
RC24166 (C0701-020) January 29, 2007
Computer Science

IBM Research Report

Test Case Generation for Collaborative Real-time
Editing Tools

Lian Yu*, Wenping Xiao, Changyan Chi, Lin Ma*, Hui Su
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, P.R.C. 100094

*School of Software and Electronics
Peking University

Beijing, P.R.C. 102600

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Test Case Generation for Collaborative Real-time Editing Tools

Lian Yu1

School of Software and Electronics
Peking University

Beijing, 102600, PRC

Wenping Xiao
China Research Center

IBM
Beijing, 100094, PRC

Changyan Chi
China Research Center

IBM
Beijing, 100094, PRC

Lin Ma
School of Software and Electronics

Peking University
Beijing, 102600, PRC

Hui Su
China Research Center

IBM
Beijing, 100094, PRC

Abstract1

Collaborative real-time editing tools (CRETs) present
advanced editing features, and bring great challenge as
well for verifying them. Test case generation is the key
task of testing. Generating test cases efficiently with high
quality is the goal of this paper. Collaboration is defined
the core requirements of CRETs, from which functional
features and design tactics are derived. The paper
proposes a time-line diagram to visually model timing
aspects and collaborative conflicts and ACDATE
language to formally specify the corresponding test
scenarios. The change of testing parameters and conflict
resolution policy will incur significant time and effort for
modifying the time line diagrams and programs. The
paper presents an algorithm which allows configuring test
parameters and collaboration policy on the fly;
automatically generates textual test cases corresponding
to the timeline diagram and test scripts in ACDATE
language. A prototype shows the promising results of
automatically generating test cases, both txtual and visual
versions consistently.

Keywords: collaboration, time-line diagram, conflict
region, ACDATE, automatically generating test cases.

1. Introduction
Real-time collaborative editing tools (CRETs) provide

more exciting features than classical single-user editing
tools. They allow in real-time fashion through Internet the
collaboration among several participants, who are writing
a same document using different computers from different
places. Colleagues in a globalizing organization around
the world can work on a same design artifact concurrently
and see other’s editing results instantly; a faculty in

1 The research is supported by Visiting Scholar Program and Pergola
Project, IBM China Research Center.

Beijing who is writing an NSFC proposal, can see what
his partner on a business trip in New York is writing.
CRETs impart better user experience for those kinds of
situations that standalone editing tools can not afford.

The Web 2.0 techniques combined with the growing
availability and speed of broadband internet access have
caused an explosion of interest in browser-based
document editing tools. For example, Google Docs &
Spreadsheets [1] is a real time web based spreadsheet
application and rich text editor; Synchroedit (rich text) [2]
and MobWrite [3] projects are open-source attempts to do
genuine real-time collaborative editing within a browser.
Approaches including turn-taking protocols, locking or
serialization-based protocols had been proposed to meet
real-time and high concurrency requirements [4]; and
various operational transformation algorithms have been
proposed to maintain consistency [5][6].

At present, much time and effort are put on the design
and development of CRETs, few attentions are paid to the
research on quality assurance. The quality of CRETs
either from vendors or open source community holds the
key to success. Testing is considered as a core means to
achieve the quality of assurance, and test cases generation
is the key task of testing. Generating test cases efficiently
with high quality for CRETs is the goal of this paper.
Existing CRETs have a diversity of specification/
definitions in terms of real-time, concurrency algorithms,
synchronous mechanisms, and conflict reconciliation
policy. This paper identifies collaboration as the key
requirement goal of CRETs, from which functional
features – awareness, reflection and action, are derived;
and tactics – real time, concurrency and synchronization,
are established. Test case generation in the paper is based
on the identified requirements.

CRETs are a kind of event driven systems for which
event-response approach is often used to model the
requirements specification and derive test cases.
Event-response is a black-box testing technique, capturing

events or stimuli from an external user, and identifying
intended responses to that user. CRETs are imposed with
collaboration requirements, where an event will be
handled by the client, propagated to server, and reflected
to other collaborator(s). Conventional event-response
approach is no longer fitting in the situation. Testers need
to identify not only response to the user, but also response
to other collaborators, and response from intermediaries
along the way. Gray box testing blends structural and
functional testing methods throughout the testing
procedure. This paper adopts gray box testing approach to
generating the test cases for CRETs.

