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Abstract

Mass-produced goods tend to be highly standardized in or-

der to maximize manufacturing efficiencies. Some high-value

goods with limited production quantities remain much less

standardized and each sale can be configured to meet the

specific requirements of the customer. In this work we sug-

gest a novel methodology to reduce the number of options

for complex product configurations by identifying meaning-

ful sets of options that exhibit strong empirical dependencies

in previous customer orders. Our approach explores different

measures from statistics and information theory to capture

the degree of interdependence between the choices for any

pair of product components. We use hierarchical cluster-

ing to identify meaningful sets of components that can be

combined to decrease the number of unique product specifi-

cations and increase production standardization. The focus

of our analysis is on the influence of different similarity mea-

sure - including chi-squared statistics and versions of mutual

information - on the ability of the clustering to find mean-

ingful clusters.

1 Introduction and Motivating Example

While bundling of products has received significant at-
tention in the economic literature (e.g., [1, 2, 3]), the
bundling of product options is typically limited to con-
siderations of production efficiency and engineering. In
order to optimize the tradeoffs between maximizing
production efficiencies and making products that meet
the individualized requirements of particular customers,
manufacturers have developed techniques of combining
options into bundles so that batches of similarly cus-
tomized products may be made together, rather than
making each customized product individually. Exist-
ing approaches to developing such bundles, however,
have been driven by the choices of product designers
and have not afforded a systematic way of incorporating
customer preference data. Examples of products that
offer option bundles can be observed in the car indus-

try. Toyota for instance offers an ‘All Weather Guard
Package’ that includes an Intermittent Rear Window
Wiper, Windshield Molding, Heavy-Duty Heater and
Rear-Seat Heater Ducts. All of the above components
appear related to the requirements of driving under
harsh weather. The alternative ‘standard package’ con-
tains the simpler default components - more suitable for
driving in geographies with milder winters.

Even considering all the different options, passenger
cars remain a highly standardized product class. In
this work we explore the task of finding good sets
of components for bundling on the example of truck
configurations. Trucks are ordered for a specific use
and the customer can specify all major components
separately. A truck will only be produced after the
customer has made his choices. However, one would
suspect a limited set of usage categories and certain
recurring patterns in the customer orders. For example,
trucks are specialized towards different weight-of-goods
categories. Safety requirements for transportation of
heavy goods include enhanced chassis support, number
of gears, shock absorbers, efficient breaks, and also more
powerful engines. Trucks for lighter consumer-goods on
the other hand will employ less expensive options for
motorization, braking and build. So the objective of our
bundling task is to find component combinations that
empirically exhibit strong customer-choice dependencies
(potentially driven by the objectives of truck usage) and
will appeal to future customers of new orders.

An important point here is that we want to bun-
dle components, not choices. That is, we do not want
to identify groups of specific choices that go together
(like, say, Intermittent Rear Window Wiper and Heavy
Duty Heater), but groups of generic components (like
Rear Window Wipers and Heating System), such that
their choices tend to be correlated across customer seg-
ments. This is important to us because we eventually
want to create multiple independent component groups
(clusters) such that each customer can select a specific



package for each component group. Keeping the com-
ponent groups fixed guarantees that customers will be
able to select from each one independetly of the oth-
ers. We make this distinction concrete in Section 2, and
discuss it further in the following sections.

To address this objective we need to quantify depen-
dencies between components. In order to achieve this
goal we will explore potential measures of dependen-
cies between nominal variables in Section 3 and discuss
properties of such similarity measures. Given that such
measures can capture only pair wise dependencies, we
propose in Section 4 the use of hierarchical clustering to
find larger sets of components that all exhibit large pair
wise dependencies. We will illustrate the issues and re-
sults on the example of the truck configuration domain.

