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Delay-Cost Scheduling for Multithreaded, Multicore 
Machines                              

Peter A. Franaszek and Dan Poff 

IBM Thomas J. Watson Research Center 
Yorktown Heights, New York, USA  

Abstract.    We outline a generalization of the delay-cost objective function 
approach employed in the IBM System I scheduler to systems with possibly 
large numbers of multithreaded machines.  We concentrate on   hypervisor 
scheduling of guest operating systems, although some discussion is included of 
OS scheduling in such systems, and the results may be applicable in larger 
contexts, such as management of computer installations. Two main differences 
between the issues treated here and current schedulers are a) the inclusion of 
coscheduling of multiple logical processors associated with a guest OS, and b) 
the inclusion of multiple ways to satisfy a request for logical processing 
resources, with different utilizations of hardware threads and electrical power as 
a function of the application.  A generalized delay-cost objective function is 
described, as well as two versions of, or approaches to optimality, respectively 
the maximization of the objective function, and maximization of this function 
subject to a fairness criterion.  Allocation of resources to jobs is done in two 
phases: first an amount is determined, and secondly this is matched with 
physical entities.  The report includes a development and discussion of the 
generalized delay-cost function, the algorithms used in scheduling, as well as a 
variety of experimental results which suggest that the overall approach is 
reasonable, since both the speed of execution, as well as the system power 
utilization, can depend on the number and identity of the system resources 
utilized by specific applications.  

1. Introduction 

Delay-cost scheduling [1] is a paradigm successfully applied in IBM’s OS400, the 
operating system for iSeries servers.  Its basis is a quasi-economic measure of a time-
varying cost which is charged to the system for delaying the processing of a job.  The 
system attempts to minimize its cost by appropriate scheduling. In the case of a single 
work queue, the job next chosen for processing is that with the highest marginal cost 
[1,2].  The original development of the delay-cost paradigm for processor scheduling 
was limited to the case of non-affinity scheduling, and a single work queue. Aside 
from the treatment of delay-cost scheduling, much of the analysis in [1] was devoted 
to contrasting this with the deadline scheduler employed in the IBM VM system, 
which was shown to be unstable under certain conditions.  That is, it was shown that 
in that system, actions taken to improve the response time for a class of jobs could 
actually delay the processing of some of these jobs.  Another aspect of that work was 



to show that delay-cost functions could be chosen so as to mimic the behavior of a 
deadline scheduler operating in its stable region.  This was confirmed via 
implementation of the scheduler on an experimental system. 

Today’s more complex systems are increasingly incorporating features such as 
large scale multiprocessing, multiple cores, multithreading, and heterogeneous 
capabilities. As shown below, the speed with which jobs execute, as well as their  
power utilization, may depend on both the job placement as well as the number of 
cores utilized. Jobs may also have significant processor affinity.  There currently 
appears to be no general framework for efficient scheduling in this context.  
Formulation of such a framework, based on a generalization of the delay-cost 
paradigm, is a goal of this report.  The advantages of this approach include 
transparency, simplicity and guaranteed stability.  From the viewpoint of priority 
based scheduling, the approach permits the computation of  time-varying priorities 
which yield tradeoffs which incorporate such factors as time-sensitivity, energy 
utilization, and the benefits of various possible thread allocations on multicore, 
multithreaded machines. That is, it can yield an objective function for a scheduler.  

 The first part of this report concentrates on issues associated with allocating a 
requested number of logical processors, as in hypervisor scheduling of “guest” 
operating systems (OSs) in a multicore, multithreaded machine.   The OSs or jobs 
scheduled might require single or multiple logical processors (each associated with a 
hardware thread), and the system have possibly large numbers of cores, hardware 
threads, and guest OSs.   . 

Some other examples of current schedulers are those in the Linux operating system 
[3],  and the Xen [4] and VMWare [5] hypervisors. Linux, for example, maintains two 
job queues, one active and the other inactive, of single-threaded jobs.  The active 
queue is ordered by priority, with each job allocated a time slice.  Once all jobs on the 
active queue have received their time slice (which may be interrupted by such events 
as I/O), the two queues are switched.  In contrast to an OS scheduler, a hypervisor 
scheduler’s function is to allocate some number of logical processors to each OS 
“guest”.  A current Xen hypervisor scheduler (for guest OSs) assigns a “fair share” 
quantity to each guest running on each logical processor.  Guests are assigned time 
slices of length T. Those which have received less than their fair share are given 
priority over those that have received more. The VMWare hypervisor also employs 
periods or slices of length T, and time slices are given to guest OSs according to a 
share allocation.  Both hypervisors enforce what can be viewed as a fairness policy.  
Although these schedulers can in some instances provide good performance, they do 
not explicitly address some issues relevant to our current context.  For example, they 
do not handle gang scheduling of software threads, their placement on processors, or 
the resulting energy utilization.   