The rest of paper is organized as follows: Section 2
identifies the core requirements of CRETs. Section 3
proposes a timeline diagram to model test cases of CRETs
visually, and ACDATE language to specify test cases
formally. Section 4 presents an algorithm to automatically
generate test cases. Section 5 describes the tool support.
Section 6 provides a survey on related work. Finally,
Section 7 concludes the paper and sketches future work.

2. CRETs’ Requirements and Its Modeling
Collaboration distinguishes CRETs from the single-user

editing tools. To model CRET requirements, we start from
refining collaboration requirements.

Collaboration Requirements
In a social community, collaboration is considered as

sharing of concepts that are nurtured, reworked and
implemented according to group consensus. Collaboration
requires active participation from all group members as
well as consistent and open dialogue to avoid and resolve
any conflict during the collaboration. Research in [7]
summarizes the three main cornerstone of collaboration
for a social community: awareness, reflection and action.

Entailed with collaboration, CRETs requirements have
awareness, reflection and action as three functional
features, which in turn are achieved by combining the
tactics of real-time, concurrency, and synchronization.
 Awareness: CRETs should facilitate collaborators

aware of others’ work and others aware of local work
in real-time, concurrent, and synchronous fashion.

 Reflection: The sensed information should be reflected
to collaborators in real-time and consistent manner.

 Action: RECTs should smooth the progress for
collaborators to take actions, including accept, reject,
pend, or negotiate, to resolve any inconsistencies.

CRETs Requirements Modeling
Internet-based CRETs consist of a variety of elements,

including collaboration server (CS), collaboration client
(CC), network, and collaborators, and their relations are
shown in Figure 1. After loading collaboration client
program (e.g., JavaScript files) on browser, the
collaborators edit and collaborate with others through

network and collaboration server. CC takes care of
awareness and reflection, collaborators command the
action and dialog with other collaborators, while the CS
synchronizes the global data.

Network Network

Figure 1: Architecture of Internet-based CRET Modeling

The Figure 2 shows the CC requirement model using
Statechart diagram, which is composed of five orthogonal
superstates, CC_Pulling, CC_Pushing, CC_Checking,
CC_Warning and CC_Editing. When CC gets started, it
loads CC program from CS into browser, and afterwards
pulls updated data from CS in certain period of time,
called pull interval. If there is any conflict, modify the
pulled data and renders the results locally. The
non-conflict pulled data are simply display on browser. In
Section 3, we will give the explicit definition for
“conflict”. CC_Pulling and CC_Pushing model the
behaviors of CC, in order to enable others knowing local
changes and being aware others’ changes respectively.

CC_Warning reflects conflict status by displaying on
browse the conflict pending list if any, and allowing the
collaborators to resolve detected conflicts by issuing
commands of “accept”, “reject”, and “pend” on the
pending list. CC_Editing provides primary features for
CRETs, which facilitate any editing functions, such as add,
delete, and modify. Changing sections or taking resolution
actions are the events to trigger push action.

Warning

Idle

Editing

CC_Editing

Pulling Pushing

Idel

H

pullTimer()/
pullRequest()

done() ||
networkDown/
startCheck()

done() ||
networkDown

push()/
pushMessage()

Idel

H

(offEdit()/push())||
(accept()|reject())

CC_Pulling CC_Pushing

edit()/pend()

(accept()||reject())/
push(action)&&updateLPendingList()

Idel

Checking
Entry/eval(GPendingList)
Entry/eval(GNUpdatedList

startCheck()

done()/refresh()

No_Warning

CC_Warning

[GPendingList == Empty][GPendingList !=Empty]

CC_Checking
networkDown

networkDown

accept()||reject()

moveToAnotherSection()/push()

pend()||(refresh()/
updateLPendingList())

Dispalying[GNUpdatedList != Empty]/
display()

Chatting

negotiate()

(accept()||reject()||pend())

negotiate()

done()

edit()/pend()

Figure 2: Requirements Model of Collaboration Client

Figure 3 demonstrates the behaviors of CS, which has two
orthogonal superstates: CS_Monitoring and CS_Checking.
In CS_Monitoring, CS starts from Monitoring substate
when CS turns on. In CS_Checking, CS starts from
Dequeueing substate when CS turns on. If the length of

push-message queue is not empty, CS enters Checking
substate, evaluates any new changes against existing
global data or pending lists, updates them if any, and
otherwise returns to Dequeueing substate.