While the work in this paper concentrates on a spe-
cific application, we believe that the bundling problem
is of general interest and we are not aware of prior work
on this formalization as hierarchical clustering under an
appropriate similarity measure. Other contributions of
this work include the identification of desirable prop-
erties in the given context of nominal variables with
differing numbers of choices and skewed probability dis-
tributions. While there has been substantial work on
clustering using chi-square based similarities as well as
clustering with mutual information (e.g., [4, 5, 6]), we
are not aware of combined methods that incorporate
both, the mutual information and the statistical signif-
icance as clustering criteria, which we propose below.

2 Notation and Formalization

Formally, a complex product consists of n components
C1, ..., Cn. For every component Cj , there is a limited
set of kj possible choices {cj1, ..., cjkj

} where the number
of choices kj differs across components. We assume that
we have N past observations that indicate for each order
the particular choices as a vector o1, ..., on with oj ∈
{cj1, ..., cjkj

}. Note that this setup differs considerably
from the typical basket analysis of customer choices that
motivated the work on large itemsets and mining of
association rules [7]. The notion of components imposes
additional constraints:

• all customers have the identical number of n com-
ponents and

• for each component only one choice is permissible.

While frequent itemsets may be indicators of se-
mantic interdependencies between choices, they do not
measure the interdependence of components. Each
itemset considers only one particular choice cjg ∈
{cj1, ..., cjkj

} and how often it appears with another
choices for another component, but not how much each

possible choice cj1, ..., cjkj
for component cj correlates

with the choices for the other component. Another
problem with the notion of frequent itemsets is its de-
pendence on the prior probability of a particular choice.
In particular, a frequent itemset analysis identifies typ-
ically combinations of default values for components
with one very common default value and a small set
of much less common values. That does not mean that
there is any deeper semantic dependency between the
components. It is just an artifact of the high skew of
the probabilities. While there are measures of the ‘unex-
pectedness’ of an itemset, these measures are typically a
function of the size of the set, with larger sets exhibiting
much more unexpected behavior. We will take a brief
look at the results of a frequent itemsets analysis for
our application domain in Section 5.1 to highlight the
distinction between a component-level analysis and a
choice-level analysis offered by frequent itemset mining.

To address our specific bundling objective we need
to quantify dependencies between sets of components,
not sets of choices. In order to achieve this goal we
will explore potential measures of dependencies between
nominal variables in the following Section and discuss
properties of such similarity measures.

3 Measuring Dependence

The objective in our bundling task is to find sets of
components where past customer choices exhibit some
form of dependence. So far we have used the term
dependence rather loosely in a non-technical sense of
some form of a semantic connection. While it is difficult
to formalize dependence without a clear prior notion
of how things depend on each other, there is a clear
statistical notion of the opposite: independence between
random variables. We can formalize the observation of a
customer choice oi for a particular component Ci as the
outcome of a random experiment over the sample space
Ωi = {ci1, ..., cik}. Formally, two random variables are
independent if their joint distribution is equal to the
product of their individual distribution functions
(3.1)

P (oh = chp, ol = clm) = P (oh = chp) ∗ P (ol = clm)

for all elements of the Cartesian product of the two sam-
ple spaces Ωi × Ωj (all possible choice pairs for the two
components). Independence is defined generally over an
arbitrary number of variables and we could attempt to
devise a measure of the interdependence within entire
sets of components. However, such a strategy will not
lead to non-overlapping bundles as desired in our case.
In addition, given the somewhat vague business objec-
tive, the final choice of bundles is potentially subject to
many additional production constraints and considera-



tions. We will therefore restrict our work to pairs of
components and employ hierarchical clustering to sug-
gest a hierarchy of potential non-overlapping bundles,
from which the domain experts may choose the desired
granularity for option bundling.

