host specific directories do not exist. At boot
time, the startup scripts check for these conditions and address them. The first time a blade is booted,
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it will detect that it is not part of the GPFS cluster. It will use ssh to connect to the primary node of
the cluster, and add itself to the cluster. The blade will also detect that the blade specific directories do
not exist. It will make a copy of golden directories for its own use.

3.6 Error Detection

There are many steps in the provisioning and booting of a new blade. Sometimes an error occurs, and
the process does not go to completion. In a large cluster of servers, the probability of having a blade fail
to boot increases and can become significant. Therefore, it is important to detect when an error occurs,
and take appropriate action.

When a blade is booted, the management software tries to access the blade using ssh. If, after some
period of time, the management software is unable to log into the blade, the blade is considered to have
failed. Additionally, if the management software is able to log into the blade, it can perform tests to verify
that GPFS and Xen are operating correctly. We have not developed a test for Xen yet, but it should be
straightforward to develop. If the management software detects a failed boot, it first logs the failure. It
then tries to reinstall the blade. It will re-update dhcpd.conf, re-burn the firmware, and reboot into Xen
again. The software can be configured to attempt the re-installation multiple times. This process should
handle the majority of soft errors in the system. However, sometimes there will be hard errors with a
blade. In that case the software logs a critical failure, and will make appropriate notifications for human
intervention.

4 Benchmarking

Our server provisioning system dramatically simplifies the installation and management of servers in
our cluster. This simplification results in decreased total time to provision a blade, and decreased
management time. This can be shown through two of the more common use cases: the re-provisioning
of a large set of servers, and the first time installation of a server.

4.1 Re-provisioning a set of servers

In normal use, all the blades in the cluster will be running Xen with a Linux Dom0. However, sometimes
the servers will be used to run only Linux, or some other use, possibly booting from the local disk.
Therefore, it is desirable to quickly and easily switch a large set of servers to the desired Xen with Linux
Dom0 environment. Additionally, on occasion the boot image or root filesystem will need to be updated,
and we will want to reboot all the servers after making the change to make sure they are running the
most current images.

We have automated this scenario to allow the rebooting of large numbers of servers at the same time,
and verifying that they are all configured properly. Given a list of servers, our tool will perform all the
required steps automatically. For 45 blade servers installed in 5 BladeCenter chassis, we only required
5 minutes to re-provision all 45 blade servers, with the dominant portion of the time being the time for
the kernel to boot.

4.2 Automatic provisioning of a new server

The other common use case mentioned above, is the initial provisioning of a server. Normally this
would require installing the blade, and a number of manual steps to update the firmware and install the
hypervisor and stock operating system.

With our tool, the provisioning of a new server is completely automated, requiring no human in-
tervention beyond inserting the new blade server into the chassis. Once the blade is inserted into the
chassis, the chassis notifies the provisioning software, and the provisioning process begins. In our lab,
after inserting a new blade into the chassis, 6 minutes later the blade had been configured and booted
in the correct environment, ready to accept work from the higher level management tools.
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5 Continuing Work

This work is part of an ongoing project at IBM Research. As such, we are continuing to add features
and abilities to the system. There are a number of things that we intend to do in the coming year:

• Currently, the root filesystem is maintained on the SAN for performance reasons. However, we are
attempting to shrink the root filesystem as much as possible. If we can get it acceptably small, we
will run the entire root filesystem from an initial ramfs root mount.

• Redirect all logging to the management server. This will allow us to have in depth logging infor-
mation across reboots of blades, without having persistent storage on the blades.

• Support x86 blades and PPC blades in the same system. We can detect the architecture of the
blade, and determine the proper course of action based on that state.

• Better integrate with higher level management tools. The higher level tools need to know when a
blade is available. The blade should automatically announce itself to the higher level tools once
it is installed. Also, the higher level management tools need to be able make provisioning and
management decisions such as reboot, update, and migration based on such event notifications
through this work.

• Automatically configure the fiber channel settings for the blade.

These will take us even further towards our goal of “lights out” management and operation.

6 Conclusions

Scale out computing (i.e., clusters of relatively simple machines) is an attractive approach to deploying
large amounts of computing power at a low cost. In the Commercial Scale Out project, we are investi-
gating technologies to make scale out particularly attractive to commercial computing. One of the big
challenges in adoption of scale out computing is the difficulty in managing clusters of ever increasing size.

For that purpose, we have developed a provisioning infrastructure that can quickly add servers to an
existing cluster, as well as restart the operation of those servers already in the cluster. The approach is
based on two premises: (1) all servers use the same root file system in their controlling (Dom0) partition
and (2) BladeCenter provides a management module function.

Using the same root file system in all servers guarantees homogeneity, which greatly simplifies man-
agement and operation. Since the same root is shared by all servers, it is kept read-only. Blade private
and modifiable data is stored either in a RAM file system (ramfs) or in a GPFS file system. We can
easily “clean up” a blade an return it to a pristine condition with a reboot.

The management module of BladeCenter allows us to perform remote control of the servers. It is
easy to detect when a new blade is inserted, and through the management module we can perform the
various steps required to provision that blade and bring it to the cluster of active servers.

We have verified that our approach is scalable, as the difference in time between restarting 1 blade
and restarting 45 blades is only from 3 minutes to 5 minutes. Also, it only takes 6 minutes to install a
new blade.

We will continue this work, implementing more functionality until we can achieve a true “lights out”
operation and management of a large farm of blades. We believe this is an important step in achieving
thorough acceptance of scale out solutions for commercial computing.
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