Dequeueing

Checking

CS_Monitering

Updating
(GTree, GPendingLIst)

[changed== false]

[queue.length !=0]

Sending
(GNUpdatedList, GPendingList)

Monitering

pullRequst()

done()

Enqueueing

pushMessage()

[changed== true]

done()

done()

CS_Checking

Figure 3: Requirements Model of Collaboration Server

Utilizing Statechart diagrams, Figure 2 and Figure 3 are
drawn based on general collaboration requirements
independent of any specific CRETs design approaches and
implementation languages, and can be used as generic
models for CRETs. Statechart diagrams are good at
modeling system behavior, but not fit in modeling timing
and collaboration issues as to conflict. We propose a
time-line diagram to model these aspects of collaboration.

3. CRETs’ Test Case Modeling
Test cases for single-user editing tools just need to

prepare single user inputs and expected response of the
tools. The difficulties with generating test cases for
CRETs come from the functional features derived from
collaboration, and the associated design tactics. This
section describes a time-line diagram to annotate visually
test cases and ACDATE language to specify the test cases
formally for CRETs.

Figure 4 shows a Scenario A of CRET using time-line
diagram, in which two collaborators are editing a same
document. For each collaborator, we define a baseline,
below which there are external event/activity lines
indicating collaborator’s inputs, above which there are
pull-lines indicating that CC pulls global updates
periodically, checks any conflicts with local updates,
displays or refreshes information on its browser; push
lines indicating that CC pushes the local updates upon the
arrival of an external event or the completion of external
inputs; time window indicating the period of time for
pushing message on CC, wiring message over network,
processing the message from CC. The beginning or end
points of lines are projected with time reference line to
Time line at the bottom of diagram.

Using narrative language, Scenario A can be described
as “At t0, Collaborator 1 (C1) starts editing section S1 and
finishes up at t3, which immediately triggers push(S1)
event; after the period of the time window at t6, in the next
pull run, CC2 pulls S1 from CS and displays it locally at t7;
at t1, Collaborator 2 (C2) starts editing section S3 and
finishes up at t2, which immediately trigger push(S3) event;
after the period of time window at t4, in the next pull run,

CC1 pulls S3 from CS and displays it locally at t5; at t4, C1
starts editing section S2 and finishes up at t8, which
immediately triggers push(S2) event; after the period of
the time window at t9, in the next pull run, CC2 pulls S2
from CS and displays it locally at t10.” The time of points,
t0 through t10, satisfies time sequential order.”

Figure 4: Scenario A of a CRET using time-line diagram

The time-line diagram helps capturing collaborators’
motions and corresponding consequences as time goes on:
one collaborator initiates an event/activity at a moment or
during a period time, causes collaboration client responses
at certain time; server ends up processing at other time;
later on the result reflects to other collaborator(s). The
time-line diagram facilitates human being to communicate
but is not suitable for machine to execute. The following
section introduces ACDATE language to specify the test
cases annotated in the time-line diagram.

ACDATE Specification Language
ACDATE stands for the acronym of Actor, Condition,

Constraint, Data, Action, Timing and Event, which are
used as model elements. The semantics of ACDATE
model can be represented as state-transition: if an actor is
in the pro-condition, the actor performs an executable
computation and transits to post-condition when the actor
receives the trigger event of the transition and if the guard
condition, if any, is satisfied. The computation may
directly act on the actor that owns the state machine, and
indirectly on other actors that are visible to the actor by
sending out event(s).