Some definitions are in order.  We  consider a system with N processors P(i), each 
of which  consists of what might be termed subprocessors or hardware threads  P(i,j)  
which are considered logical processors.  We use the term hardware thread to 
indicate a logical processor, on which a software thread, or simply thread, may be 
dispatched. For simplicity, we assume that all hardware threads are equal.  We use the 
term job interchangeably for either a guest OS.  There are M(t) jobs J(i) at time t.  Our 
scheduler only considers current jobs, whose number we denote by M without loss of 
generality.   Each J(i) has a time varying quantity C(i,t), the delay-cost, which may be 



viewed as the cost of denying processing to J(i)  at time t, or alternatively what it 
might be willing to pay for such processing. This is for a processor of nominal 
speed/efficiency, and C(i,t) may adjusted for example for processor speed or the 
effect of affinity, as discussed below.  The overall benefit of scheduling a job may in 
general include the above quantities as well as ones associated with the cost of power, 
and/or multithreading effects.  For example, allocating an extra thread to run on a core 
may change the effective speed of execution of other threads [7].  We capture the 
overall per-hardware thread benefit of running a job J(i) on a particular allocation of 
hardware threads by a quantity Q . 

  
For convenience, we will assume that Q is constant during what we term a 

scheduling period T.  A scheduling period is a time interval in which the values of Q 
are kept constant.  Each guest operating system (OS) is scheduled to run for an 
integral number of scheduling periods. The system scheduler assigns guests or jobs to 
processors and subprocessors, and determines the order of execution.  Ideally, jobs 
should be executed in a timely fashion, and the load should be balanced across the 
processors.  The system should also take advantage of processor affinities, coschedule 
dependent jobs, and take advantage of processor or logical processor 
nonhomogeneity.    

Our goal here is to obtain a general means for the design of a scheduler with the 
following behavioral features, which are obtained via a combination of the form of 
the function Q and the allocation and assignment methods: i)  when the load is light 
and power cheap, guests are provided with lavish amounts of resources,  ii) as power 
costs increase, eventually fewer cores are activated, iii)  high priority jobs are 
generally scheduled sooner, with more resources, than low priority jobs,  and iv) 
hardware threads allocated to an OS guest tend to be assigned in close physical 
proximity.  
This report is organized as follows.   Section 2 provides a brief discussion of the 
system, and generalizes the delay-cost measure discussed in  (1) by incorporating 
affinity, processor speed, energy usage, and some multithreading effects. We then 
consider what might be the criterion for optimality in scheduling. The issue arises 
because unlike the case in (1), a job or guest scheduled to run on a multithreaded 
machine can be allocated more than one configuration of hardware resources. A main 
feature of our approach is to partition the scheduling problem into two parts: resource 
allocation (which involves quantities of resources), and resource assignment, where 
allocations are matched to specific cores and hardware threads.  Two optimization 
criteria are considered: a) maximizing the sum of the Qs with no restrictions, which 
we term airline pricing,, and b) maximizing this sum subject to a fairness criterion. 
The result of the latter is a scheduler which has some properties of what might be 
viewed as a market for logical processors. That is, something akin to a market price is 
used for allocating resources, as well as balancing the load.  The result of the former, 
that is, one which maximizes the sum of the Qs, uses what might be viewed as a 
market price for incremental gains to do allocation.  Section 3 describes  algorithms 
for resource allocation under the two criteria, that is, the determination of  which jobs 
or guests should be scheduled in a given period, as well as the type or amount of 
processor resources assigned.  Section 4 considers the assignment problem, using a 
buddy system (6 ) approach, also used for example in (7 ). Section 5 discusses issues 



associated with scheduling as for example in an operating system, where jobs may be 
active during only a fraction of the scheduling period, and scheduling events occur at 
event instances, rather than on regular intervals.  Section 6 discusses questions related 
to how an application of guest OS should choose the number of software threads or 
logical processors. Section 7 shows some examples of execution speeds and power 
utilization for some benchmarks running on Intel and AMD-based  blade servers.     
The results illustrate speedups from allocating additional hardware threads, the 
performance implications of mixing applications on multithreaded cores, scaling 
effects related to cache sharing, and some power utilization results.  These suggest 
that for such mutltithreaded or multicore systems, scheduling decisions should in part 
be determined by how well specific applications can take advantage of hardware 
resources, and the way these resources are structured.  These properties are in this 
report encapsulated by the parameters v(i,j) and U(i,j) defined above.  Section 8 
summarizes the main results. 
 

 
The appendix briefly considers some special cases of optimal schedules, which 

provide some insight into the forms of solutions.  These include two cases of 
scheduling of single logical software threads under airline pricing, as well as an 
example of market pricing. Here optimal solutions are available with algorithms of 
O(MlogM) complexity, where M is he number of jobs, as indicated above. The first 
special case of airline pricing is optimal affinity scheduling of single threads on 
nonthreaded processors.  Here airline pricing is equivalent to market pricing.  The 
second treats nonaffinity scheduling of single threads on dual-threaded  processors, 
and contrasts this with a market pricing solution.   

 
 

2. Overall System Structure and Delay-Cost Optimization   

   The systems we consider may have multiple processor components, each 
comprising chips with multiple multithreaded cores.  For purposes of illustration, we 
assume four-way multithreading, as for example in the Sun Microsystems Niagara.  
We further assume each core has a private L1 cache, and four cores share an L2, the 
slowest on-chip cache.  The processor chip may have a multiple of such four core L2-
sharing groups.  We further assume that each core can be powered down to conserve 
energy.  The systems we consider may be sufficiently large so that more than one job 
queue is required.  Each such queue is associated with what we term a processor pool. 
The load then needs to be balanced across the pools.  

