
RC24158 (W0701-108) January 24, 2007
Computer Science

IBM Research Report

Waypointing and Social Tagging to
Support Program Navigation

Margaret-Anne Storey*, Li-Te Cheng, Ian Bull*, Peter Rigby*
IBM Research Division

One Rogers Street
Cambridge, MA 02142

*Department of Computer Science
University of Victoria

Canada

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Waypointing and Social Tagging to
Support Program Navigation

Abstract
As the “software space” of source code, documentation,
models, and other programming artifacts continue to
grow in size and complexity, programmers face the
challenge of navigating this space, as well as
documenting and sharing their journeys for other
developers and future successors. Current navigational
structures are either closely tied to the semantics of the
software or are constructed in a constrained top-down
fashion to match the architecture or requirements of
the system. In this paper, we introduce the notion of
combining waypoints from geographical positioning and
social tagging from shared bookmark systems to allow

programmers to create shared, tagged points in
software space. We report preliminary progress on our
prototype (tagSEA), and discuss our future plans.

Keywords
Software development, navigation, social tagging.

ACM Classification Keywords
H.5.3 [Group and Organization Interfaces].

Introduction
Navigation is a key activity in software development.
Integrated development environments (IDEs), such as
Visual Studio, NetBeans, and Eclipse, provide a wide
variety of mechanisms to support navigation through a
software system. These locomotional structures
include tree-based resource views, model element
views, tabbed views, cross referenced hyperlinks,
browser support, and search facilities. These features
support navigation through source code relationships
and artifacts. Software documentation in the form of
inline comments and Javadocs closely mirror the
modular structure of the software and support
navigation through searching and hypertext. Higher
level design documentation is intended to provide
navigational hooks into where engineering concerns
and concepts from the problem domain are
implemented. Such documentation styles tend to be

Copyright is held by the author/owner(s).

CHI 2006, April 22–28, 2006, Montréal, Québec, Canada.

ACM 1-59593-298-4/06/0004.

Margaret-Anne Storey

Dept. of Computer Science

University of Victoria, Canada

mstorey@uvic.ca

Li-Te Cheng

Collaborative User Experience

IBM Watson Research, Cambridge

li-te_cheng@us.ibm.com

Ian Bull

Dept. of Computer Science

University of Victoria, Canada

irbull@uvic.ca

Peter Rigby

Dept. of Computer Science

University of Victoria, Canada

pcr@uvic.ca

constructed in a top-down manner and quickly become
out of date as the software evolves.

Many IDEs support a variety of annotation mechanisms
to help the programmer form their own locomotional
structures over the software space. The programmer
can bookmark and tag parts of the code to indicate
locations for future navigation or to indicate tasks such
as “TODO”. Our preliminary research has indicated that
bookmarks and tasks tend to be underused by
programmers. The bookmark metaphor emerged from
the notion of bookmarking pages in a sequential one
dimensional document or book. However, software is
multi-dimensional and there are many concerns beyond
programming issues that are relevant when tagging
code. Bookmarks lack meta-data which impede how
they can be grouped, filtered and searched. Moreover,
bookmarks tend to quickly get out of date as they lack
the notion of decay. Tasks are used more frequently
but they are difficult to search and organize due to a
lack of metadata. In most IDEs, bookmarks and task
tags are not anchored to the source code, and hence
cannot easily be shared across teams of programmers.
Bookmarks are also notoriously difficult to manage [2].
The best that can be supported in web
browsers is to impose a hierarchical
decomposition on them. Such a view
shows only one dimension of the software.

Another drawback with current
documentation and annotation mechanisms
in IDEs is that they poorly document
lightweight concepts that crosscut multiple
software artifacts. Moreover, it is very
cumbersome to document repetitive
software engineering tasks that require

navigation to different areas of the code.

In this paper, we borrow a metaphor from the discipline
of wayfinding in physical spaces called waypoints, and
combine it with the notion of social tagging, to address
some of the limitations of current navigation and
documentation techniques. Our goal is to investigate if
the concept of waypoints, when combined with social
tagging, can suggest a new interface in the IDE to
support efficient shared navigation and active
documentation of the source code and related artifacts.