We can now measure dependence in terms of the
degree of violation of the equality 3.1 over all pairs of
choices chp, clm) for a pair of components (Ch, Cl). This
requires initially the estimation of the distribution for all
possible components and their choices P (ol = clm) and
choice pairs p(chp, clm). We will simplify the notation
and use p(chp) to denote P (oh = chp) and p(chp, clm)
for P (oj = chp, ol = clm) respectively. Note that for
the posed business problem, we do not have a clear
evaluation metric for the quality of bundling. Other-
wise we could hope to derive (either implicit or explic-
itly) an appropriate similarity measure leading to op-
timal bundling performance. Our results will depend
very much on the particular choice of similarity. We
will therefore discuss in more detail some desirable and
useful properties and frame existing measures with re-
spect to these properties. While there are many possi-
ble choices of a similarity measure D([0, 1]s, [0, 1]s) → R

(where s = kh ∗ kl is the number of choice pairs), rea-
sonable candidates can be constructed from an ‘atomic’
measure of similarity D0([0, 1], [0, 1]) → R of the ele-
ments (chp, clm) of the Cartesian product over the sam-
ple spaces and aggregates A(Rs) → R over all the
atomic similarities.

In order to be suitable for our bundling task, we
would like the similarity to exhibit three other desirable
properties:

• It has to be symmetric with D(Ch, Cl) =
D(Cl, Ch), since there is no special order on the
components;

• It should to be comparable across component
pairs. In particular, it should be rather insensitive
to the specific size of the Cartesian product of the
sample spaces;

• It should be robust towards estimation errors
of the distribution. Given a limited sample of
prior customer orders and a large sample space
for some components with many possible values,
the estimation quality of the probabilities will be
limited. This problem is particularly dominant for
rare choices.

The issue of assessing dependence has been
considered in different fields including the analysis
of contingency tables in statistics and information
theoretical work on the information content of signals.

3.1 Chi-Square Based Similarity Measures of as-
sociation have a long history in the context of the anal-
ysis of contingency tables. For an extensive overview
consider [8]. However, the majority of association mea-
sures is not suitable for our task for due to a lack of
symmetry, and focus on the conditional mode of the
distribution while ignoring less common choices. One
standard approach to evaluate the significance of statis-
tical dependencies of two nominal random variables (Ch

and Cl) is based on a Chi-square test.
(3.2)

χ2(Ch, Cl) = N

kh∑

i=1

kl∑

j=1

(p(chp, clm) − p(chp)p(clm))2

p(chp)p(clm)

Note that this formulation uses an ‘atomic’ Euclidean
similarity and a sum as aggregation function where the
denominator reflects the expected probability of observ-
ing a pair under the null-hypothesis of independence.
Let us make a few observations that contradict two of
our desirable properties for the bundling task - compa-
rability and robustness:

• The measure from Equation 3.2 follows (under
certain assumptions) approximately a Chi-square
distribution with d = (kh − 1)(kl − 1). This means
that its expected value is a function of the sizes of
the sample spaces and renders a comparison across
component pairs impossible.

• The Chi-square statistic is known to be sensitive
to small number of expected observations in the
denominator. The Fisher exact test is correcting for
this problem but is only applicable for 2x2 tables.

One can consider several solutions for both issues.
To address the dependence on the degrees of freedom,
we can either convert the statistic into the correspond-
ing p-value or correct it based on the Normal approx-
imation. The p-value is derived from the cumulative
distribution with the appropriate degrees of freedom
and reflects the probability of such a Chi-square occur-
ring by chance. However, as we will see in the exper-
iments, this correction eliminates most of the informa-
tion. Given the comparably large size of our dataset, al-
most all observed values are significant with high prob-
ability and most of the p-values are indistinguishable
from 0. The second correction takes advantage of the
fact that a Chi-square with large number of degrees of
freedom d = (kh − 1)(kl − 1) is approximately normally
distributed with a mean equal to d and a variance equal
to 2*d. We can therefore use the following correction:

(3.3) Nχ2(Ch, Cl) =
χ2(Ch, Cl) − d√

2d



To address the issue of small expectations, we
combine multiple rare component choices into a new
value ‘other’. Note that a replacement with ‘other’
can artificially create dependencies and should be taken
with a grain of salt: the fact that for two components
some cases both have the value ‘other’ is likely to
indicate that the customers are picky and always want
something special, not that this choice of one component
affects the other.