Each such guest J(i) requests some number R(i) of logical processors in a time 
period T.  The numbers we use for illustration, are R(i) equal to 1, 2 or 4.  The logical 
processors are as defined above, namely hardware threads P(i,j).  We assume a thread 
will run faster the fewer other threads it needs to share on the same core, and thus the 
same L1.  This is consistent with results described in [7], which includes an analysis 
and simulation results for multithreading on PowerPC based machines.   



We now define parameters j and k associated with an allocation of logical 
processors.   Let k correspond to the number of requested logical processors for a 
guest OS, and j to the number of hardware threads per logical processor.  We term the 
parameter j the allocation number, and refer to such an allocation as being of type j.  
Thus if k=4, a guest J(i) requires 4 logical processors.  Since each core has four 
hardware threads, k=4 may be satisfied by allocating one, two, or 4 cores.  We say 
this corresponds to j=1, 2, or 4 respectively.  If 2 logical processors are required, we 
may allocate two, one, or half a core, for j=4, 2, or 1 respectively.   We say an 
allocation A(k,j) is for k logical processors and with an allocation number j.  As 
mentioned above, we assume that the delay-cost C(i,t) remains constant during a 
scheduling period T, defined below.  We then refer to it as simply C(i).   The delay-
cost C(i,t)  is the value for a job J(i) at time t  for an assignment of nominal processing 
power.  We call L(i,j) the number of hardware threads corresponding to an allocation 
of type j for job or guest J(i).  That is, L(i,j) is the number of requested logical 
processors k times the allocation number j.  We denote by v(i,j) the normalized 
expected speed or value of processing of J(i) on an allocation of type j.  

Some results from [7] may be worth mentioning.  Here cores have two hardware 
threads in our terminology, and a job may run alone, or with another job on the same 
core.  Performance improvements are described for throughput on benchmarks, using 
two threads rather than just one.  Some examples are: approximately .34 for 
compress, .27 for TPC-C, and .39 for 2 SPEC-int.  On a per thread basis, the 
performance using two hardware threads is then .67, .635, and .695 respectively of 
that running a single thread.  This is suggestive of the performance effects of thread 
scheduling, but does not quite fit our model, since it does not capture the interactions 
that might occur with two threads from the same benchmark running on separate 
processors.   

Energy usage can be a factor to be considered in scheduling.  We assume that such 
usage is the sum of some system constant (i.e. for memory, I/O, power supplies, etc,) 
plus a term proportional to the number (possibly fractional) of cores allocated. This is 
rather oversimplified, as for example in some systems, the number of active nodes or 
blades required may in general be a function of the allocation.  We return to this topic 
briefly below in Section 5.   

We denote by U(i,j) the energy usage cost for an allocation of type j to job J(i).  
We denote by Z(i,j) the generalized delay-cost of running a job J(i) with an allocation 
of type j.  We then have: 

Z(i,j)= v(i,j)C(i)-U(i,j)                                              (1) 

Alternatively, we might have: 
                                         Z(i,j)=v(i,j)C(i)/U(i,j)                                                     (2) 
That is, Z(i,j)  can be viewed as the advantage accrued to the system by running 

J(i) with relative speed v(i,j), and with U(i,j) power.  The greater the speed, the 
greater the advantage, adjusted by the cost of the power required.  In (1) we subtract 
the cost of power; in (2) we consider the advantage per unit power.  

Def.: We denote by Q(i,j) the normalized cost Z(i,j) per hardware thread allocated 
as in the definition for A(i,j). 



We now consider the issue of optimization.  When allocations are always for a 
single thread on non-threaded processors, a natural approach is to maximize the sum 
of the {Z(i,j)}.  This corresponds to simply determining which jobs should be active 
at any given time.  However, in the problem being investigated here, the choice also 
involves the amount of resources that should be allocated.  Two possible approaches 
are: 

A) Maximize the sum of the Z(i,j).  We call this approach airline pricing. 
B) Maximize the sum of the Z(i,j) subject to a fairness criterion.  We call this 

market pricing. 
 
Approach A “charges” the maximum price from each customer, with no 

uniformity.  In approach B, hardware threads are allocated at the maximum cost for 
which there is sufficient “demand”.  That is, all jobs willing to “pay” some “market” 
price Q  will receive their allocation. More precisely, in approach B , we require that 
if J(i) is allocated resources at a “price” Q(i,j) per hardware thread, that no J(r) is 
required to “pay” an amount Q(k,r) if there is a feasible allocation A(r,s) for J(r) with 
Q(i,j)<=Q(r,s)< Q(k,r).  Another way to look at this is that a job or OS guest may run 
at more than one priority. Thus if the load is heavy, a job may be required to run at 
higher priority, and thus use fewer resources.   