ACDATE language is used for test case specification,
and consists of two parts: testing definition and testing
logic. Testing definition part creates instances of the six
elements. List 1 shows testing definition of Scenario A in
Figure 4 where six instances of actors are created, CS, CC1,
CC2, C1, C2, and NW (network); initial condition is
prepared; three events and timings are defined; data/states
along time are specified; three timing patterns and three
actions are identified.

Testing logic part stipulates testing algorithm. List 2
shows the testing logic for test case in Figure 4. ACDATE

language provides stimuli-verify template for testing steps:
stimuli section specifies inputs and/or events in some
timing styles to the system under test (SUT); verify
section specifies sequential responses from local client,
CS and other collaborative clients in some other timing
characteristics; captures the actual results and compared
with the expected results prepared in the testing definition
section.

List 1: Testing Definition of Test Scenario A
@Actor:

CS; CC1; CC2; C1; C2; NW;
@Condition:

initCondition{CS.start()#before(t0); CC1.start()#before(t0);
 CC2.start()#before(t0); NW.start()#before(t0);}

@Event:
C1.edit(S1).moveMouse(S1, S2)#at(t3);
C2.edit(S3).moveMouseOff(S3)#at(t2);
C1.edit(S2).moveMouseOff(S2)#at(t8);

@Data:
(CC1,S1,t0); (CC1,S1,t3); (CS,S1,t6); (CC2,S1,t7);(CC2,S3,t1); (CC2,S3,t2);
(CS,S3,t4); (CC2,S3,t4);(CC1,S2,t4); (CC1,S2,t8); (CS,S2,t9); (CC2,S2,t10);
pullTime; pullRate; pushTime; transferTime; processingTime;
(t7-t6):between (pullTime, pullTime+1/pullRate);
(t6-t3):equal(pushTime+transferTime+processingTime);

@Timing:
during(startPoint, endPoint); at(timeOfPoint); before(timeOfPoint);

@Action:
push(); update(); display();

List 2: Testing Logic of Test Scenario A

The separation of testing definition and testing logic

enables the reuse of testing logic part and even in the case
of changes of testing data change, but does not pledge the
reuse. As we will see in the subsection that when the
timing of events or actions changes to some extend such
that collaboration conflict incurs, the test steps have to be
changed correspondingly. The following section identifies
the threshold.

Time-line diagram with Conflict – Scenario B
Scenario B in Figure 5 has different characteristics from

Scenario A in Figure 4. In Scenario B, C1 finishes up
editing S1 at t2, however, before the editing result shows
up on CC2 at t6, C2 starts editing the same section S1. The
interval from t2 to t6 is the conflict region, which is
associated with section S1 among C1 and C2 and equal to,

on average, the summation of time window, pullTime and
1/(2* pullRate). As a matter of fact, as long as the timing
that CC2 pushes S1 falls into the conflict region, conflict
occurs. As C1’s editing result reaches CS early than C2’s,
CS uses C1’s S1 to update the global data, and puts C2’s
into the corresponding pending list. As long as the conflict
is not resolved, whenever C1 updates S1, as does during t8
and t10, CS will use it to update the corresponding global
data. Because CC1’s push(S1) event occurs at t10 out of the
conflict region of C2 on S1, there is no conflict between C1
and C2 associated S1 during t3 to t9.

Figure 5: Scenario B of a CRET with conflict region

Definition: Conflict occurs regarding to a section S if and
only if one client’s push event occurs at ti within another
client’s conflict region tj and tk, i.e., tj≤ti≤tk,i≠j≠k.