3.2 Mutual Information [9] measures the informa-
tion about one component that is shared by another.
If the components are independent, then one contains
no information about the other and vice versa, so their
mutual information is zero. Formally, the mutual infor-
mation MI of two random variables for components Ch

and Cl is defined as:
(3.4)

MI(Ch, Cl) =

kh∑

i=1

kl∑

j=1

p(chp, clm) log
p(chp, clm)

p(chp) ∗ p(clm)

In the case of mutual information the aggregation
function is again a weighted sum and the ‘atomic’ simi-
larity is the log of the ratio of the expected and observed
probability. While this measure both symmetric and
robust to small expectations due to the log transforma-
tion, it is not comparable across pairs of components.
If the sample space of the two variables is identical, the
maximum mutual information under complete depen-
dence is equal to the entropy. Entropy however is a
function of the sample size. In particular, a tight upper
bound on the mutual information [10] is given by

(3.5) MI(Ch, Cl) ≤
H(Ch) + H(Cl)

2

where H(Ch) is the entropy [11] of component Ch

defined as

(3.6) P (Ch) =

kh∑

i=1

p(chi) log(
1

p(chi)
)

We therefore define a normalized mutual information as
suggested by [10] as

(3.7) NMI(Ch, Cl) =
2MI(Ch, Cl)

H(Ch) + H(Cl)
.

3.3 Combining Mutual Information and Signif-
icance While both measures work on the same under-
lying information, the objective for which they were de-
veloped is very different. The goal of the Chi-square
measure is to assess significance relative to the null-
hypothesis of independence. This means in particular,

that it matters how many observations are provided.
The power of a test is a function of the number of ob-
servations and as the sample becomes very large, almost
every small deviation becomes significant. We can see
the relevance of the sample size N in Equation 3.2. In-
formation theory ([11, 9]) on the other hand takes a
different perspective. Mutual information is completely
independent of the sample size N and in does not assess
whether the observed amount of information could have
been observed by random chance. So mutual informa-
tion is a closer measure of the quantity we are interested
in, the degree of dependence, but does not take random-
ness into account and whether the observed quantities
are significant. We therefore propose a similarity mea-
sure that incorporates both statistical considerations of
significance and the amount of information:

(3.8) SIM(Ch, Cl) = NMI(Ch, Cl) ∗ (1 − p(Ch, Cl))

where p(Ch, Cl) is the p-value of the appropriate Chi-
square and can be calculated from the cumulative
density function for the Chi-square distribution with
(kh − 1)(kl − 1) degrees of freedom as p(Ch, Cl) =
1−cdf(χ2(Ch, Cl), (kh−1)(kl−1)). This similarity mea-
sure weights the observed amount of shared information
by the probability of it not being random. The multi-
plicative weighting can motivated by a somewhat sim-
plistic expected value calculation of two possible states.
In one state with a probability equal to the p-value the
true relationship is actually random (mutual informa-
tion equal to 0) and in the other with probability 1
minus the p-value the dependence it is not random and
the estimate of the mutual information is assumed to
be correct.

4 Hierarchical Clustering

Clustering and cluster analysis (e.g., [12, 13]) encom-
passes a number of different algorithms and methods for
grouping objects of similar kind into respective groups.
Rather than finding a fixed number of clusters in the
data, agglomerative hierarchical clustering as proposed
by Johnson [12] proceeds iteratively by combining ex-
isting clusters and may be represented by a two dimen-
sional diagram known as dendrogram which illustrates
the fusions or divisions made at each successive stage of
analysis. Examples of such dendrograms are given Fig-
ure 1,2,3. A dendrogram is a tree diagram frequently
used to illustrate the arrangement of the clusters pro-
duced by a clustering algorithm. The similarities be-
tween the nodes reflect the relative similarities of the
clusters. Given a set of n items to be clustered, and an
n ∗n similarity matrix, the basic process of hierarchical
clustering [12] is this:

1. Start by assigning each of the n component to



its own cluster. Let the similarities between the
clusters be the same as the similarities between the
items they contain.