For another view of the difference between the above two pricing approaches, 
consider the following, which may be regarded as a matching problem in bipartite 
graphs (10).  Suppose there are N cores, each with 2 hardware threads, and some 
number of jobs {J(i)}, each requiring a single logical processor.  Suppose we 
associate with each J(i) a “shadow job” sJ(i), which represents the gain from having 
J(i) running alone on a core.  It can be shown that an  optimal airline pricing scheduler 
would choose the top 2N jobs among the {J(i), sJ(i)}, so that a job J(i) and its shadow 
would be chosen if each was in the top 2N.  Under market pricing a job and its 
shadow would run if their average cost was in the top 2N.  Basically, this means that 
under airline pricing a job J(i) might be required to “pay” more for resources on a per 
hardware thread basis than another job J(k).   

Which criterion is best depends on the goals of the scheduler.  Airline pricing 
maximizes a measure of worth to the system.  Market pricing corresponds more 
closely to a priority-based approach, as the market price may be viewed as 
representing a system-wide priority at which jobs are guaranteed to run.  It also more 
easily permits a comparison of congestion at various processors or processor pools.  

3. Thread Allocation 

3.1 Allocation at a clearance price 

The scheduler allocates resources to each job or guest J(i) at each period T.  Consider 
an allocation of type A(j,k).  We would expect, and will assume that v(i,j)> v(i,k) if 
j>k.  That is, the more hardware threads allocated per logical processor, the faster the 
speedup.  This is because of such factors as decreased sharing of the L1 caches and 
execution units in the cores.  However, it may be expected that the speedup is less 



than proportional to the number of hardware threads allocated.  That is, Z(i,j) is 
expected to increase with j, and Q(i,j) to decrease with j.    

We now more formally describe the allocation criterion, as well as an algorithm to 
implement it. 

Def.: We say that the demand  from  job J(i) for threads at a price Q is the 
maximum number of hardware threads corresponding to a value Q(i,j) >=Q. 

Def.:  The clearing price Q* is the highest value of Q at which the total demand 
over all jobs for threads is equal to or greater than the amount available.  

That is, as the price Q is lowered, the demand increases.  Eventually, the demand is 
high enough to include all hardware threads. 

The following procedure is a framework for the allocation process.  

  Procedure A: 

A) For each J(i), determine the highest value of Q at which this job’s demand 
corresponds to an allocation of type j. 

B) Determine the clearing price Q* by obtaining the total demand at each Q. 
C) Choose an allocation of not more than 4N hardware threads with the greatest 

Qs. 
 
Note that, from the above definition, either the clearing price corresponds exactly 

to the number of available hardware threads, or it corresponds to more than the 
number of threads.  

A straightforward method to implement the above procedure is as follows.  
 

Algorithm 1: 
A) For each J(i), obtain the values L(i,j) and Q(i,j) for j=1,2,3,4. 
B) Enter the values for Q(i,j) and L(i,j) in a row v(i), ordered by decreasing value 

of Q, of a matrix V.   
C) Starting with the first column of V, and for every column until the demand 

exceeds 4N, for each value of Q(i,j) in this column, determine the largest L(p,q) in 
each row which corresponds to a  Q(p,q) not smaller than Q(i,j). The sum of the 
obtained L(q,p) obtained is then the demand at price Q(i,j).  That largest Q(i,j) which 
yields a demand not smaller than 4N is the market price. 

D) If the total allocation is greater than 4N, reduce the demand by not scheduling a 
job or jobs, or giving some jobs a smaller allocation. This can be done by reducing 
allocations to jobs with the lowest values of Q. 

 
In the above algorithm, C is the step with maximum complexity.  Its complexity is 

of O(M**2), as each entry is paired with a comparison of the items from each row.  
The number of columns is the number of hardware threads per processor.  An 
alternative algorithm is of complexity O(MlogM): 

  
Algorithm 1a:  

A1) Step A as above.  
B1) Construct the matrix V as above. 
C1) Sort the Qs in the matrix V (complexity O(MLogM)). 



C2) Via a binary search on the sorted Qs, find the largest Q corresponding to a 
demand of at least 4N.  The latter operation requires O(M) steps to obtain the 
demand from each job at a cost Q, and there are O(log M) such steps. 

D) Step D as above. 
  
The following example illustrates the procedure.  We assume N=3, with each core 

having 4 threads.  We assume 4 jobs or guests, J(1), J(2), J(3) and J(4).  The number 
of threads, and the Q(i j)  for j=1,2,3,4 are shown in Table 1 below.   

 
Table 1.  Cost versus total demand for the example. 
 

Jobs L(i,1) Q(i,1) L(i,2) Q(i,2) L(i,4) Q(i,4) 
J(1) 4 10 8 7.5 16 5 
J(2) 4 8 8 6 16 4 
J(3) 2 6 4 4.5 8 3 
J(4) 2 4 4 3 8 2 
 
Q= 2 4 6 7.5 
D= 48 38 18 12 

 

 
Table 1 also shows the demand for various values of Q.  An allocation of 2 cores to 

J1 and 1 core to J2 is the result.  
Here we have that a price of 7.5 corresponds exactly to a demand of 12 hardware 

threads, which is the number available.  This would correspond to 2 cores (4 threads 
apiece) granted to J(1) and one core to J(2). 

 
3.2 Allocation with Airline Pricing  

 
In order to do allocation under this criterion, we consider, rather than the per 
hardware thread value of Q for a given job, the marginal advantage of allocating 
additional hardware threads to a given job. We then perform a steepest descent 
optimization.   