Compared with List 1 of Scenario A, List 3 of Scenario
B includes pendLists of CS, C1 and CC2 into @Data
section, check() and displayWarn() into @Action section

List 3: Testing Definition of Test Scenario B
……//omit @Actor, @Condition and @Timing sections

@Data:
CC2.pendList: (S1,C1,C2,t7); CS.pendList: (S1,C1,C2,t8);
CC1.pendList: (S1,C1,C2,t9);CC2.pendList: (S1,C1,C2,t12);
……//omit other test data in @Data section

@Action:
push(); update(); check(); display(); displayWarn();

List 4: Testing Logic of Test Scenario B
1. setup:

initCondition;
2. stimuli:

C1.edit(S1)#during (t0, t2); C1.edit(S1).moveMouse(S1, S2)#at(t2);
3. verify:

CC1.push(S1).start() # at(t2); CS.update(S1).done()#at(t6);
CC2.check().conflictTrue()#at(t7);CC2.displayWarn(C1,S1).done()#at(t7);

4. stimuli:
C2.edit(S1)#during (t1, t3); C2.edit(S3).moveMouse(S1,S2)#at(t3);

5. verify:
CC2.push(S1).start()#at(t2); CS.addToPendList(C2,S1).done()#at(t8);
CC1.displayWarn(C2,S1).done()#at(t9);

8. stimuli:
C1.edit(S1)#during (t10, t12); C1.edit(S2).moveMouseOff(S1)#at(t12);

9. verify:
CC1.push(S1).start()#at(t12);CS.update(global(S1)).done()#at(t15);
CC2.display(pendList).done()#at(t16);//changed S1 in pendList

Correspondingly, in the testing logic of List 4, local
conflict check of CC2 on S1 at t7 is inserted before
displaying contents pulled from CS, and identified conflict

with CC1 is displayed together the pulled content on CC2’s
browser. When S1 of CC2 arrives at CS, CS makes out the
conflict and puts in the pendList. The rest of steps is
similar to that of List 2, but appending the pendList on CS,
CC1 and CC2.

Time-line Diagram Resolving Conflict-Scenario C
Whenever there is a conflict occurred to a section S, CS

will maintain a global data of S, and associated pending
list indicating which other client(S) had different version
of S. The conflict information, the global data together
with the pending list, is pulled and reflected in an intended
timing on client browsers for collaborators to resolve.
Collaborators can take three kinds of actions with conflict:
 Accept: one accepts another’s editing results.
 Reject: one rejects another’s editing results.
 Pend: a dummy action that a collaborator does

anything than accept and reject regarding a section.
Figure 6 shows a Scenario C, where collaborators

intend taking action to resolve the conflicts. The initial
condition of the scenario is “CC1 has a conflict on
Sections S 1 and S 2 with CC2, and CC1’s results as global
data while CC2’s put into pending lists.” In Scenario C, C1
accepts C2’s S 2 at t7, however, before the action result
shows up on CC2 at t11, C2 accepts C1’s S 2 at t9, incurring
the conflict.

Figure 6: Scenario C with conflict resolution actions

The ways to resolve conflict change from application to
application. Assume that there are two collaborators, C1
and C2; C1 and C2 have conflict on section S, and C1’s
result as global, and C2’s as pendList entry. Table 1 shows
an example of conflict resolution policy for 9 situations.
The first 5 situations indicate no conflict occurs, while the
last 4 situations incur conflicts of resolution actions.
“Pend” in the table means the corresponding collaborator
does anything but accepts or rejects the counterpart’s
results on section S. In contrast to List 3, List 5 adds
dataCondition in the @Condition section, accept() and
reject() in the @Event section. Correspondingly, List 6
shows up the events in stimuli portions.

Constructing the time-line diagram and writing the
language program is time consuming. Moreover, test
parameters and collaboration policy may change or even

be unknown beforehand; any of the changes will incur
significant time and effort for modifying the time-line
diagrams and the programs.

Table 1: An Example of Conflict Resolution Policy

List 5: Testing Definition of Test Scenario C

List 6: Testing Logic of Test Scenario C

Although ACDATE language enables separating testing

data and testing logic, certain thresholds of testing data
changes will incur the change of testing logic as discussed
in Section 3. The following section presents an algorithm

which allows configuring test parameters and
collaboration policy on the fly, and automatically
generates textual test cases corresponding to the time-line
diagram and test scripts in ACDATE language.

4. Automation of Test Case Generation
This section presents the algorithm for automatically

generating test cases of CRETs and analyzes the generated
results.