2. Find the closest pair of clusters and merge them
into a single cluster, so that now you have one
cluster less.

3. Compute similarities between the new cluster and
each of the old clusters.

4. Repeat steps 2 and 3 until all items are clustered
into a single cluster of size n.

Aside from the similarity measure, the criterion to
define ‘closest’ in step 2 is one of the major components
of the clustering algorithm and can affect the results
significantly. Different criteria include:

• Minimum: Similarity between clusters is the
smallest similarity from any member of one cluster
to any member of the other cluster.

• Average: Similarity is the average over the sim-
ilarities from any member of one cluster to any
member of the other cluster. Alternatively, one can
consider the median, which is more robust to simi-
larity outliers.

• Maximum: Similarity between clusters is the
largest similarity from any member of one cluster
to any member of the other cluster.

5 Dataset and Empirical Results

Our experiments are based on legacy transaction records
of a truck manufacture. We selected (based on the
recommendation of the manufacturer) a small subset
of 31 important components for the illustration of this
work and included in the analysis a total of 3500 recent
orders. An overview of the components is provided
in Table 1. The table also provides some information
about the statistical properties including the size of
the sample space for each component (Size) and the
empirical prevalence of the mode for each component
(Mode).

5.1 Analysis of Most Frequent Itemsets As we
discussed in Section 2, frequent itemsets do not directly
address our problem of component bundling, because
they only identify bundles of choices (component val-
ues). However, we wanted to investigate whether the
most frequent itemsets could give us information about
component bundles, by identifying dominant option
bundles, that can be a basis for component bundling.
We used APRIORI to identify frequent itemsets on the

Code Component Size Mode

C01 Model 8 0.80
C06 Exhaust Package 15 0.64
C08 Brake Package 4 0.92
C03 Dead Axle Package 11 0.98
C10 Engine 54 0.14
C12 Retarder Driveline 12 0.65
C18 Clutch 717 0.51
C21 LH Fuel Tank 15 0.45
C22 RH Fuel Tank 17 0.45
C26 Radiator 8 0.40
C29 BatteryBox 7 0.98
C34 Transmission 82 0.11
C36 PTO Engine Front 4 0.96
C32 PTO Transmission 22 0.80
C40 Axle Front 21 0.20
C44 Brake Front 9 0.48
C42 Axle Rear Drive 57 0.21
C41 Axle Ration 49 0.15
C43 Brake Rear 13 0.12
C54 Wheelbase 164 0.19
C56 Frame Rail 10 0.27
C55 Frame Overhang 115 0.23
C57 Fifthwheel 33 0.91
C62 Suspension Front 12 0.40
C63 Suspension Rear 73 0.11
C68 SleeperCab 2 0.99
C82 Cab Size 7 0.74
C84 Business Segment 30 0.33
C85 Vehicle Service 14 0.67
C92 Trailer Type 12 0.86
C93 Body Type 30 0.44

Table 1: Component Codes and Definitions for the
Example Domain. The size column represents the
number of possible choices for the component (size of
the sample space) and the last column presents the
probability of the most common choice (Mode) as an
indicator of the skew in the probabilities.

order database. Each record is a truck specification con-
sisting of 31 component choices. Let us consider bundles
that combine between 3 components. APRIORI finds 4
itemsets that appear in more than 95% of truck orders
covering 3 components as shown in Table 2.