Def.: The marginal per hardware thread advantage of allocating additional 
hardware threads to a given job J(i)  is defined as:   

F(i,m,n)=(L(i,m)Q(i,m)-L(i,n)Q(i,n))/(m-n) (2) 

Def.:  We say that the demand from job J(i) for threads at a marginal price F is the 
maximum number of hardware threads corresponding to a value F<=F(i,m,n). 

We can find an allocation via the following algorithm, which at each point adds 
additional hardware threads to that job with the highest marginal advantage, until all 
hardware threads are allocated.  This can be done via a modified version of Algorithm 
1, under the assumption that the demand is monotonically increasing with decreasing 
F.  We define the clearing marginal price F* as the least value of F at which the total 
demand for threads is equal to or greater than the amount available.  



We note that if the magnitude of the slope of Q(i,m) is as might be expected 
monotonically decreasing with m, then F(i,m,n) is decreasing with increasing m for 
fixed (m-n) and decreasing with increasing (m-n) with fixed n. This means that the 
total demand will increase monotonically with decreasing F. 

 
 

Algorithm 2: 
A) For each J(i), obtain the values L(i,m) and F(i,m,n) for m,n=1,2,3,4 and m>n. 

(this in an O(M) complexity operation) 
B) Enter the quantities F(i,m,n) into a sorted list.  This is of complexity 

O(MlogM).  
C) Via a binary search on the sorted Fs, find the largest F corresponding to a 

demand of at least 4N.  The latter operation requires O(M) steps to obtain the demand 
from each job at a cost F, and there are O(logM) such steps. 

D) If the total allocation is greater than 4N, reduce the demand by not scheduling 
some jobs or giving them a smaller allocation (complexity O(n)).  

 
Step D is not optimal, as the constraints on the discrete number of threads that can 

be allocated to a job means that a solution which includes jobs with a lower value of F 
may better. Table 2 shows the demand for various values of F for the above example.   
 
Table 2.   Marginal Cost versus total demand for the example. 
 

Jobs L(1,1) F(1,4,0) L(1,2) F(1,8,4) L(1,4) F(1,16,8) 
J(1) 4 10 8 5 16 2.5 
J(2) 4 8 8 4 16 2 
J(3) 2 6 4 3 8 1.5 
J(4) 2 4 4 2 8 1 
 
F= 4 5 6 
D= 48 14 10 

 

 
We note that F*=5 in this example.  Here J(1) is allocated 8 hardware threads, J(2) 

is allocated 4 and J(3) allocated 2.  This adds to a value of 104, and 14 hardware 
threads, which is more than the 12 available.  To obtain an allocation, step D above 
could allocate 8 to J(1) and 4 to J(2), and none to J(3).  This yields total value of 92, 
the same result as in the market price approach above. 

4. Pool and Thread  Assignment 

 
We now briefly consider the issues of load balancing and of assigning physical 
resources corresponding to the above allocations.  

The market price obtained in a period T for hardware threads in a pool of 
processors might be used to assign jobs arriving for the next periode.  Unlike say the 



length of the queue, this price is adjusted for thread usage, affinity, and power 
utilization.  Jobs may then be steered to that pool with the lowest price.  If at some 
time the prices become sufficiently nonuniform across pools, jobs might be moved 
from from pools of high to those of low cost.   

An assignment of hardware threads to a job should attempt to preserve spatial 
locality to the extent possible.  For example if 4 hardware threads are assigned to a 
job, then these should be assigned on the same core.  This is also the case for 2 
hardware threads.   More generally, if  the number of identical cores on a chip is  a 
power of two (today’s processors tend to have 1, 2, or 8 such cores), and the number 
of chips on a compute node is also power of two, then a buddy system for hardware 
thread assignment, as sometimes used to allocate contiguous units of memory, and as 
suggested  in (9) for processor allocation, appears advantageous.  For example, the 
following outlined procedure could be employed. 
  
Algorithm 3: Thread assignment.   

A) Threads not committed are gathered into buddy clusters. 
B) Sort the J(i) according to the number of hardware threads allocated. 
C) In order of decreasing thread allocation, assign hardware threads to meet the                                                    

allocation with the least number of breakups of members of buddy classes if 
the allocation can be done within a buddy class; otherwise do the assignment 
with the fewest separate members.  

 
A modification to the above would be to preserve assignments between periods if the 
allocations remain unchanged. 
 
 
 
 
 

5. Event-based Scheduling 
 
Here scheduling is done on events, rather than on time periods, as jobs may be 

active for only part of a period..  This is typical of scheduling in an operating system, 
as opposed to a hypervisor, which, as mentioned above, generally does scheduling on 
fixed time periods. The system is as above, with each processor chip containing 
possibly multiple cores, each with multiple (here assumed to be 4) threads.   

 
As before, we recompute the normalized costs Q every T seconds. The scheduler 

potentially dispatches a job on every event.  Events include: 
 
 
a) Completion of a time slice.  Here the job queue is examined for possible 

candidates. 
 
b) Suspension.  Here a job is suspended, and the job queue is searched for a 

suitable job. 
 



c) Arrival.  A new job arrives, is added to the job queue, and the job queue 
examined. 

 
d) Recomputation of the the delay costs. 
 