Background
Waypoints are used by geographical positioning
systems (GPS) to save locations of interest [5].
Geographical locations may include checkpoints on a
route or a significant ground feature to be avoided.
Waypoints can be specified by manually entering
latitude and longitude (and optionally altitude)
coordinates or they can be saved as the user passes
close by a landmark or point of interest. Waypoints can
be referenced according to distance and bearing to a
previously saved waypoint, and they can be shared
across users and applications. Waypoints are often

gathered within routes (see Fig.1). A
route provides a path from one point to
another together with inter-mediate
destinations (waypoints). When saving a
route, the user can omit “wrong turns”
or inefficient steps. Waypoints can be
clustered into sets according to some
attribute or concern e.g. favorable
anchoring locations. The GPS can be
used to reveal waypoints that are close
by (e.g. good restaurants). These are
recommendations based on proximity Figure 1: GPS waypoints

and customer ratings.

Social tagging, also known as social bookmarking,
enables users to create shared bookmarks to online
resources with additional metadata beyond the site
location. Social tagging websites such as flickr.com
and del.icio.us are used to “tag” images and share
bookmarks respectively by a large user community.
A tag is a one-word descriptor or term to describe the
image or bookmark. The advantages of these social
tagging systems is that the user is free to choose any
descriptive terms and is not restricted by a
preconceived vocabulary, taxonomy or ontology. This
bottom-up approach results in semi-structured
information spaces that are often referred to as “social
classifications” [3]. This differs significantly from the
knowledge engineering and semantic web communities
that advocate having shared ontologies of well-defined
terms and structures to enable machine computation.
Although social tagging may seem to undermine the
more formal approach to knowledge modelling, tagging
is now accepted as a complementary mechanism to the
highly structured top-down approach. For example,
Amazon has an ontology underlying its structured
information space, but is now exploring how consumers
can augment this structured information space with
their own user-defined tags [10].

Tagging is not a new concept to software engineering.
Tags have been used for decades for annotating check-
in and branching events in software version control
systems. This use of tags is for identifying version
control transactions rather than for tagging within the
source code and documentation. There are also some
online projects that use tags at the software component
level. Swik (swik.net) and O'Reilly's CodeZoo

(www.codezoo.com) are two website examples that
house socially shared tags about software systems and
components. However, the tags are not directly tied to
the code or documentation.

Several researchers are also investigating how
recommenders can be used to improve navigation.
Robillard’s concern graphs allow the user to explicitly
create navigational structures over source code [8]. He
proposes using semantic analysis to automate or
recommend the assignment of artifacts to concerns.
The NavTracks tool provides a list of recommended files
to support navigation [9]. Recommendations are
determined based on previous navigation history. The
Mylar tool builds a degree of interest model that is
task-based to reveal or prune elements that are or are
not related to the current task [4]. Early feedback is
positive and indicates that the approach reduces
information overload when working on large systems.
However, it does require that the user declare when
they are working on certain tasks. Teamtracks also
uses the notion of collaborative filtering to prune/
emphasize elements in the view that are of less/more
interest based on team navigation actions [1]. Although
not implemented for software systems, the notion of
shared sequences of bookmarks with metadata has
been developed for web pages and documents [7].

Using waypoints and social tagging to
navigate in software space
We are investigating if combining waypointing and
social tagging is a useful metaphor to support
navigation in the software space of source code and
related artifacts. In software space, waypoints may be
locations of software model elements (e.g. class,
method, package, file, function), or they may be a

location that corresponds to a file name and line
number for any type of file or for any version of a file.
Waypoints are indexed through a set of tags supplied
by the programmers. In addition to the tag terms, the
meta-data captured or explicitly entered may include
the version number of the software, creation date of
the waypoint, author, related bugs etc. Also a “decay
date” can be added to the metadata to indicate it
should decay after a fixed time period or when some
event occurs e.g. a bug report is closed.