Algorithms to Generate Test Cases
We define as atomic test scenario a pair of stimuli and

verify in testing logic with ACDATE language,
corresponding to event of a collaborator and associated
responses of local client, CS and collaborative clients in a
time-line diagram. One atomic test scenario (ts1) affects or
is affected by another atomic test scenario (ts2) if push()
action of ts1 falls into the conflict region of ts2 or vice
versa. Complex test scenario consists of more than one
atomic test scenario in a consistent way, i.e., detecting
conflicts correctly. Figures 4 through 6 are complex test
scenarios. To formally present the algorithm of test case
generation, we have the following definitions:
Α Set of actors triggering events and taking responses,

Α={CS, {CC i } (i = 1, …p), {C i}, NW}
Ο Set of conditions including data conditions and actor

conditions
D Set of data, D1={S}: edited sections, D2={P}: pendList

of CS and CC
Ε Set of events
Π Set of responses of CCj, CS, CCk, j≠k
Τ Set of timing patterns
Δ Set of conflict regions
Γ Set of test scenario types
Λ Set of atomic test scenarios, Λ={(Φ, Ε, Π, Τ, Δ)}
Χ Set of complex test scenarios, Χ={(Γ, Λ1,…, Λm)}

According to ACDATE model, atomic test scenario can
be specified as: under conditions {ο}⊆Ο, upon an event of
a collaborator e∈E with timing pattern ti ∈Τ, CCs and
CS take responses {π}⊆Π with timing patterns {t} ⊆Τ,
and data conditions change to {d}∈D. In Table 2, we call
as factors sets that affect test case generation, and
instances of sets as levels.

List 7 shows the pseudo-code of algorithm for
automatically generating test scenarios, composing of
three parts. The first part, configuration, prepares relevant
parameters, conflict resolution policy and scenario type.
The second part delineates the steps to generate atomic
test scenario including generating pre-condition, incoming
event from a collaborator, verifying collaborative clients
and server’s response following timing constraints. When
generating test scenario with conflict, CS and other
collaborators need to check the global and local conflicts,
respectively. The third part aggregates a certain number of
atomic test scenarios to generate complex test scenario.

Table 2: A List of Factors of Levels

List 7: Algorithm to automatically generate test scenarios

Analysis on the Test Case Generation

The proposed approach to test cases generation can be
characterized as follows:
 Configurable: With the support of automatically

generating test cases, the proposed approach takes the
changing factors as configurable parameters to the
algorithm, thus saves much of time and effort in
generation of test cases.

 Completeness and Consistency: Test scenarios are

generated by properly combining atomic scenario
elements and itself. There are two types γ∈Γ of atomic
scenarios. Condition includes conditions Α.{ο}⊆Ο of
CS, CC and NW and data conditions {d}∈D1∪D2.
Event is chosen from C.E, and has dependency with
the conditions, e.g., if the CC1 condition is off, no
event in C1.E can be chosen. Actions/responses can be
chosen from CS.Π∪CC.Π. Depending on types of
event and responses, Timing is suitably chosen fromΤ.

5. Tool Support
The support tool consists of one sharing database and

three components for configuration, test case generation
and timeline diagram generation:
 Configuration utility: Tester can use GUI or edit XML

file to define parameters and conflict resolution policy.
The specified parameters are passed to test cases
generator or store into database for later use.

 Test case generator: Automatically generate a variety
of test scenarios taking the passed parameters. The
output of test case generator is plain text version, as
shown in Lists 1 through 6, and taken as input to
time-line diagram generator or stored into database for
test execution.

 Time-line diagram generator: It is implemented using
SVG technique, i.e., the output is XML format and
follows SVG specification rendering on SVG browsers
or viewers.

Figure 8 reveals the practice using proper design
patterns to achieve the design goals. Strategy design
pattern allows testers to define different conflict resolution
policies for different applications or for same application
but in different situations. Template method
createTestSceanrio defines the skeleton of test steps,
receiving stimuli from one collaborator, verifying
responses from client, server and other collaborator(s),
correspondingly; deferring some steps to subclasses.
Composite pattern facilitates creating complex test
scenarios based on atomic test scenarios or existing
complex test scenarios, letting treat atomic test scenarios
and complex test scenarios uniformly.