The scheduler must decide: 
 
I)  Which, if any, job to dispatch. 
 
ii) How many hardware threads it should use. Note that, as above, a logical 

processor may  occupy a whole core, or only part of one. 
 
iii) Which core or hardware thread should be assigned.  
 
Consider a scheduling decision at time t.  Let M be the number of jobs on the wait 

queue, and let  
G be the current configuration of free hardware threads.  We can do allocation as 

above, namely to find a clearing price for the number of free threads.  However, this 
may not be the best alternative, as a job may arrive for example fortuitously when the 
number of free threads is large, and an allocation at a low price may produce 
congestion for later arrivals.  Instead, a better alternative may be to insist on a price 
which is no lower than say c percentage lower than the average for the system, or for 
the pool, if the system has multiple job pools.   Note that this differs depending on 
whether we use market or airline pricing.  In the former case, we insist that the 
average normalized cost or benefit per hardware thread allocated to each job is above 
a certain threshold.  In the latter, we insist that the average normalized cost is above a 
given threshold for each hardware thread allocated to each job.  

 
 
Once the allocation is done, assignment can proceed as above.  In general, as in 

Section 5, the allocation of say 4 hardware threads to a logical processor requested by 
J(i) may not be feasible given the current state G.  What this means in general is that 
J(i) may be assigned a lower allocation of neighboring threads (e.g. within a buddy 
group), with the assignment to the J(i) for example in order of the normalized cost per 
hardware thread.  

 
In the above discussion of hypervisor scheduling, we assumed that the number of 

logical processors requested is a parameter provided to the scheduler.  However, as 
we discuss below, the application or guest OS could determine this number as a 
function of the cost per hardware thread required at a given time.  For example, if the 
current cost is high, it might be advantageous to request fewer logical processors or 
attempt to coschedule fewer software threads.  Discuss this issue in greater detail 
below.      

 
 
 
 



 
 

6.  Software Thread and Processor Frequency Optimization 
 
  We now consider some general issues for system management.  These go beyond the 
operation of the hypervisor or OS scheduler.  
 
  In the above, it was assumed that for each application or guest OS, the number of  
software threads threads was fixed.  In practice, this number will need to be 
determined, although this is not generally a task for the hypervisor, or the system OS 
scheduler.  A further question, not treated above, is the power utilization per core, 
which can be modified by changing its frequency.  That is, the general problem of 
optimizing system operation requires a solution for the number of software threads for 
each job or guest OS, the allocation of hardware threads to each OS, and the 
frequency or power utilization for each core.  This appears to require an approach 
which partitions the general problem into subproblems, coupled with heuristics to 
obtain a good policy.  
 
  To illustrate the issues, we consider two cases which arise when a server is runs a 
single application.    
 
  The first, Example A has one application or OS running, and the power utilization 
for each active core is fixed (i.e. the core frequency of each active core is fixed ).  We 
might then determine the number of software threads and their allocation (in terms of 
hardware threads) such as to obtain an optimal tradeoff between performance and 
power utilization.  Let  v(i,j,k) be the effective speedup for job J(i) when given an 
allocation j and frequency indexed by k.  Let U(i,j,k) be the power utilization for this 
allocation. We might then maximize Z(i,j,k)=v(i,j,k)C(i)-U(i,j,k) or  
Y(I,j,k)=v(,j,k)C(i)/U(I,j,k).   Y(I,j,k) is essentially proportional to throughput per unit 
power.  Alternatively, we might choose the largest value of v(i,j,k) subject to a bound 
on U(i,j,k), for example if there is a requied power bound.   
 
  Now suppose that the processor frequencies are fixed, and that the system is running 
with a per core market price requirent of W.  A given application or OS guest might 
then request  the number of logical processors which maximizes Z(i,j,k) or Y(i,j,k) 
subject  to the average per core value of at least W.                                                
 
 
 
   The second,  Example B, again has a single application, with each each core 
utilizing a variable amount of energy, for example by changing the frequency.  
Assuming that the performance is monotonic with the clock frequency, and that the 
frequency is the same for each active core, a reasonable heuristic is to find the optimal 
allocation via Example A for each choice of  frequency, then choose the optimal 
frequency.  Note that this might not be a feasible approach for cases of more than one 
application running concurrently. 
 



    
 
 
 
7. Experimental Results. 
 
  We now consider some experimental results.  These were for some benchmarks 
running on three types of blade processors.  The benchmarks were: LU, a simulated 
CFD, computational fluid dynamics, application, floating-point intensive. LU is one 
of the NAS Parallel Benchmarks, www.nas.nasa.gov. DB2, Version 9.1, with a 2gb 
insurance database and typical customer queries, no updates; database was contained 
entirely within filesystem cache, no disk I/O. Finally, an index search application, 
typically used for web search engines, we denote by ‘Search’.  The results illustrate 
speedups from allocating additional hardware threads, the performance implications 
of mixing applications on multithreaded cores, scaling effects related to cache 
sharing, and some power utilization results.  These suggest that for such 
mutltithreaded or multicore systems, scheduling decisions should, as suggested above, 
be in part determined by how well specific applications can take advantage of 
hardware resources, and the way these resources are structured.  
 