In particuar, these results would suggest to combine
any subset of three from the four components: C29,
C68, C03 and C36. The only thing that these compo-
nents have in common, is a very dominant Mode option
(see last column of Table 1 that is prevalent in more
than 98% of all orders. However, there is no “meaning-
ful” relationship between the Battery Box, the Sleeper
Cab, and the Dead Axle Package. Furthermore, if you
consider the actual choices that appear in the frequent



3 Componet-Choice Set Coverage

C03-998 C68-998 C36-998 (98.4%)

C29-017 C68-998 C36-998 (98.3%)

C29-017 C03-998 C36-998 (97.1%)

C29-017 C03-998 C68-998 (97.1%)

Table 2: Most frequent itemsets with 3 components
from the APRIORI algorithm.

itemsets, they are mostly default values of the form 9**,
typically indicating at times “None”.

These results reflect the previously suggested short-
comings of the frequent itemset approach in this partic-
ular context: the results are heavily influenced by the
distribution of the choices within components; they ig-
nore the frequencies of alternative choices for the same
set of components, and finally do not identify interesting
dependences between components.

5.2 Similarity Measures Following the discussion
in Section 3 we now shift our analysis to the estimation
of dependences between components using the 7 differ-
ent similarity measure at our disposal:

Nχ2 : Chi-sqare corrected for degrees of freedom
by Normal approximation as defined in
Equation 3.3

Nχ2
r
: Chi-sqare without rare options (occurrence

below 20) corrected for degrees of freedom
by Normal approximation

p(χ2): p-values of Chi-square
p(χ2

r): p-values of Chi-square without rare options
MI: Mutual information as defined in Equation

3.4
NMI: Normalized mutual information as defined

in Equation 3.7
SIM : Combined mutual information and p-value

as defined in Equation 3.8

Table 3 shows the correlation (which implicitly assumes
a linear relationship) between the measures.

N
χ2 N

χ2
r

p(χ2) p(χ2
r
) MI NMI SIM

N
χ2 1.00 0.80 0.20 0.16 0.41 0.63 0.63

N
χ2

r
0.80 1.00 0.18 0.16 0.59 0.84 0.84

p(χ2) 0.20 0.18 1.00 0.58 0.18 0.22 0.24
p(χ2

r
) 0.16 0.16 0.58 1.00 0.16 0.20 0.20

MI 0.41 0.59 0.18 0.16 1.00 0.88 0.88

NMI 0.63 0.84 0.22 0.20 0.88 1.00 0.99

SIM 0.63 0.84 0.24 0.20 0.88 0.99 1.00

Table 3: Correlation of the different similarity measures.

We can clearly identify three groups: measures

based on mutual information (MI, NMI and SIM),
measure based on the p-values and the two Chi-square
measures. The fact that the p-values are only very
vaguely correlated with the Chi-square measures is due
to the inherent non-linearity of the cumulative density
function. Replacing rare values has a moderate effect
both in the case of p-values and the Chi-square mea-
sures. The normalization of the mutual information
clearly has an effect, much more so than the weighting
by the p-value. The only exception to the nice separa-
tion of the measures into 3 groups is the high correlation
between the Chi-square adjusted for rare values and the
two normalized mutual information measures of 0.84.

As pointed out earlier, the measures using a p-value
only reflect whether the observed degree of dependence
could be random. We have a fairly large dataset and
both measures assign a value of 0 to 93% of all pair
wise distances. This renders it unusable as a similarity
measure for the clustering objective. The only pairs that
show values above 0 involve typically components with
a very high probability for the mode (e.g., components
C03, C68, and C36).

5.3 Clustering Results We used Pajek [14] to per-
form the hierarchical clustering using average criterion
and the visualization of the corresponding dendrograms.
Given our earlier analysis of the similarity measures we
consider for clustering only SIM , Nχ2

r
, and Nχ2 .