Figure 7: Design of Generating Test Cases

 Figure 9 exemplifies the screenshots of the three
components: 1) a configuration GUI for a tester to specify
the parameters; 2) generated testing definition and testing
logic for Scenario C; 3) SVG-based time-line diagram for
that scenario. In contrast to the hand-written List 5 and
List 6 and Figure 8 drawn in Visio, the generated version
is more efficient with fewer errors.

Figure 8: Screenshots of tool support prototype

6. Related Work
As CRETs gain more and more popular, their quality

will draw much more attention. Although little literature
was published that directly addressing issues of the quality
assurance, we find the survey in this section is supportive.

State-based approach is often used to generate test cases
following the process: build state model based on
requirements; flat the model if the former is hierarchical;
traverse the model to get test paths; and instantiate each
path with data to get test cases[8][9][10]. The process can
be performed automatically by writing a program to do so.
In a collaborative situation, the mechanical combination
and enumeration can not mirror timing constraints on the
responses and conflict regions of responses as Statechart
has no constructs to model two aspects, The proposed
time-line diagram can be used to model along time
dimension the motion and its consequences of every
collaborator simultaneously; identify conflict region
associated with a collaborator on some sentence, then
check if the timing of other’s push events falls into the
conflict region to assert whether there exists conflicts
among the collaborators as shown in Figures 5 and 6.

The Tree and Tabular Combined Notation (TTCN) is
defined and standardized in Part 3 of the international
standard 9646 OSI Conformance Testing Methodology
and Framework (CTMF) [11]. OSI conformance testing is
understood as functional black-box testing, i.e., an
implementation under testing (IUT) is given as a
black-box and its functional behavior is defined in terms
of inputs to and corresponding outputs from the IUT.

Subsequently, TTCN test cases describe sequences of
stimuli to and expected responses from the IUT. The third
edition, CCTN-3 [12], comprises more extensions
including the handling of test verdicts, matching
mechanisms to compare the reactions of the IUT with
expected range of reactions, timer handling, distribution
of tester processes and the ability to specify encoding
information. CCTN embraces the approach of functional
black-box testing, and addresses the specification of test
cases for communication among distributed systems. It
does not provide information on execution path through
the system. This paper adopts grey-box testing technique
for CRETs, allowing test program to interact with APIs of
CRETs’ components on execution path of interest. The
specification of test cases for CRETs covers collaborators
involved, collaboration clients, collaboration server and
network communication.

ACDATE model and language was developed to denote
scenario-based test specification, and has been
successfully applied to a variety of systems, e.g.,
command and control systems, communication processor
systems, UDDI-based applications, and manufacturing
control systems [13][14][15]. This paper has three
extensions to ACDATE language:
 Add constructs for specifying timing and conflict to

mirror the collaboration requirements;
 Provide templates for specifying testing CRETs logic

to enhance the reusability and ease of understanding;
 Refactor the language structure and realize separation

of test data and test logic in order to increase the
reusability and maintainability of test code.

7. Conclusion and Future Work
The paper makes clear that collaboration is the

requirement goal of CRETs, from which derives features
of awareness, reflection, and action, while real-time,
concurrency, synchronization/asynchronization are design
tactics to achieve the goal. Based the requirement,
Statechart is used to describe the behavior, and a time-line
diagram is proposed to visually model timing and
collaborative conflicts. ADACATE language is introduced
formally specify test scenarios each of which consist of
testing definition and testing logic. The testing definition
part creates instances or test data, while testing logic
provides testing algorithms and templates. Drawing
time-line diagram and writing ACDATE program are
time-consuming and error-prone; an algorithm is proposed
to automatically generating ACDATE programs and
time-line diagram. A prototype of the tool support is
implemented to validate the feasibility of the algorithm.
Two tasks are undergoing, establishing testing execution
framework to automatically execute the testing using the
generated test scenarios described in this paper; formally
proving the correctness of the algorithm. The results will
be published in our next paper.