  The runs were done using a Linux OS which permits restricting application software 
threads to selected logical processors, or alternatively having the scheduler make the 
selection.  The numbering of the logical processors is such that the default tends to 
spread the load.   
 
 
  7.1 Multithreading on an Intel-based HS20 

  
  The HS20 machine has two processor chips or sockets.  Each processor is 
“hyperthreaded”, that is, it has two hardware threads, each of which is a logical 
processor.  These are numbered so that (0,2) are on one chip, and (1,3) on the other. 
Thus if hardware threads are allocated in numerical order, the first two will be on 
separate  processors.   
 
 Figure 1 shows performance data for the Search and DB2 running alone on the 
machine.  Each application was restricted to run two software threads. If these are 
restricted to run on the same processor, then 2 hardware threads are allocated in the 
parlance of this paper.  If they run on separate processors, one hardware thread from 
each processor is allocated.  Thus for the DB2 application, for example, v(i,4) is 
approximately 1.8 times v(i,2).  For the Search application, this multiple is 
approximately 1.4.   
 
  Figure 2 shows the results of running these two applications concurrently.  Here 
DB2 benefits somewhat from running on a separate processor,  while Search benefits 
from sharing.  This may be because Search accesses tend to be random, and thus tend 
to overwrite DB2 cache contents. 
 

http://www.nas.nasa.gov/


  It should be pointed out that this experiment is not relevant to cases of hypervisor 
scheduling where OS guests are not permitted to share a processor concurrently.  In 
the case of web or database servers, guest OS’s generally do not share processors; 
however, for desktops or desktop servers, sharing processors would be typical. 
 
  7.2 Scaling on an Intel-based HS21 XM.  
 
  This machine has two sockets, with each socket holding the equivalent of two chips 
each with two single-threaded processors or cores.  Two processors share an L2.  That 
is, there are 8 physical cores. Figure 3 illustrates the throughput respectively for 
Search and LU as the number of software threads and logical processors was 
increased.   Throughput for Search increases almost linearly.  This is perhaps because 
as mentioned above accesses to memory tend to be quite random for this benchmark, 
so that sharing an L2 is not much of a factor.  In contrast, for LU the performance 
increases linearly until more than 4 processors are used.  Here cache sharing becomes 
a factor.  Eventually the number of misses appears to overwhelm the memory bus 
bandwidth, so using 8 cores provides lower performance than using only three. 
 
Performance for LU with a single package (or socket) is shown by ‘LU 1 pkg’. As 
mentioned above, a package contains two chips. By default two core performance 
involves one core from each chip, and no L2 sharing. Performance degrades with the 
third and fourth cores, due to sharing the L2 and memory access bandwidth. 
Likewise, ‘LU 1 chip’, shows performance degradation with two cores. Two cores 
produce 1445 Mop/s with a single chip, while two cores in the LU 1 pkg case 
provides 2226 Mop/s.  
 
 
 
7.3 Energy Utilization on an AMD-based LS21.  
 
  This machine has 4 cores on two sockets.  Each core has a private L2.  Figure 4 
shows the throughput for 2 or 4 Search software threads running at different clock 
frequencies.  The throughput for 4 cores at 1400 MHz is slightly higher than that for 2 
cores at 2600.  However, the power utilization is substantially lower, as indicated in 
Figure 5.   This means that the energy required to complete the task, as shown in 
Figure 6 is also substantially lower.  Interestingly, the energy utilization using 4 cores 
is very similar for both frequencies.  For this machine, it appears that using all 
hardware resources  during a run is best, with the frequency adjusted to fit the power 
requirements. 
 
 
   
 
 
8. Discussion and Conclusion 
 



  This report outlines a generalization of the delay-cost processor scheduling 
paradigm, employed in IBM iSeries systems, to systems with possibly large numbers 
of multithreaded machines.  The emphasis is on hypervisor scheduling of guest 
operating systems, where scheduling is done at intervals of some length T, and the 
guest requests some number of logical processors.  Two main differences between the 
schedulers considered here,  and ones in current practice are a) the coscheduling of 
multiple logical processors associated with a guest OS, and b) that there is  more than 
one way to satisfy a request for processing resources, with different utilization of  
hardware threads and electrical power. What might be viewed as a market mechanism 
for resource allocation provides a feasible way to treat various aspects of this 
problem.  This was contrasted with simply maximizing the generalized delay-cost 
objective function.   

For simplicity, the analysis assumed that all processor cores were equal, and that 
threads are not prioritized at the core level; that is, each assigned thread has equal 
priority on the processor. Dropping these assumptions is a topic for further 
investigation.  

Inclusion of an energy cost component provides a means to control the number of 
cores active at any given time, given that such cores can be readily deactivated.  This 
provides an automatic means for increasing or decreasing the number of such active 
cores as a function of system load and desired response times.   However, the energy 
cost component included here may not always be a suitable way to address this issue.  
One reason for this is that the cost may be more dependent on the number of nodes or 
blades active at a given time.  A way to address this is to do the optimization without 
the energy parameter U for variable numbers of N processors.  The lowest number N 
which yields adequate performance over some period of time would then be the one 
chosen.   