In order to explore some of the ideas discussed thus
far, we have implemented a simple plug-in for the
Eclipse Java IDE (www.eclipse.org). This plug-in, called
“tagSEA” (Tags for Software Engineering Activities),
allows the user to create implicit waypoints by tagging
model elements in the source code. Figure 2 shows a
view of this early prototype. Users can create tagged
waypoints in their code
either through entering
Javadoc tags or inline
comments (see Fig. 2 A).
Tags are identified by
preceding them with
“@tag”. Individual tags
are delimited by spaces,
or they may consist of
multiple words by placing
the string in quotes.
tagSEA provides auto-
completion support for
entering tags based on
previously defined tags.

tagSEA also includes the
Waypoints Viewer (see

Fig. 2 B). Selecting one or more tags listed on the left
column of this viewer reveals the software model
elements, their locations, and annotations, that have
been waypointed in the right side of the viewer.
Clicking on the waypoint entries on the right side of the
viewer opens the associated file editor, positions the
editor at the appropriate location, and highlights the
waypointed software model element. Thus,
programmers can use the Waypoints Viewer to
navigate to places of interest in the software. Tags can
also be added through the Bookmark feature.
Bookmark tags are not saved with the source code and
are stored only in the metadata of the workspace thus
facilitating private tags.

Tag spaces are often criticized for producing flat
structures [3]. However, there are reports of users
using their own conventions to encode hierarchical

relationships across tags.
We believe that
programmers may be
more comfortable adopting
a hierarchical syntax given
their experience with
formal languages and
abstractions. The user can
specify the following
hierarchical tag: “@tag
bug(390)” in the Javadoc
comments. This indicates
that there is a “bug” tag,
with bug subtypes
specified by the parameter
in brackets. The hierarchy
of tags is displayed using a
tree at the top of the Figure 2: TagSEA prototype integrated in an IDE

A

B

C

Waypoint Viewer (Fig. 2 C). The hierarchical feature
can also be used to indicate groupings in addition to
“is-a” relationships. The user can further specify or
alter hierarchical relationships by relocating tags within
the tag hierarchy tree. We are investigating ways to
maintain changes to tags and documentation. When
tags are renamed, the associated instances throughout
the software will be updated.

Our prototype is preliminary. In particular, we need to
add facilities for capturing and entering more metadata.
We are also interested in providing flexible mechanisms
for filtering and searching for waypoints, as well as
support for adding routes and sets of waypoints. We
plan to explore how Mylar, a degree of interest model
for Eclipse, can be used for filtering waypoints for large
systems [4]. A degree of interest model will provide
the notion of distance which is crucial to the concept of
waypoints. There are many notions of distance which
can capture the user’s interest model in addition to the
semantics of the software model.

In GPS applications, waypoints are neither dependent
on nor tied to any one application. They can be shared
across users and applications. Similarly we assume
the same benefits could be realized for waypoints in
software spaces when the semantics of the referenced
locations are shared across applications. Moreover, by
using tagging to specify waypoints, we can also
investigate how social tagging can be used to share and
exploit tagging vocabularies and taxonomies, while also
increasing awareness of development activities beyond
the confines of the IDE. To facilitate this line of inquiry,
we plan to integrate tagSEA with Dogear, an enterprise
social bookmarking tool [6].

The tagSEA prototype only provides a list and tree
based interface to manage tag and waypoint
information. We are planning to experiment with
visualizations such as the “tag clouds” popularized by
social tagging sites such as flickr and del.icio.us to
provide alternative user interfaces.

Discussion
We believe that waypoints can be used as a sharable
set of points related to some goal, task or software
concern. By using other metadata captured with the
waypoints, more views of the body of software can be
generated for specific tasks (e.g. highlighting areas
tagged with contentious bugs).