Reference
[1]. Google Docs & Spreadsheets: http://www.google.com
[2]. SynchroEdit: http://www.synchroedit.com
[3]. MobWrite: http://neil.fraser.name/software/mobwrite
[4]. S. Greenberg, D. Marwood, “Real-time groupware as a

distributed system: Concurrency control and its effect on
the interface”. Proc. Of The ACM Conference on
Computer Supported Cooperative Work, North Carolina,
October 1994, pp. 207-218.

[5]. C. Ignat, and M. Norrie, "Tree-based Model Algorithm for
Maintaining Consistency in Real-Time Collaborative
Editing Systems", Proceedings of the Fourth International
Workshop on Collaborative Editing Systems, CSCW 2002,
New Orleans, USA, November 2002.

[6]. P. Dewan, R. Choudhary, and H. Shen, "An Editing-based
Characterization of the Design Space of Collaborative
Applications." Journal of Organizational Computing, Vol.4,
Ablex, Norwood, NJ, USA, 1994, pp. 219-240.

[7]. “Model for Build Collaboration”, Prepared for: Social
Planning Council for the North Okanagan, Prepared by
Tina-Marie Christian, MA.OM, B.Ed Armstrong, BC,
April 2003 URL:

 http://www.socialplanning.ca/health/building_collaboration_report.pdf.
[8]. S. Gnesi, D. Latella, and M. Massink, "Formal test-case

generation for UML statecharts", Proceedings of the Ninth
IEEE International Conference on Engineering Complex
Computer Systems Navigating Complexity in the
e-Engineering Age (ICECCS'04) , IEEE Computer Society,
Washington, DC, USA, 14-16 April 2004, pp. 75-84.

[9]. M. Chen, X. Qiu, and X. Li, "Automatic test case
generation for UML activity diagrams", Proceedings of the
2006 international workshop on Automation of software
test , ACM Press, New York, NY, USA, 2006, pp. 2-8.

[10]. K. Chang, W.H. Carlisle, J.H. Cross. II, and D.B. Brown,
"A heuristic approach for test case generation",
Proceedings of the 19th annual conference on Computer
Science, ACM Press, New York, NY, USA, 1991, pp.
174-180.

[11]. T. Walter, and J. Grabowski. "Real-time TTCN for Testing
Real-time and Multimedia Systems", Testing of
Communicating Systems, volume 10, Chapman & Hall，
September 1997, pp. 37-54.

[12]. J. Grabowski, "TTCN-3 - A new Test Specification
Language for Black-Box Testing of Distributed Systems",
Proceedings of the 17th International Conference and
Exposition on Testing Computer Software (TCS'2000),
Washington D.C., June 2000.

[13]. W. T. Tsai, Lian Yu, Zhu P, Paul R., “Rapid embedded
system testing using verification patterns”, IEEE
SOFTWARE 22 (4): 68-75, JUL-AUG 2005.

[14]. W. T. Tsai, Lian Yu, Ray Paul,; Chun Fan,; Xinxin Liu,;
Zhibin Cao,“Rapid scenario-based simulation and model
checking for embedded systems”, Proceedings of the
Seventh IASTED International Conference on Software
Engineering and Applications, 2003, p 568-573.

[15]. W. T. Tsai, Lian Yu, A. Saimi, R. Paul, “Scenario-based
Object-Oriented Test Frameworks for Testing Distributed
Systems ” , Proceedings of IEEE Future Trends of
Distributed Computing Systems, 2003. pp. 288-294.

http://www.google.com/
http://www.synchroedit.com/
http://neil.fraser.name/software/mobwrite
http://www.socialplanning.ca/health/building_collaboration_report.pdf

	1. Introduction
	2. CRETs’ Requirements and Its Modeling
	Collaboration Requirements
	CRETs Requirements Modeling

	3. CRETs’ Test Case Modeling
	ACDATE Specification Language
	Time-line diagram with Conflict – Scenario B
	Time-line Diagram Resolving Conflict-Scenario C

	4. Automation of Test Case Generation
	Algorithms to Generate Test Cases
	Analysis on the Test Case Generation

	5. Tool Support
	6. Related Work
	7. Conclusion and Future Work