Some experimental data were included that showed that speedup factors and 
energy utilization should ideally be determined for each workload, as well as for each 
processor configuration.  Speedups can depend not only on the number of logical 
processors, but also their cache sharing and multithreading configuration.  This 
suggests that factors such as v(i,j) and U(i,j), as discussed above, may indeed be 
relevant for decisions in scheduling and resource allocation.   
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Appendix.  
 
We here describe two special cases of  optimal schedules for single threaded jobs, 

respectively on single-threaded processors with affinity, and dual-threaded processors 
without affinity.  The techniques we develop may be amenable to generalization or 
the design of heuristics.  As above, we wish to maximize the sum of the Q(i,j), for 
jobs {J(i)} running on processors Pr(j).  We assume N processors, and M jobs to be 
scheduled in some time period T.   

 
We first consider the problem of optimal affinity assignment.  In combinatorics, 

this is a maximum bipartite matching problem, with approximately O(N**3) 
complexity (8.).  This level of complexity is not practical in the current setting.  
However, an O(nlogn) algorithm can be obtained under some simple assumptions: 

 
    a)  That the processors form non-overlapping affinity classes.  and that 
 
    b)  The benefit of running on an affinity processor ( i.e. the incremental value of 

Q) is a                      proportional to its delay-cost C(i,t),  We call the value of Q on an 
affinity processor the                 affinty value. 

 
An example of property a) is that running on a core with the same L2 as used  

recently may avoid some cold-start penalty.  Then all cores sharing this L2 would be 
in the same affinty class.  Property b) might be assumed as some system average.  

 
We first state the following proposition. 
 
    Proposition 1. 
 
     Consider two jobs with affinity to a given processor.  That job with the highest 

normalized            cost should be assigned to run. 
 
     Proof: 
 

http://wikixensource.com/xenwiki/CreditScheduler


     This is immediate  from the uniform speedup property.  Any gain due to 
assigning the lower          cost job the affinity processor will be less than the loss to 
the higher cost job due to property         b) above. 

 
We now formulate an optimal assignment under the above assumptions.  
 
    Algorithm 3.   
 
    Step 1: For each affinity class, find the at most N(a) jobs with the highest 

affinity value Q(i).               
 
   Step2: Sort the jobs according to their values Q(k), with all but the jobs from step 

1 assigned                    non-affinity values.   
    
   Step3:  Assign the top N jobs to processors, with affinity assignments as 

appropriate (i.e.                          Those jobs from step 1 in the final schedule given to 
their affinity processors). 

   
   . 
 
     
   Proposition 2.  
 
    The assignment of Algorithm 2 is optimal for the case of uniform affinity 

speedup. 
     
     Proof: 
     
     Immediate from the property that the jobs assigned have the highest feasible 

affinity or                  non-affinity costs. 
 
 
We now consider a special case where there is no affinity, but where each 

processor can run two simultaneous threads.  Here we might expect that two threads 
might for example result in say 20% more throughput, so that a job running by itself 
would be (1/.6), or 4/3,  faster.  That is, there is a uniform speedup to an individual 
job from running it alone.  Degradation from multiple threads might include factors 
such as sharing functional units, or contention for cache space. 

 
The approach we take here is to create what we term shadow threads, scheduled 

somewhat like ordinary threads, which block multitheading when appropriate. We 
associate with each job J(i)  a shadow job J’(i), with an normalized  cost  Q’(i) which 
is the difference between the cost for J(i) of running by itself, or with another job.  
We can then apply a procedure similar to algorithm 2.   

 
    Algorithm 4.  
 



    Step 1.  
 
    Sort the Q(i) along with the Q’(i).   
 
    Step 2. 
 
    Choose those N jobs or shadow jobs with the highest values.  If a job and its 

shadow are both       chosen, schedule these on the same processor. 
 
Algorithm 3 obviously chooses the highest cost jobs or shadow jobs to run, and 

thus minimizes the delay cost.  
 
Suppose there are fewer than N jobs to be scheduled.  This means that that some 

processors or subprocessors will idle.  It is then clearly desirable to spread the jobs 
among the processors, so that none are idle.  Algorithm 3 does this, with the 
advantage that the highest cost jobs are assigned to run single threaded.  Algorithm 3 
might also be utilized in a system without multithreading, but where two processors 
share some asset such as an L2 cache.  

 
Both Algorithm 2 and Algorithm 3 provide complete solutions to their respective 

problems, namely both allocation of resources and assignment of those resources. 
More complex problems, such as gang scheduling, or the scheduling of jobs on cores 
with more than two hardware threads, appears difficult.  These difficulties appear to 
be more amenable to handling via the approach taken in the main body of this report, 
where the problem is partitioned into a) allocation and b) assignment.   

 
We now briefly contrast the results of Algorithm 3 above with an allocation based 

on market pricing.  Here each job must meet a market price for the hardware threads 
it consumes. A job whose average normalized cost for two threads is greater than the 
market cost will be allocated   the threads.  Thus shadow threads may be assigned 
even if their cost Q(i)’ his lower than that for some Q(j).  In airline pricing, both the 
job and its shadow must each have a sufficiently high cost, as in Algorithm 4.  The 
result in the latter case is that the price “paid” per thread is higher for some jobs than 
others.        
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     -----------------  Figure 1  ----------------- 
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   ----------------  Figure 2  ----------------- 
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