Waypoints can be stored in a sequence or route to
indicate an order relationship between them – a useful
facility for documenting a series of steps in a software
development workflow. This can be useful for a
software inspection or code review, as well as a step-
by-step guide for newcomers to demonstrate how a
feature is to be implemented using a software library or
framework. Since the waypoints and tags are shared,
the user need not follow a single path prescribed by
one authority. Instead, the user can build a
personalized route by combining paths from different
experts based on the tag metadata. For example, a
student programmer might initially follow the first few
waypoints in a route constructed by an instructor, and
then diverge to follow the steps taken by a peer.

A key issue is whether programmers will adopt
waypointing as part of their regular coding work. And if
waypointing is adopted, there is the issue of managing
a growing and aging body of waypoints. Also the
assumption behind social tagging systems is that there

is a community of users that will mutually benefit from
tagging. In the case of a software development team,
it is not clear if there is enough of a sense of
community to provide the benefits of social tagging.

Another issue that always arises when a new style of
documentation is proposed is how to deal with legacy
code. Since this is a lightweight approach there is not
an explicit requirement to tag legacy software.
However, it may be advantageous to develop some tool
support to help the user semi-automatically tag legacy
code. We have experimented with this idea briefly by
analyzing existing comments and extracting the most
popular keywords as potential candidates for tags.
The extracted tags are then presented to the user as
candidate tags within a Tag cloud view.

We have already begun to experiment with tagSEA
within a small group of programmers. Preliminary
feedback is very encouraging. One developer reported
tagging as he was integrating two unfamiliar systems.
The lightweight mechanism allowed him to temporarily
tag areas of the code he was changing as he was
experimenting with the unfamiliar code. He also
reported using tagging to indicate areas that he
updated to fix bugs that were in another project. The
tagging feature was a useful mechanism to document
these changes for future navigation. The alternative
solution would have been to submit the code to a
version control system, run a difference tool to list the
results and navigate to each one at a time by searching
through the workspace. Our goal now is to deploy it to
a wider group of developers. To develop a further
understanding of how waypoints will be used and
shared, we will instrument the plug-in to gather usage
data. We will also investigate how tags are used when

compared with top-down approaches. Finally, we are
interested in exploring if the metaphor of waypoints has
application beyond software development.

Citations
[1] Deline, R., Czerwinski, M. & Robertson, G.G.
(2005). Easing Program Comprehension by Sharing
Navigation Data. In Proceedings of Visual Languages
and Human-Centered Computing, VL/HCC 2005.

[2] Jones, W., Bruce, H., and Dumais, S. 2001.
Keeping found things found on the web. In Proceedings
of the Tenth international Conference on information
and Knowledge Management, Atlanta, USA, 2001.

[3] Hammond, T., T. Hannay, B. Lund, and J. Scott,
“Social Bookmarking Tools: A General Review”, D-Lib
Magazine, Volume 11 Number 4, April 2005.

[4] Kersten, M. and G. Murphy, "Mylar: A degree-of-
interest model for IDEs," Proceedings of Aspect
Oriented Software Development, Chicago, IL, 2005.

[5] Larkin, F.J., Basic Coastal Navigation: An
Introduction to Piloting, 1999. ISBN 1-57409-052-6

[6] Millen, D., J. Feinberg, and B. Kerr, “Social
Bookmarking in the Enterprise”, ACM Queue, vol 3, no.
9 - November 2005.

[7] Paul Moody, WebPath: Sharable Personalized
Guided Web Tours, IBM Research (Cambridge),
Technical Report 98-09 (1998)

[8] Robillard, M.P. and G. Murphy, "Automatically
Inferring Concern Code from Program Investigation
Activities," Proceedings of 18th International
Conference on Automated Software Engineering, 2003.

[9] Singer, J., R. Elves, and M.-A. Storey, “NavTracks:
supporting navigation in software maintenance,” Int.
Conf. on Software Maintenance, Budapest, 2005.

[10] Terdiman, D., “Amazon tries its hand at tagging”,
http://news.com.com/2061-10802_3-
5953622.html?part=rss&tag=5953622&subj=news,
news.com, Nov 15th, 2005.