Figures 1,2,3 show the dendrograms for the three
similarity measures. The relative lengths of the hori-
zontal lines in the dendograms reflect the decrease of
similarity. The further left two branches join, the more
similar the two clusters. We can use each of the den-
dograms to identify component clusters. We (somewhat
arbitrarily) decide on a vertical cutoff in the dendrogram
and consider all clusters left of it. Table 4 identifies
clusters in the dendograms that can be suggested to a
domain expert as potential component bundles. Bold
indicates sets that are common across all 3 measures,
italic indicates sets that occur in at least 2 dendograms.
The clusters are listed in the order they appear top to
bottom in the respective figures. While the order of
the components top-to-bottom varies across the dendo-
grams (it is determined by the clustering algorithm),
we find fairly consistent results across all three mea-
sures in terms of potential bundles. Note that only one
cluster under the Chi-square measures (C29,C68) con-
sists of components that were identified in the frequent
itemset analysis. Let’s consider the four bold clusters
that are common across all measures in more detail. In
particular, we will select the four most common option
combinations for each of the proposed bundle and see
what percentage of the orders they cover.
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Figure 1: Dendrograms for hierarchical clustering using
the Nχ2 measure.
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Figure 2: Dendrograms for hierarchical clustering using
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Figure 3: Dendrograms for hierarchical clustering using
the SIM measure.

(C21,C22) determines the left and right fuel tank.
Given the typically symmetrical form of trucks it seems
very reasonable that there is a strong dependence
between the two. The coverage of the four most
common option combinations for this bundle is 60%.

(C42,C63) relates to the rear specification of the
truck - the axle rear drive and the rear suspension with
a coverage of 22% for the four most common option
combinations. While the coverage seems low, note that
the expected coverage of the most common option pairs
under the independence assumption is only 2% since
the most common choice for C63 occurs in only 11%
of orders and the mode of C42 appears in 20%. In the
light of this, 22% is still impressive.

(C82,C01,C26) determine the model, the cab size
and the radiator with a coverage of 82%.

(C85,C84,C93) are 2 broad vehicle (business segment
and vehicle service) categories and the body type. The
coverage of the four most frequent combinations is 42%.

Recall that we selected a small subset of 31 com-
ponents for this analysis that are important and do not
include any small parts such as wiper blades, for which



Measure Componet Set

Nχ2
r

C44,C18,C43,C56

C62,C40

C42,C63

C82,C01,C26

C85,C93,C84

C68,C29

C21,C22

Nχ2 C82,C01,C26

C21,C22

342,180
C85,C93,C84

C42,C63

C62,C40

C44,C18,C43,C56

C57,C92

C68,C29

SIM C85,C93,C84

552,545
342,180,101
C62,C40,C44
C42,C63

C82,C01,C26

C21,C22

C57,C92

C18,C43

Table 4: Component clusters in the dendograms that
can be suggested to a domain expert as potential
component bundles. Bold indicates sets that are
common across all 3 measures, italic indicates sets that
occur in at least 2 dendograms.

we would expect to see stronger dependencies. While
the final decision about the appropriateness of clusters
has to be done by a domain expert, we feel confident
that our methodology can provide a good set of candi-
date component bundles for closer examination.

6 Discussion and Conclusion

We presented an analytical approach that can guide the
design of appropriate bundles of components for com-
plex products such as trucks. While the task is very
relevant in practice, there is no clear measure of per-
formance and the validity of the results can only be
assessed based on domain specific information or by
a domain expert. We suggest a novel approach that
compines hierarchical clustering and a similarity mea-
sure based on mutual information, adjusting for the
number of options and combining it with statistical sig-
nificance. While the adjustment for the number of op-
tions shows a strong effect on the similarity measure, in-
corporating the p-values has a minor effect if the dataset
is large. In this case most p-values are close to zero.

Using our similarity measure to assess dependencies be-
tween customer choices we can identify meaningful can-
didate sets of components. We are not aware of studies
that investigate issues of similarity scaling and distri-
bution in the context of different clustering approaches
and hope to address this topic in future work.
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